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BACKWARD EULER DISCRETIZATION
OF FULLY NONLINEAR PARABOLIC PROBLEMS

C. GONZÁLEZ, A. OSTERMANN, C. PALENCIA, AND M. THALHAMMER

Abstract. This paper is concerned with the time discretization of nonlinear
evolution equations. We work in an abstract Banach space setting of ana-
lytic semigroups that covers fully nonlinear parabolic initial-boundary value
problems with smooth coefficients. We prove convergence of variable stepsize
backward Euler discretizations under various smoothness assumptions on the
exact solution. We further show that the geometric properties near a hyper-
bolic equilibrium are well captured by the discretization. A numerical example
is given.

1. Introduction

Within the past several years, nonlinear evolution equations of parabolic type
have attracted a lot of interest, both in theory and applications. This is due to
the fact that such equations are increasingly used for the description of processes
involving nonlinear diffusion or heat conduction. As examples we mention reaction-
diffusion equations that arise in combustion modeling, the Bellman equations from
stochastic control and the nonlinear Cahn-Hilliard equation from pattern forma-
tion in phase transitions. Further examples are semilinear problems with moving
boundaries, such as the Stefan problem that describes the melting of ice.

The knowledge about stability and convergence for time discretizations of non-
linear parabolic problems has also increased considerably. For Runge-Kutta dis-
cretizations of semilinear problems, asymptotically sharp error bounds are given in
[9]. Optimal convergence results for quasilinear problems in Hilbert spaces can be
found in [10], whereas the papers [5] and [13] deal with stability and convergence
of quasilinear problems in Banach spaces. Convergence of linearly implicit Runge-
Kutta methods for nonlinear parabolic problems is studied in [11]; corresponding
results for multistep discretizations can be found in [1] and [8]. For the fully non-
linear situation, however, not that much is known. A reason for this might be that
the analytical frameworks for fully nonlinear equations are often quite involved.

The present paper is based on a new and simple framework, given in [12], that
extends ideas from the semilinear case to the fully nonlinear one. This is done as
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follows. Consider a parabolic evolution equation

u′ = F (u), t > 0, u(0) given,(1.1)

on a Banach space X . The nonlinearity F is defined on an open subset D of a
second Banach space D ⊂ X and takes values in X . By linearizing F around a
state u∗ ∈ D, equation (1.1) takes the form of a semilinear problem

u′ = Au+ f(u), t > 0, u(0) ∈ D,
where A is a bounded operator from D to X . Under the assumption that A gener-
ates an analytic semigroup, we have a (formal) representation of the solution u by
the variation-of-constants formula

u(t) = etAu(0) +
∫ t

0

e(t−τ)Af(u(τ)) dτ, 0 ≤ t ≤ T.(1.2)

Since f(u(t)) is only defined for u(t) ∈ D, we have to consider the semiflow in D.
But as the analytic semigroup etA : X → D behaves like Ct−1, the integral on the
right-hand side might not exist in D. Consequently (1.2) cannot be used directly.

This is quite different to the semilinear case where intermediate spaces V between
X and D are considered. There, under the assumption that the function f is locally
Lipschitz continuous from V to X , a unique local solution can be constructed by a
fixed-point iteration relying on formula (1.2) (see [7] and [15]).

It turns out that the following slight modification of the variation-of-constants
formula

u(t) = etAu(0) +
∫ t

0

e(t−τ)A
(
f(u(τ)) − f(u(t))

)
dτ +

∫ t

0

eτA dτ f(u(t))(1.3)

is the basic tool for the analysis of fully nonlinear equations. Within the space of
α-Hölder continuous functions this relation has a precise meaning and is used to
prove existence and uniqueness of a local solution (see [12, Section 8]).

The aim of the present paper is to derive existence and convergence results for
time discretizations of (1.1). To keep this exposition in a reasonable length and
to avoid technical details, we restrict our attention to the backward Euler method,
but we allow variable stepsizes. The extension to strongly A(φ)-stable Runge-Kutta
methods with constant stepsizes will be given in [17]. To our knowledge, this is the
first paper that provides rigorous error bounds for variable stepsize discretizations
of nonlinear parabolic problems. The proofs are based on a global representation of
the numerical method by means of a discrete variation-of-constants formula similar
to (1.3).

In Section 2 we give the precise assumptions on the initial value problem (1.1)
and we present two examples of nonlinear parabolic initial-boundary value problems
that fit into this analytical framework. Besides, we introduce spaces of α-Hölder
continuous sequences on which our discrete framework is based.

Section 3 deals with the existence and uniqueness of the numerical solution,
and with convergence. More precisely, we prove in Theorem 3.3 the expected con-
vergence of order one for constant stepsize discretizations of sufficiently smooth
solutions. For variable stepsizes and/or less regular solutions, we show convergence
of reduced order.

In Section 4 we study the question whether the dynamics of the analytical prob-
lem is well captured by the discretization. As an illustration, we consider expo-
nentially stable equilibria and show that the numerical solution locally exists for
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all positive times and decays exponentially towards the equilibrium. A numerical
experiment that is in line with our theoretical result is presented.

The auxiliary results for Sections 3 and 4 are finally given in Section 5.

2. Analytical framework and examples

In this section we give the precise hypotheses for (1.1) and further introduce
some notation that will be used throughout the paper.

We work in the analytical framework given by [12]. Let (X, ‖·‖) and (D, ‖·‖D)
be two Banach spaces with D densely embedded in X , and denote by D an open
subset of D. We consider the abstract initial value problem

u′(t) = F (u(t)), t > 0, u(0) ∈ D.(2.1)

Derivatives with respect to the argument of a function are henceforth denoted by
a prime. Our assumptions on the nonlinearity F are the following.

Assumption 2.1. We assume that the function F : D → X is Fréchet differen-
tiable and that its derivative F ′ : D → L(D,X) has the following properties.

(i) F ′ is locally Lipschitz continuous; i.e., for each u∗ ∈ D there exist R > 0 and
L > 0 such that ∥∥F ′(v)− F ′(w)

∥∥
D→X ≤ L‖v − w‖D,(2.2)

for all v, w ∈ D with ‖v − u∗‖D ≤ R and ‖w − u∗‖D ≤ R.
(ii) For every u∗ ∈ D the operator F ′(u∗) is sectorial; i.e., there exist θ ∈ (0, π/2),

ω0 ∈ R and M > 0 such that if z ∈ C and | arg(z − ω0)| ≤ π − θ, then z − F ′(u∗)
has a bounded inverse in X and∥∥(z − F ′(u∗))−1

∥∥
X→X ≤

M

|z − ω0|
.(2.3)

(iii) For every u∗ ∈ D the graph-norm of F ′(u∗) is equivalent to the norm of D.

