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ON THE RESOLUTION OF RELATIVE THUE EQUATIONS

ISTVÁN GAÁL AND MICHAEL POHST

Abstract. An efficient algorithm is given for the resolution of relative Thue
equations. The essential improvement is the application of an appropriate
version of Wildanger’s enumeration procedure based on the ellipsoid method
of Fincke and Pohst.

Recently relative Thue equations have gained an important application,
e.g., in computing power integral bases in algebraic number fields. The pre-
sented methods can surely be used to speed up those algorithms.

The method is illustrated by numerical examples.

Introduction

Let M ⊂ K be algebraic number fields with m = [M : Q] and n = [K : M ] ≥ 3.
The rings of integers of K,M will be denoted by ZK ,ZM , respectively. Let α ∈ K
be an integral generator of K overM , µ ∈M an algebraic integer and η an arbitrary
unit in M . In this paper we consider the relative Thue equation

NK/M (X − αY ) = ηµ in X,Y ∈ ZM .(1)

According to the effective results by Baker [1], this equation has only finitely many
solutions up to multiplication by units in M . We note that Baker’s result was
generalized and extended by several authors (for further literature and the latest
effective bounds for the sizes of the solutions of (1), see Bugeaud and Győry [6]).

Following the standard arguments, X − αY is usually written as the product
of an element of K of given norm and powers of fundamental units of K. The
bound obtained by Baker’s method for the exponents in this representation is an
exponential function of certain parameters of K involving a very large constant.
Hence, although the effective bounds imply that the solutions of the equations
can be found in a finite number of steps, these bounds do not at all allow us to
enumerate all possible exponents below the bound and for a complete resolution of
the equation.

The result of Baker and Davenport [2] initiated a constructive theory of diophan-
tine equations by developing the first algorithms for reducing the effective bounds
for the exponents in a numerical way, using diophantine approximation techniques.
These methods were extended by Pethő and Schulenberg [15], de Weger [19], and
now the reduction step seems to be solved satisfactorily.
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The final step of solving the equations is the enumeration of the possible values
of the exponents below the reduced bounds. For simple examples, this is a trivial
problem, but it can become hopeless if the number of exponential variables is large,
even if the reduced bound is small. For this reason, sieve methods are frequently
applied in this step. Using sieve methods, Smart [18] developed an algorithm for
solving relative Thue equations. For a detailed account of his parallel sieve, cf.
Smart [17]. We expect our method to be much more efficient if the number of
exponential variables is large. A comparison of our method with the sieve methods
is given at the end of the paper.

Recently, Wildanger [21] introduced a new method for the enumeration of small
values of the exponents, building ellipsoids by taking Euclidean norms of vectors in
the logarithmic space, and applying the very efficient method of Fincke and Pohst
[8] for enumerating lattice points in the ellipsoids. This method is suitable to solve
the above-mentioned final enumeration problem efficiently.

Thue equations are one of the most important classes of diophantine equations,
having also several applications. In the absolute case (for M = Q) Bilu and Han-
rot [4], [5] gave an efficient method avoiding the problem of final enumeration by
eliminating the linear forms in several variables and considering only linear forms
in two variables. Also, an idea of Pethő [14] makes it easy and fast to find small
solutions of absolute Thue equations. However, even after a detailed investigation
we did not see a possibility to adopt these methods to the relative case in order to
make the algorithm more efficient.

It is important to remark that relative Thue equations recently gained an im-
portant application in computing power integral bases of algebraic number fields.
In several cases (see, e.g., [9], [10], [11], [12], [13]), this problem was reduced to
relative Thue equations.

These were actually the first results where several relative Thue equations were
solved completely. We note that de Weger [20] solved a single relative Thue equation
at about the same time. In all previous results, as well as in Smart [18], variants of
sieve methods were used in the final enumeration step, consuming a considerable
amount of CPU time.

In the present paper we show how an appropriate version of Wildanger’s method
can be used instead of sieving. We apply his ideas in a more complicated situation
in which the unit equation involves power products of quotients of some relative
conjugates of units with unknown exponents, instead of just power products of
conjugates of units. In creating this version we have adjusted its formulation for
the present type of problems, and we have also simplified its formulation as much
as possible.

We briefly summarize how to use Baker’s method and the reduction procedure
to relative Thue equations and concentrate on the new ingredient of the algorithm
in the last step.

Baker’s method

Let η1, . . . , ηs be a system of fundamental units in M . Extend this system to a
maximal independent system η1, . . . , ηs, ε1, . . . , εr of units in K. Then any solution
X,Y ∈ ZM of (1) can be written as

X − αY = ν(η1)b1 . . . (ηs)bs(ε1)a1 . . . (εr)ar .(2)
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Here ν ∈ ZK is an integral element with relative norm µ. Up to unit factors in
K there are only finitely many possibilities for ν, which can be determined using
the KANT package [7], and the following procedure must be performed for each
possible value of ν.

The exponents b1, . . . , bs, a1, . . . , ar in (2) are integers if the above system of in-
dependent units is a fundamental system of units. Otherwise, b1, . . . , bs, a1, . . . , ar
can have a common denominator. In order to make our presentation simpler, we
assume that the exponents are integral; otherwise the formulae must be modified
in a straightforward way.

Setting

X ′ =
X

(η1)b1 . . . (ηs)bs
, Y ′ =

Y

(η1)b1 . . . (ηs)bs

yields

X ′ − αY ′ = ν(ε1)a1 . . . (εr)ar .(3)

We will just calculate a1, . . . , ar, since the solutions of (1) are determined only up
to unit factors of M .

For any γ ∈ K we denote by γ(11), . . . , γ(1n), . . . , γ(m1), . . . , γ(mn) the conjugates
of γ, so that for 1 ≤ i ≤ m the elements γ(i1), . . . , γ(in) are the corresponding
relative conjugates of γ over the conjugate field M (i) ofM . To simplify our notation,
for any i (1 ≤ i ≤ m) and any distinct j1, j2, j3 (1 ≤ j1, j2, j3 ≤ n) we introduce a
symbol I = (ij1j2j3) and set

γ(I) = γ(ij1j2j3) =

(
α(ij2) − α(ij3)

)
ν(ij1)(

α(ij1) − α(ij3)
)
ν(ij2)

, ρ
(I)
k = ρ

(ij1j2)
k =

ε
(ij1)
k

ε
(ij2)
k

(1 ≤ k ≤ r),

τ (I) = τ (ij1j2) =
(
ρ

(ij1j2)
1

)a1

. . .
(
ρ(ij1j2)
r

)ar
,

and

β(I) = β(ij1j2j3) =

(
α(ij2) − α(ij3)

)
· (X ′ − αY ′)(ij1)(

α(ij1) − α(ij3)
)
· (X ′ − αY ′)(ij2)

.

Then we have

β(I) = γ(I)τ (I).

Consider the system of linear equations

a1 log
∣∣∣ρ(I)

1

∣∣∣+ . . .+ ar log
∣∣∣ρ(I)
r

∣∣∣ = log
∣∣∣τ (I)

∣∣∣(4)

in a1, . . . , ar for any I = (ij1j2j3) with 1 ≤ i ≤ m and any distinct j1, j2, j3 (1 ≤
j1, j2, j3 ≤ n) (the equations are independent of j3). Since ε1, . . . , εr are indepen-
dent over M , the matrix of coefficients on the left side has rank r. Choosing a set
of r linearly independent equations and multiplying by the inverse of the coefficient
matrix of the system, we conclude

A = max(|a1|, . . . , |ar|) ≤ c1 ·
∣∣∣log

∣∣∣τ (I)
∣∣∣∣∣∣(5)

for a certain set I = (ij1j2j3) of indices, where c1 is the row norm (maximum sum of
the absolute values of the elements in a row) of the inverse matrix of the coefficient
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matrix of (4). We choose a set of independent equations so that c1 becomes as
small as possible. Now if |τ (I)| < 1, then (5) implies∣∣∣τ (I)

∣∣∣ < exp
(
−A
c1

)
,(6)

and if |τ (I)| > 1, then the same holds for |τ (I∗)| = 1/|τ (I)| > 1 with I∗ = (ij2j1j3).
From now on we assume that (6) is valid. The following procedure (application of
Baker’s method, reduction) must be performed for each possible value of i, j1, j2
since we cannot predict which of the |τ (I)| satisfies the crucial inequality (6).