Under these assumptions, it is known that (2.1) has a locally unique solution
(see [12, Theorem 8.1.1]). This solution u ∈ C([0, δ], D) ∩ C1([0, δ], X) has the
regularity property u ∈ Cαα ((0, δ], D) for arbitrary 0 < α < 1. For the convenience
of the reader we recall the definition of the space Cαα . For a Banach space (B, ‖·‖B),
Cαα ((0, δ], B) is the space of all bounded functions v : (0, δ]→ B such that t 7→ tαv(t)

0ωθ

Figure 1. Condition (2.3) holds for all z outside the shaded cone.
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is α-Hölder continuous in (0, δ]. This space is endowed with the norm

‖v‖Cαα((0,δ],B) = sup
0<t≤δ

‖v(t)‖B + sup
0<s<t≤δ

‖v(t)− v(s)‖B
(t− s)α sα.

We next give two nonlinear initial-boundary value problems that fit into our
framework. More examples can be found in [12].

Example 2.2 (Combustion of a solid fuel, [3, Section 6.7]). Let U(t, x) denote the
temperature of a combusting solid fuel at position x ∈ [0, 1] and time t ≥ 0. A model
for the evolution of U is given by the nonlinear initial-boundary value problem

∂tU(t, x) = ∂x

(
k
(
∂xU(t, x)

)
∂xU(t, x)

)
+ ϕ(U(t, x)), 0 < x < 1, t > 0,(2.4)

with homogeneous Neumann boundary conditions ∂xU(t, 0) = ∂xU(t, 1) = 0 for all
t > 0 and initial condition U(0, x) = U0(x) for 0 < x < 1. We assume that the
diffusion coefficient k is twice differentiable, with bounded second derivative, and
that it satisfies the uniform ellipticity condition

k(y) + yk′(y) ≥ κ > 0 for all y ∈ R.(2.5)

We further suppose that ϕ has a locally Lipschitz continuous derivative and that the
initial value U0 is twice continuously differentiable and satisfies the compatibility
conditions U ′0(0) = U ′0(1) = 0.

Choosing X = C([0, 1]) and D = {v ∈ C2([0, 1]) : v′(0) = v′(1) = 0} allows us
to write (2.4) in the abstract form (2.1) with u(t) = U(t, ·) and

F (v) =
(
k(v′)v′

)′ + ϕ(v).

The smoothness assumptions on k and ϕ immediately imply condition (i) of As-
sumption 2.1, and the ellipticity condition (2.5) implies (ii) and (iii) there.

Equally, it can be shown that our assumptions are satisfied for the Banach spaces
X = L2(0, 1) and D = {v ∈ H2(0, 1) : v′(0) = v′(1) = 0}. This follows from the
well-known embedding H1(0, 1) ⊂ C([0, 1]).

Example 2.3 (Semilinear problem with moving boundary). We consider the semi-
linear parabolic problem

∂tV (t, y) = ∂yyV (t, y) + ϕ
(
V (t, y), ∂yV (t, y)

)
, 0 < y < b(t), t > 0,(2.6a)

with homogeneous Dirichlet boundary conditions V (t, 0) = V (t, b(t)) = 0 for t > 0
and initial condition V (0, y) = V0(y) for 0 < y < b(t). Here the position of the
right boundary b(t) is determined by the ordinary differential equation

∂tb(t) = ψ
(
b(t), V (t, b(t)), ∂yV (t, b(t))

)
, t > 0, b(0) = 1.(2.6b)

We assume that ϕ and ψ have locally Lipschitz continuous derivatives and that V0

is twice continuously differentiable with V0(0) = V0(1) = 0.
The famous Stefan problem that models the melting of ice is of this form by

taking ϕ = 0 and ψ(p, q, r) = −βr with a positive constant β (see [16, Section 15.4]).
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Changing the variables U(t, x) = V (t, b(t)x) transforms problem (2.6) to the
interval 0 ≤ x ≤ 1, and we obtain the nonlinear system

∂tU(t, x) =
∂xxU(t, x)
b(t)2

+ ϕ

(
U(t, x),

∂xU(t, x)
b(t)

)
+
x∂tb(t)
b(t)

∂xU(t, x),

∂tb(t) = ψ

(
b(t), U(t, 1),

∂xU(t, 1)
b(t)

)
, 0 < x < 1, t > 0,

(2.7)

with boundary conditions U(t, 0) = U(t, 1) = 0 for t > 0 and initial conditions
U(0, x) = V0(x) for 0 < x < 1 and b(0) = 1.

We choose X = C([0, 1])×R and D =
{
v ∈ C2([0, 1]) : v(0) = v(1) = 0

}
×R, and

since the projection P : C([0, 1])→ R : v 7→ v(1) is continuous, the conditions (i),
(ii), and (iii) of Assumption 2.1 are again easily verified.

We finish this section by introducing some notation. The aim of the paper is
the analysis of backward Euler discretizations of (2.1) which are given as sequences
u0, u1, . . . , uN in D, corresponding to a grid 0 = t0 < t1 < · · · < tN ≤ T . This
motivates the consideration of the following discrete norms and seminorms in XN :

µ(v) = sup
1≤n≤N

‖vn‖, λα(v) = sup
1≤k<n≤N

‖vn − vk‖
(tn − tk)α

tαk ,

|||v|||α = µ(v) + λα(v),
(2.8a)

for v = (vn)Nn=1 ∈ XN and 0 < α < 1. Analogously, we denote

µD(v) = sup
1≤n≤N

‖vn‖D, λD,α(v) = sup
1≤k<n≤N

‖vn − vk‖D
(tn − tk)α

tαk ,

|||v|||D,α = µD(v) + λD,α(v),
(2.8b)

for v ∈ DN . Further we define µβ for 0 ≤ β ≤ 1 and v ∈ XN
β through

µβ(v) = sup
1≤n≤N

‖vn‖β.(2.9)

Here (Xβ , ‖·‖β) denotes the real interpolation space (X,D)β,∞ between X and D
(see [12, Section 1.2.1]). Note that ||| · |||α and ||| · |||D,α are discrete versions of the
norms ‖·‖Cαα((0,δ],X) and ‖·‖Cαα((0,δ],D), respectively.

3. Convergence analysis of the backward Euler solution

In this section we study the backward Euler method for discretizing (2.1) in
time. We show that a unique numerical solution exists for finite times, provided
that the maximal stepsize is chosen sufficiently small. We further derive convergence
estimates under various smoothness assumptions on the exact solution.

We first consider a local situation for which more precise estimates can be ob-
tained. For this, it is convenient to linearize (2.1) around the initial value u(0).
This gives the (formally) semilinear problem

u′ = Au+ f(u), t > 0, u(0) ∈ D,(3.1)

where A = F ′(u(0)) and f(u) = F (u)−Au for u ∈ D. In view of (2.2), there exist
R > 0 and L > 0 such that

‖f(v)− f(w)‖ ≤ L% ‖v − w‖D,(3.2)

for all ‖v − u(0)‖D ≤ % ≤ R and ‖w − u(0)‖D ≤ % ≤ R (see proof of Lemma 5.2).
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Since the backward Euler method is invariant under linearization, the numerical
approximation un to u(tn) is given by the recursion

un − un−1

hn
= Aun + f(un), 1 ≤ n ≤ N,(3.3)

with tn = tn−1 + hn for 1 ≤ n ≤ N and t0 = 0. Here hn > 0 denotes the stepsize
which is chosen according to accuracy requirements. The starting value u0 ∈ D is
allowed to be different from u(0).

We remark that, due to (2.3) with u∗ = u(0) and (3.2), the nonlinear equation
(3.3) has a unique solution un ∈ D for stepsizes hn satisfying hnω0 < 1, as long as
‖un−1 − u(0)‖D ≤ % for a certain % > 0. In fact, (3.3) can be solved by standard
fixed-point iteration (see Lemma 5.2). Let us point out, however, that already after
one single step we can only expect

‖u1 − u(0)‖D ≤ C%,

where C > 1. Thus, after a finite number of steps, independently of the stepsizes,
the validity of (3.2) is no longer guaranteed. Therefore, this step-by-step approach
is not suited to construct the numerical solution on a finite time interval [0, T ].

In order to overcome this difficulty, we adopt a global approach relying on the
discrete variation-of-constants formula

un = r(tn, 0)u0 +
n∑
k=1

hk r(tn, tk−1) f(uk),(3.4)

where the discrete transition operator r(tn, tk) is defined by

r(tn, tk) = (1− hnA)−1 · · · (1 − hk+1A)−1, 0 ≤ k < n ≤ N,(3.5)

and r(tk, tk) = 1. Note that this operator is well defined for

max
1≤k≤N

hk ≤ h, if hω0 < 1.(3.6)

The numerical solution of (3.1) can be constructed by fixed-point iteration in (3.4).
This is based on the fact that the nonlinear operator

Φ : B ⊂ DN −→ DN : v 7−→ Φ(v) = ru0 +K(f(v)),(3.7a)

with r = (r(tn, 0))Nn=1, f(v) = (f(vn))Nn=1 for v = (vn)Nn=1 ∈ DN , and

K(w) =
( n∑
k=1

hk r(tn, tk−1)wk
)N
n=1

for w = (wn)Nn=1 ∈ XN ,(3.7b)

is a contraction for a suitably chosen subset B. Unfortunately, it turns out that
the interval of existence is limited by the fact that |||Φ(u0) − u0|||D,α has to be
sufficiently small, for u0 = (u0, . . . , u0)N . Thus, nothing can be said about the size
of tN in this approach. This kind of difficulty also appears when constructing the
continuous solution (see [12, Theorem 8.1.1]).

However, the global approach based on the convolution operator in (3.7b) turns
out to be useful in order to derive preliminary convergence estimates. Eventually,
these estimates can be used to establish the existence of the numerical solution for
finite times.

Assume for a moment that the backward Euler approximations u0, u1, . . . , uN
to the solution exist. We set ũn = u(tn) and denote the errors by en = ũn − un.



TIME DISCRETIZATION OF FULLY NONLINEAR PARABOLIC PROBLEMS 131

Inserting the exact solution into the numerical scheme defines the defects dn by

ũn − ũn−1

hn
= Aũn + f(ũn) + dn, 1 ≤ n ≤ N.

Subtracting (3.3) from this identity gives the error recursion

e = re0 +K
(
f(ũ)− f(u)

)
+K(d),(3.8)

where e = (e1, e2, . . . , eN)T ∈ DN , etc.
Let C3 and R be the constants provided by Lemma 5.3 for u∗ = u(0). We will

show below that after a possible reduction of T , we may assume that there exists
0 < % ≤ R such that

µD(ũ− u(0)) ≤ %, µD(u− u(0)) ≤ %,
C3C5(2%+ λD,α(ũ)) ≤ γ < 1,(3.9)

where 0 < α < 1 is chosen and C5 is the constant appearing in Lemma 5.5. Taking
norms in (3.8) and using Lemmas 5.3, 5.4 and 5.5 yields

|||e|||D,α ≤
1

1− γ
(
C4‖e0‖D + |||K(d)|||D,α

)
.(3.10)

Depending on our requirements on the analytical solution, we obtain different
bounds for |||K(d)|||D,α and consequently different error estimates (see Theorems 3.1
and 3.2 below). We finally point out that because of

‖en‖D ≤ |||e|||D,α
these theorems also provide error estimates in D.

Theorem 3.1. Let u : [0, T ] → D be a solution of (2.1) with u′′ ∈ Cαα ((0, T ], X)
and assume that

C3C5

(
2‖u− u(0)‖L∞([0,T ],D) + ‖u‖Cαα((0,T ],D)

)
< 1,(3.11)

where C3 and C5 are the constants provided by Lemmas 5.3 and 5.5 for u∗ = u(0).
Suppose that either

(a) the stepsizes hn = h are constant, or
(b) the stepsizes verify hn ≥ σhn−1, 2 ≤ n ≤ N , for some σ > 0.
Then there exist constants h∗ > 0, %0 > 0 and C > 0 such that the backward

Euler solution un exists for stepsizes satisfying 0 < hn ≤ h∗ and for initial values
u0 with ‖u0 − u(0)‖D ≤ %0, as long as tn ≤ T . Further, we have the error bounds

|||e|||D,α ≤ C
(
‖e0‖D + h ‖u′′‖Cαα ((0,T ],X)

)
(3.12)

for constant stepsizes, and

|||e|||D,α ≤ C
(
‖e0‖D + max

1≤m≤n≤N

((
h1−α
n + h1−α

m+1

)
Mn + h1−α

m Mm,n

))
(3.13)

with

Mn = ‖u′′‖L∞([tn−1,tn],X) , Mm,n = sup
tm−1<s<t≤tn

‖u′′(t)− u′′(s)‖
(t− s)α sα

for variable stepsizes, respectively. The constant C depends on α, T and on C5 of
Lemma 5.5. For variable stepsizes, it further depends on σ.
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Proof. Set %1 = ‖u− u(0)‖L∞([0,T ],D) and choose %1 < % ≤ R such that

C3C5

(
2%+ ‖u‖Cαα((0,T ],D)

)
< 1.