Let 1 ≤ j3 ≤ n be any index distinct from j1, j2. Using Siegel’s identity we have

(α(ij1) − α(ij2))(X ′ − α(ij3)Y ′) + (α(ij2) − α(ij3))(X ′ − α(ij1)Y ′)

+ (α(ij3) − α(ij1))(X ′ − α(ij2)Y ′) = 0.

For I = (ij1j2j3) and I ′ = (ij3j2j1) we obtain

β(I) + β(I′) = 1.(7)

Using | logx| < 2|x − 1| holding for all |x − 1| < 0.795 and applying (6), from (7)
we get ∣∣∣log

(
β(I′)

)∣∣∣ ≤ 2 ·
∣∣∣β(I′) − 1

∣∣∣ = 2 ·
∣∣∣β(I)

∣∣∣ ≤ c2 exp
(
−A
c1

)
,(8)

where c2 = 2 · |γ(I)|. On the other hand,∣∣∣log
(
β(I′)

)∣∣∣ =
∣∣∣log

(
γ(I′)

)
+ a1 · log

(
ρ

(I′)
1

)
+ . . .+ ar · log

(
ρ(I′)
r

)
+ a0 · log(−1)

∣∣∣ ,
(9)

where log denotes the principal value of the logarithm and a0 ∈ Z with |a0| ≤
|a1|+ . . .+ |ar|+ 1. Set A′ = max(|a1|, . . . , |ar|, |a0|); then A ≤ A′ ≤ rA+ 1. Note
that (8) implies ∣∣∣log

(
β(I′)

)∣∣∣ ≤ c2 exp
(
−A

′ − 1
rc1

)
.(10)

In the case that the terms in (9) are linearly independent, then we can directly
apply the estimates of Baker and Wüstholz [3] to the linear form in (9) to derive a
lower bound of type ∣∣∣log

(
β(I′)

)∣∣∣ ≥ exp(−C · logA′) ,

which, compared to (10), implies an upper bound for A′ and A.
Note that if log

(
γ(I′)

)
in (9) is dependent on the other terms, we can reduce the

number of variables in the linear form. The variable a0 can be omitted for totally
real fields K.

The bounds obtained by Baker’s method are about 1020 for r = 2, 3 and go up
to about 10500 for r = 7, 8.
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Reduction

Using (9) and (10) we have an estimate of type

|x1ξ1 + . . .+ xkξk| < c2 exp(−c3X − c4) ,(11)

where k = r + 2, x1 = 1, x2 = a1, . . . , xr+1 = ar, xr+2 = a0,

ξ1 = log
(
γ(I′)

)
,

ξ2 = log
(
ρ

(I′)
1

)
, . . . , ξr+1 = log

(
ρ(I′)
r

)
,

ξr+2 = log(−1),

X = max(|x1|, . . . , |xk|), and c2, c3, c4 are positive constants. Let H be a large
constant (to be specified later) and consider the lattice L spanned by the columns
of the k by k + 2 matrix

1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

H<(ξ1) H<(ξ2) . . . H<(ξk)
H=(ξ1) H=(ξ2) . . . H=(ξk)


Assume that the columns in the above matrix are linearly independent. Denote by
b1 the first vector of an LLL-reduced basis of this lattice.

Lemma 1. If X ≤ X0 and |b1| ≥
√

(k + 1)2k−1 ·X0, then

X ≤ logH + log c2 − c4 − logX0

c3
.

Proof. Denote by l0 the shortest vector in the lattice and l1 the shortest of those
vectors having first coordinate 1. Using the inequalities of [16] we have |b1|2 ≤
2k−1|l0|2. Then by the assumptions, using also (11),

21−k ((k + 1) · 2k−1X2
0

)
≤ 21−k|b1|2

≤ |l0|2 ≤ |l1|2 ≤ k ·X2
0 +H2c22(exp(−c3X − c4))2 ,

whence

X0 ≤ Hc2 exp(−c3X − c4) ,

which implies the assertion.