In the first part of the proof we show the validity of the error estimates (3.12)
and (3.13) under the assumptions that the numerical solution (un)Nn=1 is defined as
long as tN ≤ T and that

‖un − u(0)‖D ≤ %, n ≤ N.(3.14)

In the second part we justify these assumptions.
(i) In view of (3.10) and Lemma 5.5, we have to estimate |||d|||α. Taylor series

expansion shows that the defects are given by

dn = hn

∫ 1

0

τu′′(tn − τhn) dτ.

This immediately yields

µ(d) ≤ 1/2 max
1≤n≤N

hnMn.

For estimating λD,α(d) we first write for m < n

dn − dm = hm

∫ 1

0

τ
(
u′′(tn − τhn)− u′′(tm − τhm)

)
dτ

+ (hn − hm)
∫ 1

0

τu′′(tn − τhn) dτ.
(3.15)

For constant stepsizes the second term in (3.15) drops and the estimate

‖dn − dm‖
(tn − tm)α

tαm ≤ hMm,n

∫ 1

0

τ
( m

m− τ
)α

dτ ≤ Mm,n

1− α h

proves the first part of the theorem.
For variable stepsizes, one has

‖dn − dm‖
(tn − tm)α

tαm ≤ hmMm,n

( tn − tm + hm
tn − tm

)α ∫ 1

0

τ
( tm
tm − τhm

)α
dτ

+
|hn − hm|
(tn − tm)α

tαm
Mn

2
.

(3.16)

Due to our assumptions on the stepsize sequence, we have( tn − tm + hm
tn − tm

)α
≤
(

1 +
1
σ

)α
and

|hn − hm|
(tn − tm)α

tαm ≤
(
h1−α
n +

1
σ
h1−α
m

)
Tα.

The remaining term in (3.16) is bounded as follows:

hm

∫ 1

0

τ
( tm
tm − τhm

)α
dτ ≤ h1−α

m Tα
∫ 1

0

τ
( hm
tm − τhm

)α
dτ ≤ h1−α

m Tα

1− α .

Inserting these bounds into (3.16) gives the required bound for λα(d).
(ii) It remains to show that the backward Euler solution exists and that (3.14)

holds. The idea of the proof is simple and standard for nonlinear equations: as
long as un−1 remains sufficiently close to ũn−1, (3.3) can be solved for un and the
above error estimate ensures that un is close enough to ũn as well. Repeating this
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process proves the desired result. However, we have to pay some attention to the
parameters involved.

For simplicity, we give the proof for constant stepsizes only. Set %2 = %−%1, and
let 0 < %∗ < %∗ ≤ %2 and h∗ ≤ h

¯
denote the thresholds provided by Lemma 5.2,

applied to %2 and u∗, where u∗ varies in the compact set formed by the values u(t),
0 ≤ t ≤ T . After a possible reduction of h∗, we can choose %0 > 0 such that

C
(
%0 + h∗‖u′′‖Cαα ((0,T ],X)

)
≤ %∗/2,

where C is the constant from (3.12). Since u is uniformly continuous, we can further
assume that ‖u(tn)− u(tn−1)‖D ≤ %∗/2 for h ≤ h∗.

Suppose by induction that un exists and that (3.14) is satisfied for n ≤ m. Then,
due to (3.12) and the above choice of parameters, the bound

‖em‖D ≤ C
(
‖e0‖D + h ‖u′′‖Cαα ((0,T ],X)

)
≤ %∗/2 for h ≤ h∗

implies

‖um − ũm+1‖D ≤ ‖em‖D + ‖ũm − ũm+1‖D ≤ %∗.

An application of Lemma 5.2 with u∗ = ũm+1 and w = um shows that um+1 exists
and ‖em+1‖D ≤ %∗. Consequently, the estimate

‖um+1 − u(0)‖D ≤ ‖em+1‖D + ‖ũm+1 − u(0)‖D ≤ %2 + (%− %2) = %

follows. This yields (3.14) and concludes the proof.

In practice it might be difficult to know whether u′′ belongs to Cαα ((0, T ], X).
This limitation is overcome in the next theorem where we impose the natural con-
dition

Au(0) + f(u(0)) ∈ Xβ ,(3.17)

for some α < β ≤ 1. Note that, in actual applications, Xβ is often a Sobolev space
that does not depend on the boundary conditions for β sufficiently small. Hence, if
the initial value is sufficiently smooth, this condition is easily seen to be satisfied.

It is also known that under (3.17) the exact solution of (2.1) has the additional
regularity properties u′ ∈ L∞([0, T ], Xβ) ∩ Cβ([0, T ], X) (see [12, Theorem 8.1.3]).

Theorem 3.2. Let u : [0, T ]→ D be a solution of (2.1) such that (3.11) is satisfied
and assume that (3.17) holds for some 0 < α < β ≤ 1.

Then there exist constants h∗ > 0, %0 > 0 and C > 0 such that, for arbitrary
stepsizes 0 < hn ≤ h∗ and for initial values u0 with ‖u0−u(0)‖D ≤ %0, the backward
Euler solution un is defined as long as tn ≤ T and we have

|||e|||D,α ≤ C
(
‖e0‖D + max

1≤n≤N
hβ−αn Iα/βn J1−α/β

n

)
(3.18)

with

In = ‖u′‖L∞([tn−1,tn],Xβ) , Jn = ‖u′‖Cβ([tn−1,tn],X) .

The constant C depends on α, β, T and on C6 of Lemma 5.6.

Proof. We follow the arguments of the proof of Theorem 3.1. Therefore, it is suf-
ficient to establish the validity of (3.18) under the assumptions that the numerical
solution (un)Nn=1 exists as long as tN ≤ T and that (3.9) holds for some % ≤ R.
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In view of (3.10) and Lemma 5.6, we have to estimate µα(d). For the defects dn,
we use the representation

dn =
∫ 1

0

(
u′(tn − τhn)− u′(tn)

)
dτ

to obtain the estimates

‖dn‖ ≤
hβn

1 + β
Jn ≤ hβnJn and ‖dn‖β ≤ 2In.

By a standard interpolation argument

‖dn‖α ≤ ‖dn‖1−α/β‖dn‖α/ββ ,

we get

µα(d) ≤ 2 max
1≤n≤N

hβ−αIα/βn J1−α/β
n ,

which yields the desired result.

The previous theorems are local in nature. By applying them recursively, we
obtain pointwise convergence estimates in D for finite times. In the following
theorem, the number α has the same meaning as in the local results before.

Theorem 3.3. Let u : [0, T ]→ D be a solution of (2.1) and let 0 < α < 1. Assume
that either

(a) u′′ ∈ Cαα ((0, T ], X) and the stepsizes hn = h are constant, or

(b) u′′ ∈ Cαα ((0, T ], X) and hn ≥ σhn−1, 2 ≤ n ≤ N, for some σ > 0, or

(c) Au(0) + f(u(0)) ∈ Xβ for some 0 < α < β ≤ 1.

Then there exist constants h∗ > 0, δ > 0 and C > 0 such that the backward Euler
solution un exists for stepsizes satisfying 0 < hn ≤ h∗ and for initial values u0 with
‖u0 − u(0)‖D ≤ δ, as long as tn ≤ T . For 0 ≤ n ≤ N , we have the error bounds

(a) ‖en‖D ≤ C
(
‖e0‖D + h ‖u′′‖Cαα((0,tN ],X)

)
, or

(b) ‖en‖D ≤ C
(
‖e0‖D + max

1≤m≤k≤N

((
h1−α
k + h1−α

m+1

)
Mk + h1−α

m Mm,k

))
, or

(c) ‖en‖D ≤ C
(
‖e0‖D + max

1≤m≤N
hβ−αm Iα/βm J1−α/β

m

)
,

respectively.

Proof. We only give the proof of the first result. The remaining statements follow
in a similar way.

Since u is continuous, there are constants R > 0 and L > 0 such that (2.2) is
uniformly satisfied for u∗ varying in the set formed by the values u(t), 0 ≤ t ≤ T .
Moreover, by Lemma 5.8, there exists a partition 0 = T0 < T1 < · · · < TJ = T of
[0, T ] such that

C3C5

(
2‖uTj − u(Tj−1)‖L∞([0,Hj ],D) + ‖uTj‖Cαα((0,Hj ],D)

)
< 1, 1 ≤ j ≤ J,

with Hj = Tj − Tj−1 and uTj (t) = u(Tj−1 + t), 0 ≤ t ≤ Hj . Here C3 and C5 are
the constants provided by Lemmas 5.3 and 5.5 for u∗ = u(Tj) and R. Notice that
these constants only depend on R and L.
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Therefore, we deduce from Theorem 3.1, applied piece-by-piece, that there exist
positive constants h∗ and C̃, such that for 0 < h ≤ h∗

‖en‖D ≤ Cj‖e0‖D + C̃h ‖u′′‖Cαα((0,Tj ],X), 0 ≤ tn ≤ Tj.
After a possible reduction of δ and h∗, this estimate shows that ‖en‖D ≤ %0, with
%0 given by Theorem 3.1. Notice that J is independent of 0 < h ≤ h∗. The desired
error estimate thus follows by recursion.

4. Behaviour near an asymptotically stable equilibrium

In this section we study the long-term behaviour of time discretizations of (2.1).
To keep our exposition in a reasonable length, we restrict our attention to hyperbolic
equilibria. For these the principle of linearized stability holds, which means that
the dynamical behaviour near such an equilibrium u is fully determined by the
linearized equation

v′ = F ′(u)(v − u)

(see [12, Section 9.1]). We show that a similar property holds for the backward
Euler discretization of (2.1). Further, numerical simulations that illustrate our
theoretical result are given.

For notational simplicity, we concentrate on the asymptotically stable case. Let
u ∈ D be an equilibrium of (2.1), i.e., F (u) = 0, and assume that the sectorial
operator

A = F ′(u) is asymptotically stable, i.e., ω0 < 0.(4.1)

The number ω0 is defined in (2.3) (see also Figure 1). In this situation, it is well
known that u is asymptotically stable and attracts all solutions in a sufficiently
small neighbourhood of u with exponential speed. More precisely, it is shown
in [12, Theorem 9.1.2] that for each ω < |ω0| there are constants δ0 > 0 and C > 0
such that the solution of (2.1) exists for all positive times and satisfies

‖u(t)− u‖D ≤ C · e−ωt‖u(0)− u‖D, for all t ≥ 0,(4.2)

whenever the initial value satisfies ‖u(0)− u‖D ≤ δ0.
The following theorem gives the corresponding result for the backward Euler

discretization. Note that any equilibrium of (2.1) is also an equilibrium of the
backward Euler discretization.

Theorem 4.1. Let u be an equilibrium of (2.1) and assume that (4.1) holds. Then,
for any choice of ω < |ω0|, there are positive constants h, δ and C such that the
following holds. The backward Euler solution (un)∞n=1 of (2.1) exists for all stepsize
sequences satisfying 0 < hn ≤ h and for all initial values u0 with ‖u0 − u‖D ≤ δ,
and we have

‖un − u‖D ≤ C · e−ωtn‖u0 − u‖D, for all n ≥ 0.(4.3)

Note that the constant C depends on ω, but not on the particular choice of the
stepsize sequence.

Demanding that the numerical solution decays towards the equilibrium nearly
as fast as the exact solution imposes a severe restriction on the maximal stepsize.
This restriction is overcome in the following theorem, where exponentially fast
convergence is obtained, if the stepsizes remain bounded.
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Theorem 4.2. Let u be an equilibrium of (2.1) and assume that (4.1) holds. Then,
for any h > 0, there are constants 0 < ω < |ω0|, δ > 0 and C > 0 such that the
backward Euler solution (un)∞n=1 of (2.1) exists for all stepsize sequences satisfying
0 < hn ≤ h and for all initial values u0 with ‖u0 − u‖D ≤ δ, and (4.3) holds.