If the terms in (11) are linearly dependent, then we can reduce the number of
variables and we apply Lemma 1 with k = r + 1. In this case x1 is not restricted
to 1, but for that case the assertion remains valid (just omit l1 in the proof).

If the field K is totally real, we can omit the variable corresponding to a0 and
the imaginary parts in the last component of the generating vectors of the lattice
L.

We first take X0 to be Baker’s bound, apply Lemma 1 to reduce it to the constant
in the assertion, and in the next step we use the new bound as X0. An appropriate
value of H corresponding to X0 is of magnitude Xk

0 . The reduction is very efficient:
in the first steps the former bound is reduced almost to its logarithm. After about
4–5 steps, the procedure stabilizes; i.e., the new bound is not any smaller than the
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previous bound. Then we stop the procedure. The final reduced bound is usually
between 100 and 1000. Note that one can utilize x1 = 1 to improve the reduction.

Final enumeration

Since we usually have r ≥ 3 for relative Thue equations, it is a nontrivial problem
to test all possible values of the exponents a1, . . . , ar below the reduced bounds. For
larger values of r, this problem is actually the main difficulty in solving such equa-
tions. Our goal in this section is to show how an appropriate version of Wildanger’s
enumeration method [21] can be used for relative Thue equations.

Let I = {I1, . . . , It} be a set of tuples I = (ij1j2j3) with 1 ≤ i ≤ m and distinct
1 ≤ j1, j2, j3 ≤ n with the following properties:

1. if (ij1j2j3) ∈ I, then either (ij2j3j1) ∈ I or (ij3j2j1) ∈ I;
2. if (ij1j2j3) ∈ I, then either (ij1j3j2) ∈ I or (ij3j1j2) ∈ I;
3. the vectors

ek =


log
∣∣∣ρ(I1)
k

∣∣∣
...

log
∣∣∣ρ(It)
k

∣∣∣

 (1 ≤ k ≤ r)

are linearly independent.
Since ε1, . . . , εr are multiplicatively independent over M , the last condition can

be satisfied if we take sufficiently many tuples. Note that choosing a minimal set
of tuples satisfying those conditions reduces the amount of necessary computations
considerably.

Set

g =

log
∣∣γ(I1)

∣∣
...

log
∣∣γ(It)

∣∣
 , b =

log
∣∣β(I1)

∣∣
...

log
∣∣β(It)

∣∣
 .

In our notation, we have

b = g + a1e1 + . . .+ arer .(12)

We denote by A0 the reduced bound for A = max(|a1|, . . . , |ar|). Setting

logS0 = max
I∈I

(∣∣∣log
∣∣∣γ(I)

∣∣∣∣∣∣+A0

∣∣∣log
∣∣∣ρ(I)

1

∣∣∣∣∣∣+ . . .+A0

∣∣∣log
∣∣∣ρ(I)
r

∣∣∣∣∣∣) ,
we obtain for any tuple I:

1
S0
≤
∣∣∣β(I)

∣∣∣ ≤ S0.(13)

The next lemma describes how we can replace S0 by a smaller constant.

Lemma 2. Let 1 < s < S be given constants and assume that
1
S
≤
∣∣∣β(I)

∣∣∣ ≤ S for all I ∈ I.(14)

Then either
1
s
≤
∣∣∣β(I)

∣∣∣ ≤ s for all I ∈ I,(15)
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or there is an I ∈ I with ∣∣∣β(I) − 1
∣∣∣ ≤ 1

s− 1
.(16)

Proof. Assume that the tuple I = (ij1j2j3) ∈ I violates (15). Set I ′ = (ij3j2j1)
and I ′′ = (ij3j1j2). Then we have either

1
S
≤
∣∣∣β(I)

∣∣∣ ≤ 1
s
,

which together with (7) implies ∣∣∣β(I′) − 1
∣∣∣ ≤ 1

s
,(17)

or we have

s ≤
∣∣∣β(I)

∣∣∣ ≤ S ,

yielding ∣∣∣β(I′′) − 1
∣∣∣ =

∣∣∣∣∣−β(I′)

β(I)
− 1

∣∣∣∣∣ =
∣∣∣∣ 1
β(I′′)

∣∣∣∣ ≤ 1
s
.(18)

If the tuple (I ′) is not in I, but I ′′′ = (ij2j3j1) is in I, then β(I′′′) = 1/β(I′) and
(17) imply ∣∣∣β(I′) − 1

∣∣∣ ≤ 1
s− 1

.