Proof of Theorem 4.1. We linearize (2.1) around the equilibrium u and construct
the backward Euler solution by fixed-point iteration. In order to capture the de-
caying behaviour of the solution we use exponentially weighted norms. For ω > 0
and sequences v = (vn)∞n=1 in D, we modify (2.8b) in the following way:

µD,ω(v) = sup
1≤n<∞

eωtn‖vn‖D, λD,α,ω(v) = sup
1≤k<n<∞

eωtk
‖vn − vk‖D
(tn − tk)α

tαk ,

|||v|||D,α,ω = µD,ω(v) + λD,α,ω(v),

as well as the corresponding norm ||| · |||α,ω based on ‖·‖. A crucial observation is
that Lemmas 5.3, 5.4 and 5.5 have an extension to these exponentially weighted
norms for 0 < ω < |ω1| < |ω0| with ω1 as in Lemma 5.1. The gap ω−|ω1| is needed
to bound the powers of tn that are encountered.

With these preparations, we are ready to give the proof. Let B denote the ball

B = {v ∈ D∞ : |||v − u|||D,α,ω ≤ %}.
We define Φ as in (3.7a) with N = ∞. Using the above-mentioned extensions of
Lemmas 5.3 and 5.5 with u∗ = u proves

|||Φ(v) − Φ(w)|||D,α,ω ≤ 3%C3C5|||v −w|||D,α,ω
for v,w ∈ B. This shows that Φ is a contraction on B with contraction factor 1/2
for % sufficiently small.

It remains to show that Φ maps B onto B if u0 lies sufficiently close to u. Since

Φ(u) = ru0 + (1− r)u,

we have for all v ∈ B
|||Φ(v) − u|||D,α,ω ≤ |||Φ(v) − Φ(u)|||D,α,ω + |||Φ(u)− u|||D,α,ω

≤ 1/2 |||v − u|||D,α,ω + |||r(u0 − u)|||D,α,ω .
The last term is estimated by the first part of Lemma 5.4:

|||r(u0 − u)|||D,α,ω ≤ C4‖u0 − u‖D.
For δ satisfying 2δC4 ≤ %, we thus have Φ(B) ⊂ B.

This proves the existence of a unique fixed-point u, which is the searched back-
ward Euler solution. Using further

|||Φ(u) − u|||D,α,ω ≤ 1/2 |||Φ(u) − u|||D,α,ω + |||r(u0 − u)|||D,α,ω
yields

|||u− u|||D,α,ω ≤ 2C4‖u0 − u‖D.
In particular, we get

sup
1≤n<∞

eωtn‖un − u‖D ≤ 2C4‖u0 − u‖D,

which proves the assertion of the theorem.

Proof of Theorem 4.2. The proof is very similar to the preceding one and therefore
omitted. It relies on the stability bounds given in Lemma 5.1, part (b).
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Table 1. Numerically observed contraction factors

h 1.0000 0.5000 0.2500 0.1250 0.0625 0.03125
ωh 0.4055 0.4463 0.4711 0.4849 0.4922 0.4960

We close this section with a numerical example that illustrates Theorem 4.1.

Example 4.3 (Combustion of a solid fuel). We take up Example 2.2 and specify
the functions k, ϕ and U0 as follows:

k(y) = y2 + 1, ϕ(y) = −y(y − 1/2)(y − 1), U0(x) = 1/2 + 2x2(1− x)2.

Note that the initial condition U0 is compatible with the boundary conditions and
that k satisfies the ellipticity condition (2.5) with κ = 1. The problem has three
equlibria u = 1, u = 0, and u = 1/2. The first two are asymptotically stable with
ω0 = −1/2. Due to our choice of U0, we expect convergence to u = 1.

The partial differential equation (2.4) is discretized in space by standard fi-
nite differences on an equidistant grid with meshwidth 1/200 and in time by the
backward Euler method with constant stepsize h. For different values of h, the
integration is performed up to t = 40. The numerical approximations ωh to ω are
displayed in Table 1. The results are in complete agreement with Theorem 4.1.

5. Lemmas

In this section we collect the auxiliary results that are needed in the proofs of
the previous theorems. Throughout the section we set

f(u) = F (u)−Au, where A = F ′(u∗)(5.1)

for some u∗ ∈ D and denote by ω0 ∈ R the constant from (2.3) that corresponds
to u∗. We fix κ > ω0 and h > 0 such that hω0 < 1 and consider arbitrary grid
points 0 = t0 < t1 < · · · < tN that satisfy hn = tn − tn−1 ≤ h. There is no
restriction on the maximal stepsize for ω0 ≤ 0.

For the discrete transition operators (3.5), we have the following stability bounds.

Lemma 5.1. (a) For any ω1 > ω0 there exist constants h∗ > 0 and C1 > 0 such
that for 0 ≤ ν ≤ 1

‖(κ−A)ν r(tn, tk)‖X→X ≤ C1
eω1(tn−tk)

(tn − tk)ν
, 0 ≤ k < n,(5.2)

whenever the stepsizes are bounded by h∗.
(b) Let ω0 < 0 and h∗ > 0. Then there exist constants ω0 < ω1 < 0 and C1 > 0

such that (5.2) holds, whenever the stepsizes are bounded by h∗.

Similar bounds are given in [2, 4, 14]. We note for later use that (5.2) also holds
for 1 ≤ ν ≤ 2 if k < n− 1.

Proof. The estimate (5.2) is a consequence of the stability bounds

‖etA‖X→X ≤ C eω0t, ‖AetA‖X→X ≤
C

t
eω0t, t > 0,

for the analytic semigroup. Using the representation

r(tn, tk) =
∫ ∞

0

· · ·
∫ ∞

0

e−sk+1−...−sn e(sk+1hk+1+...+snhn)A dsk+1 · · · dsn
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shows

‖r(tn, tk)‖X→X ≤ C
n∏

j=k+1

(1 − hjω0)−1,

‖Ar(tn, tk)‖X→X ≤ C
∫ ω0

−∞

n∏
j=k+1

(1− hjω)−1dω.

For ω ≤ ω0 ≤ 0, we have

1− hjω ≥ (1− hjω0)
(
1 + chj(ω0 − ω)

)
(5.3)

with c = 1− h∗ω0. Arguing as in [4] shows

‖Ar(tn, tk)‖X→X ≤ C
1− h∗ω0

tn − tk

n∏
j=k+1

(1− hjω0)−1.

For ω0 > 0 we use an idea from [6] and eliminate the small steps by

(1− hjω)(1− hkω) ≥ 1− (hj + hk)ω,

until (5.3) is again satisfied. Part (a) of the lemma then follows from standard
estimates and interpolation.