The case that I ′′ is not in I, but I ′′′′ = (ij1j3j2) is in I is treated analogously.

Summarizing, the constant S can be replaced by the smaller constant s if for
each j0 (1 ≤ j0 ≤ t) we enumerate directly the set Hj0 of those exponents a1, . . . , ar
for which

1
S
≤
∣∣∣β(I)

∣∣∣ ≤ S for all I ∈ I,∣∣∣β(Ij0 ) − 1
∣∣∣ ≤ 1

s− 1
.

(19)

Next we consider the enumeration of the set Hj0 . We set

λj =



1
logS for j 6= j0, 1 ≤ j ≤ t ,

1
log s−1

s−2
for j = j0 ,

1

arccos s(s−2)
(s−1)2

for j = t+ 1 ,

ϕj0(b) =


λ1 log

∣∣β(I1)
∣∣

...
λt log

∣∣β(It)
∣∣

λt+1 arg
(
β(Ij0 )

)
 , ϕj0(g) =


λ1 log

∣∣γ(I1)
∣∣

...
λt log

∣∣γ(It)
∣∣

λt+1 arg
(
γ(Ij0 )

)
 ,
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and

ϕj0(ek) =


λ1 log

∣∣∣ρ(I1)
k

∣∣∣
...

λt log
∣∣∣ρ(It)
k

∣∣∣
λt+1 arg

(
ρ

(Ij0 )

k

)

 (1 ≤ k ≤ r) ,

where −π ≤ arg z ≤ π for all z ∈ C, and

e0 =


0
...
0
π

 ∈ Rt+1 .

Obviously, if e1, . . . , er are multiplicatively independent, then their images
ϕj0(e1), . . . , ϕj0(er) are linearly independent and (12) implies that there exists
an integer a0 such that

ϕj0(b) = ϕj0(g) + a1ϕj0(e1) + . . .+ arϕj0 (er) + a0e0 .(20)

Moreover, using (19), we obtain for the norm of this vector

||ϕj0(g) + a1ϕj0(e1) + . . .+ arϕj0 (er) + a0e0||22 = ||ϕj0 (b)||22

=
t∑

j=1

λ2
j log2

∣∣∣β(Ij)
∣∣∣+ λ2

t+1 arg2
(
β(Ij0 )

)
≤ t+ 1

(21)

by the inequalities of [21, Lemma 1.13], which ensure that for the above choice of
the parameters λ all summands are ≤ 1. Hence we have shown that inequality
(21) holds for any (a1, . . . , ar) ∈ Hj0 . This inequality defines an ellipsoid. The
lattice points contained in this ellipsoid can be enumerated by using the algorithm
of Fincke and Pohst [8]. The enumeration is usually very fast, but it is essential that
the “improved” version of the algorithm should be used, involving LLL reduction.

Note that if g is dependent on e1, . . . , er, e0, then it is possible to reduce the
number of variables. If K is totally real, the (t+ 1)st component of ϕj0 , the vector
e0 and the variable a0 can be omitted, and in (21) we only get t on the right-hand
side.

Applying that procedure we obtain constants S0 > S1 > . . . > Sk by taking S =
Si, s = Si+1 in each step, and we enumerate the lattice points in the corresponding
ellipsoids. The initial constant is given by the reduced bound (see above), the last
constant Sk should be made as small as possible, so that the exponents with

1
Sk
≤
∣∣∣β(I)

∣∣∣ ≤ Sk for all I ∈ I(22)

can be enumerated easily. We observe that the set (22) is also contained in an
ellipsoid; namely, by (12) we have

||g + a1e1 + . . .+ arer||22 = ||b||22 ≤ t · (logSk)2.(23)

Usually, in the first enumeration step, S1 can be much smaller than S0, e.g.,
S1 = 1010 or 1020. Then it is economical to take Si+1 =

√
Si until Si decreases to

about 103. Then we choose Si+1 = Si/2. For an optimal choice of these constants
we refer to Wildanger [21].
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Numerical results

We illustrate our algorithm by two detailed examples. The first of them is a
simple cubic equation over a quadratic field, which we solved earlier by using sieve
methods. Hence, we wanted to compare the several hours of CPU time needed for
sieving with the necessary CPU time needed for the enumeration with the ellipsoid
method.

The second example is a more complicated one, which can hardly be solved by
the sieve method.

For both examples we implemented our algorithm in MAPLE.

Example 1. Let M = Q(
√

5) with basis element and fundamental unit η = ω =
(1 +

√
5)/2, and consider the equation

X3 + (1− ω)X2Y + (−4 + 4ω)XY 2 + (−8 + 5ω)Y 3 = ±ηk

in X,Y ∈ ZM , k ∈ Z .

The corresponding sextic field K has signature (4,2) with 4 fundamental units, η
being among them. Hence in our linear forms, we had 3 unknown variables and
the additional variable a0 needed for the principal value of the logarithm. In the
logarithmic linear forms, the term involving the α’s is dependent on the other
terms. Baker’s method gave a bound 1037. That was reduced in three steps to
1308, 199, 132, respectively. In the first reduction step, we took H = 10155 and
used a precision of 250 digits. The next steps were much easier, and the reduction
procedure required only a few minutes.

In the final enumeration procedure, we had to consider 6 ellipsoids (i.e., we had to
test 6 tuples ij1j2j3). The vector g was dependent on the other vectors. The reduced
bound 132 implied an initial constant S0 = 10497 to start the final enumeration.
For this S0 we made some trials to determine an optimal value of S1, and our
experience showed that even with S1 = 1010 the enumeration is very fast and gave
no possible exponents. Then we took S2 = 104; the second step was again very fast
and gave no solutions. In the further steps, we had S3 = 1000, S4 = 100, S5 = 50,
and all possible exponents were enumerated very fast. It took only a few seconds
to enumerate the ellipsoid (23). The solutions of the equation are

(X,Y ) =(1, 0), (−1 + ω, 1), (2− ω, 1), (−2 + ω, 1), (0,−1− ω),

(12− 7ω,−5 + 3ω), (−1 + ω,−4− 8ω), (4− 3ω,−2 + 2ω)

and of course all multiplies of them by units of M .

Example 2. Let M = Q(
√

2) with basis element ω =
√

2 and fundamental unit
η = 1 +

√
2. Consider the equation

X4 − 2X3Y + (−2− ω)X2Y 2 + (3 + ω)XY 3 + (1 + ω)Y 4 = ±ηk

in X,Y ∈ ZM , k ∈ Z .

The corresponding octic field K is totally real with 7 fundamental units, among
them η. Hence we had 6 unknown exponents. The term involving the α’s was
independent from the others in the logarithmic linear forms. Baker’s method gave
a bound 1053, which was reduced in three steps to 1097, 121, 85, respectively. In
the first reduction step we took H = 10350 and used a precision of 420 digits. The
next steps were much easier, and the whole reduction procedure required about five
minutes.
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In the final enumeration procedure we had to consider 18 ellipsoids (that is, we
had to test 18 tuples ij1j2j3). The vector g was independent from the other vectors.
This means, that in fact we enumerated quadratic forms in 7 variables, one of them
restricted to 1. The reduced bound 85 implied an initial constant S0 = 10269 for the
final enumeration. We summarize the enumeration procedure in the following table.
In the second and third columns S > s denote the subsequent values Sk > Sk+1.
In the fourth column Digits is the precision we used, the fifth column contains the
number of tuples found (in the 18 ellipsoids together), and in the last column we
display the running time (for the 18 ellipsoids together).