In order to verify (b) we note that the function

ω1 = ω1(H) = − log(1−Hω0)
H

(5.4)

is monotonically increasing for ω0 < 0 with ω1(0) = ω0 and ω1(∞) = 0. Hence,

(1− hjω0)−1 ≤ eω1hj

with ω1 given by (5.4) for H = maxhj ≤ h∗.

We note for later use that the identity

r(tn, tk)− 1 =
n∑

l=k+1

hlAr(tn, tl−1)

together with Lemma 5.1 implies for 0 ≤ k < n ≤ N and 0 < ν ≤ 1 the bound∥∥(r(tn, tk)− 1) (κ−A)−ν
∥∥
X→X ≤

C1

ν
eω

+
1 (tn−tk) (tn − tk)ν(5.5)

with ω+
1 = max(ω1, 0). For simplicity, we make no notational difference between

the constants in (5.2) and (5.5).

Lemma 5.2. Let u∗ ∈ D and R0 > 0. Then there exist 0 < %∗ < %∗ ≤ R0 and
h∗ > 0 such that, for w ∈ D with ‖w− u∗‖D ≤ %∗ and for 0 < h ≤ h∗, the equation

v − w
h

= Av + f(v)(5.6)

possesses a unique solution v ∈ D with ‖v − u∗‖D ≤ %∗. Moreover, the quantities
%∗, %∗ and h∗ can be chosen uniformly for u∗ belonging to a relatively compact
subset of D.
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Proof. We first note that, due to (2.2), there exist R > 0 and L > 0 such that

‖f ′(v)− f ′(w)‖D→X ≤ L‖v − w‖D,(5.7)

for all v, w ∈ D with ‖v − u∗‖D ≤ R and ‖w − u∗‖D ≤ R. Therefore, since
f ′(u∗) = 0, we also have

‖f ′(v)‖D→X ≤ L%,(5.8)

for all v ∈ D such that ‖v − u∗‖D ≤ % ≤ R. This implies that

‖f(v)− f(w)‖ ≤ L% ‖v − w‖D,(5.9)

for all v, w ∈ D with ‖v − u∗‖D ≤ % ≤ R and ‖w − u∗‖D ≤ % ≤ R.
Equation (5.6) is equivalent to v = g(v), where g is defined by

g(v) = (1− hA)−1w + h(1− hA)−1f(v).

We solve (5.6) by fixed-point iteration in the set B = {v ∈ D : ‖v − u∗‖D ≤ %∗}.
For this, we have to show that g is contractive and maps B onto B, for %∗ and %∗

sufficiently small.
By the equivalence of ‖ · ‖D with the graph-norm of A, there exists M such that

‖h(1− hA)−1‖X→D ≤M, ‖(1− hA)−1‖D→D ≤M for 0 < h ≤ h.

On the one hand, we have

‖g(v)− g(ṽ)‖D ≤M L%∗‖v − ṽ‖D,

for h ≤ h and v, ṽ ∈ D with ‖v − u∗‖D ≤ %∗ and ‖ṽ − u∗‖D ≤ %∗. On the other
hand, it holds

g(v)− u∗ = (1− hA)−1
(
w − u∗) + h(1− hA)−1(Au∗ + f(u∗))

+ h(1− hA)−1 (f(v)− f(u∗)),

so that

‖g(v)− u∗‖D ≤M‖w − u∗‖D + ‖h(1− hA)−1(Au∗ + f(u∗))‖ +ML%∗‖v − u∗‖D.

In view of these bounds, if we choose %∗ and %∗ such that M%∗ ≤ %∗/3 and ML%∗ ≤
1/3, then g is a contraction on B. Moreover, since h(1− hA)−1 → 0 strongly as an
operator from X to D, we can select h∗ ≤ h such that, for 0 < h ≤ h∗,

‖h(1− hA)−1(Au∗ + f(u∗))‖D ≤ %∗/3.

Thus, g maps B into B, and the fixed-point theorem provides the existence of a
unique solution v of (5.6).

Since F ′ is locally Lipschitz continuous, R0 and L can be taken uniformly for u∗

in a compact set. Moreover, the equivalence of ‖·‖D with the graph-norm of F ′(u∗)
is also uniform on the compact set. With this, the statement of the lemma follows
easily.

Lemma 5.3. For 0 < α < 1 there exist constants C3 > 0 and R > 0 such that

|||f(v) − f(w)|||α ≤ C3

(
2%+ λD,α(w)

)
|||v −w|||D,α(5.10)

for all v and w in the set V = { ṽ ∈ DN : µD(ṽ − u∗) ≤ % } whenever 0 < % ≤ R.
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Proof. Choose R as in (2.2) and let v, w ∈ V for some 0 < % ≤ R. In view of (5.9),
we have

µ(f(v) − f(w)) ≤ L%µD(v −w),(5.11)

and thus it remains to bound λα(f(v)− f(w)). We set Gn = f ′(σvn + (1− σ)wn),
0 ≤ σ ≤ 1, and write for m < n(
f(vn)− f(wn)

)
−
(
f(vm)− f(wm)

)
=
∫ 1

0

(
Gn(vn − wn)−Gm(vm − wm)

)
dσ

=
∫ 1

0

Gn
(
(vn − wn)− (vm − wm)

)
dσ +

∫ 1

0

(
Gn −Gm

)
(vm − wm) dσ.

Using (5.8), we can estimate the first term on the right-hand side by∫ 1

0

∥∥Gn ((vn − wn)− (vm − wm)
)∥∥dσ ≤ L%λD,α(v −w)(tn − tm)αt−αm .

Due to (5.7), the remaining term can be bounded as follows:∫ 1

0

∥∥(Gn −Gm) (vm − wm)
∥∥dσ

≤ L

∫ 1

0

(
‖wn − wm‖D + σ‖(vn − wn)− (vm − wm)‖D

)
dσ ‖vm − wm‖D

≤ L
(
λD,α(w) + 1/2 λD,α(v −w)

)
µD(v −w)(tn − tm)αt−αm .

The above estimates readily give

λα(f(v) − f(w)) ≤ L
(

2% λD,α(v −w) + λD,α(w)µD(v −w)
)
,

and this inequality combined with (5.11) proves (5.10).

In Lemmas 5.4, 5.5 and 5.6 below we establish certain estimates involving |||·|||D,α.
As ‖·‖D is equivalent to the graph-norm of A, the norm

|||v|||α + |||Av|||α, v ∈ DN ,

is equivalent to ||| · |||D,α as well, for all 0 < α < 1. Since the required estimates for
|||·|||α are usually obtained more easily (and in a similar way) than the corresponding
estimates for |||A · |||α, we give for simplicity the proofs only for |||A · |||α. Henceforth,
C denotes a generic constant that possibly depends on C1 and on constants that
arise from changing between equivalent norms.