step S s Digits tuples CPU time
1. 10269 1050 150 0 5 sec
2. 1050 1020 70 0 5 sec
3. 1020 1012 50 0 5 sec
4. 1012 1010 50 0 30 sec
5. 1010 108 50 4 60 sec
6. 108 107 50 42 60 sec
7. 107 106 50 195 60 sec
8. 106 105 50 2081 180 sec
9. 105 104.5 50 2185 180 sec
10. 104.5 104 50 4957 180 sec
11. 10000 6000 50 5005 210 sec
12. 6000 3000 50 7274 240 sec
13. 3000 1500 50 8178 240 sec
14. 1500 1000 50 7306 180 sec
15. 1000 500 50 9113 240 sec
16. 500 250 50 10907 240 sec
17. 250 150 50 10077 240 sec
18. 150 100 50 9265 180 sec
19. 100 50 50 11431 180 sec
20. 50 40 50 6249 120 sec
21. 40 30 50 6297 120 sec
22. 30 20 50 6287 120 sec
23. 20 10 50 7039 120 sec
24. 10 5 50 4459 120 sec
25. 5 3 50 1306 70 sec
26. 3 50 5399 60 sec

The last line 26. corresponds to the single ellipsoid (23). The possible exponents
were all tested if there were corresponding solutions (X,Y ) of the equation; this
took some seconds. The total CPU time for this example took about 1 hour. The
solutions of the equation are

(X,Y ) =(−ω, 1− ω), (−1 + ω,−2 + ω), (ω,−1), (−1,−1), (0,−1), (1, 0),

(−1,−1 + ω), (2− ω,−2 + ω), (−2,−1), (1,−ω), (1− ω,−1),

(−4 + ω,−6 + 2ω), (−1− ω, ω), (ω,−2− 2ω), (−1, 2− ω)

and of course all multiples of them by units of M .
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Comparison with the sieve method

Let us assume that we use the procedure with S0 > S1 > . . . > Sk and I =
{I1, . . . , It}. According to our notation

log |β(I)| = log
∣∣∣γ(I)

∣∣∣+ a1 log
∣∣∣ρ(I)

1

∣∣∣+ . . .+ ar log
∣∣∣ρ(I)
r

∣∣∣
satisfies the inequalities∣∣∣log

∣∣∣β(I)
∣∣∣∣∣∣ ≤

logSl−1 for I ∈ I \ Ij0 ,
log

Sl − 1
Sl − 2

for I = Ij0 ,

in the l-th step by (19). Then, following the arguments of Wildanger [21, p. 19] and
taking into consideration also the final ellipsoid (23), we obtain that the number of
steps needed for the enumeration is roughly proportional to

F = t ·
k∑
l=1

(
log

Sl − 1
Sl − 2

)
(logSl−1)t−1 + (logSk)t .

At the beginning, the Sl are large but then (Sl − 1)/(Sl − 2) is close to 1, so that
its logarithm is close to 0. This makes the terms very small for large values of Sl.
In the later steps the terms with small values of Sl are negligible. According to
our computational experiences the number t of the ellipsoids to be enumerated is
roughly 1.5 r where r is the number of relative units.

As we have seen in Example 2, our method works within feasible running time
even if the number of unknown exponents is 6. One could certainly improve the
CPU time by a better choice of the constants S1, S2, etc. To make an optimal choice,
cf. [21, pp. 19–21]. Note that Wildanger [21] applied this type of enumeration
method even for unit rank 10 without difficulties.

When using the sieve method for r unknown exponents and taking a prime mod-
ulus p, the number of cases to test is (p−1)r, which is already out of computational
capacities for unit rank r = 5 if the prime is of magnitude 102. Note that the sieve
method is only useful if the reduced bound A0 for A is relatively large and we find
an appropriate prime modulus p which is smaller than A0. The prime p is to be
chosen such that the minimal polynomial of the generating element of the field K
splits into linear factors modulo p; hence usually p > 100.
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3. A.Baker & G.Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442

(1993), 19–62. MR 94i:11050
4. Y.Bilu & G.Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996),

373–392. MR 97k:11040
5. Y.Bilu & G.Hanrot, Thue equations with composite fields, Acta Arith. 88 (1999), 311–326.

MR 2000c:11047
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15. A.Pethő & R.Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. (Debrecen)

34 (1987), 189-196. MR 89c:11044
16. M.Pohst, Computational Algebraic Number Theory, DMV Seminar Band 21, Birkhäuser Ver-
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