Lemma 5.4. Let 0 < α < 1.
(a) There exists a constant C4 > 0 such that for every v ∈ D

|||rv|||D,α ≤ C4‖v‖D.
The constant C4 depends on tN , but it is otherwise independent of the grid. If ω0

is nonnegative, then C4 is bounded for finite times. If ω0 is negative, then C4 can
be chosen independently of tN .

(b) For x ∈ X we have

lim
tN→0

|||(r − 1)x|||α = 0.

The convergence is uniform on relatively compact subsets of X.
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Proof. In order to prove the first statement of the lemma, we have to estimate
A
(
r(tn, 0)− r(tm, 0)

)
v. Using the identity

r(tn, 0)− r(tm, 0) =
(
r(tn, tm)− 1

)
r(tm, 0)

we obtain

‖A(r(tn, 0)− r(tm, 0))v‖ ≤ C ‖(r(tn, tm)− 1)(κ−A)−α‖X→X
× ‖(κ−A)αr(tm, 0)‖X→X‖v‖D.

With the help of (5.2) and (5.5) the right-hand side can be bounded by

C

α
eω

+
1 tN ‖v‖D(tn − tm)αt−αm ,

which proves the first result.
To show the second statement of the lemma we choose x̃ ∈ D. From the identity

r(tk, 0)− r(tk−1, 0) = hk Ar(tk, 0)

we get

‖(r(tn, 0)− r(tm, 0))x‖ ≤
n∑

k=m+1

hk

(
‖Ar(tk, 0) (x− x̃) ‖+ ‖r(tk, 0)A x̃‖

)
≤ C t−αm

n∑
k=m+1

hk t
−1+α
k eω1tk ‖x− x̃‖+ C

n∑
k=m+1

hk eω1tk ‖x̃‖D

≤ C
(
‖x− x̃‖+ tN ‖x̃‖D

)
eω

+
1 tN (tn − tm)α t−αm .

Since D is dense in X , the second statement of the lemma follows.

Lemma 5.5. For 0 < α < 1 there exists a constant C5 > 0 such that if |||v|||α <∞
we have

|||K(v)|||D,α ≤ C5|||v|||α.

The constant C5 depends on tN , but it is otherwise independent of the grid. If ω0

is nonnegative, then C5 is bounded for finite times. If ω0 is negative, then C5 can
be chosen independently of tN .

Proof. Analogously to the modified variation-of-constants formula (1.3) and with
the help of

hkAr(tn, tk−1) = r(tn, tk−1)− r(tn, tk),(5.12)

we split K(v) such that AK(v) = a + b where

an =
n∑
k=1

hkAr(tn, tk−1) (vk − vn) ,

bn =
n∑
k=1

hkAr(tn, tk−1) vn =
(
r(tn, 0)− 1

)
vn.

According to this we have to estimate the four terms µ(a), λα(a), µ(b), and λα(b).
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(i) Using (5.2) we get

‖an‖ ≤ C1λα(v)
n∑
k=1

hk
(tn − tk)α

(tn − tk−1) tαk
eω1(tn−tk−1)

≤ CB(α, 1 − α) eω
+
1 tN λα(v),

where B denotes the beta function. The last bound follows from comparing with
the integral in a similar way as in Lemma 5.7.

(ii) In order to estimate λα(a) we use the identity

an − am =
n∑

k=m+1

hk Ar(tn, tk−1) (vk − vn) +
m∑
k=1

hk Ar(tn, tk−1) (vm − vn)

+
m∑
k=1

hk A
(
r(tn, tk−1)− r(tm, tk−1)

)
(vk − vm)

= S1 + S2 + S3.

We take norms and use again (5.2) and (5.5). This gives

‖S1‖ ≤ C1 eω
+
1 tN λα(v)

n∑
k=m+1

hk
(tn − tk−1)1−αtαk

≤ α−1 C1 eω
+
1 tNλα(v) (tn − tm)α t−αm ,

and, together with (5.12),

‖S2‖ ≤
∥∥r(tn, tm)

(
r(tm, 0)− 1

)
(vm − vn)

∥∥
≤ C1 (1 + C1) eω

+
1 tN λα(v) (tn − tm)α t−αm .

With the help of Lemma 5.7 we get

‖S3‖ ≤
m∑
k=1

hk

n∑
l=m+1

hl
∥∥A2r(tl, tk−1) (vk − vm)

∥∥
≤ C1λα(v)

m∑
k=1

hk

n∑
l=m+1

hl eω1(tl−tk−1) (tm − tk)α

(tl − tk−1)2tαk

≤ 4C1

α(1 − α)
eω

+
1 tN λα(v) (tn − tm)α t−αm

which proves the estimate for λα(a).
(iii) The stability bound (5.2) for the transition operator immediately gives

µ(b) ≤
(

1 + C1 eω
+
1 tN
)
µ(v).

(iv) For the estimate of λα(b) we write

bn − bm =
(
r(tn, 0)− 1

)
vn −

(
r(tm, 0)− 1

)
vm

=
(
r(tn, tm)− 1

)
(κ−A)−α(κ−A)α r(tm, 0) vn

+
(
r(tm, 0)− 1

)
(vn − vm) .

A further application of (5.2) and (5.5) yields

‖bn − bm‖ ≤
(
C2

1

α
eω

+
1 tN µ(v) +

(
1 + C1 eω

+
1 tN

)
λα(v)

)
(tn − tm)αt−αm .
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This finally concludes the proof of the lemma.

The following lemma is used in the proof of Theorem 3.2. For the definition of
the norm µα, we refer to (2.9).

Lemma 5.6. For 0 < α < 1 there exists a constant C6 > 0 such that

|||K(v)|||D,α ≤ C6 µα(v) for v ∈ DN .
The constant C6 depends on tN , but it is otherwise independent of the grid.

Proof. Using (5.2) we have for w = K(v)

‖wn‖D ≤ C
n∑
k=1

hk
∥∥(κ−A)1−αr(tn, tk−1)

∥∥
X→X ‖(κ−A)αvk‖

≤ C eω
+
1 tN µα(v)

n∑
k=1

hk
(tn − tk−1)1−α

and further, by comparing the sum with the corresponding integral,

µD(w) ≤ C tαN
α

eω
+
1 tNµα(v).

In order to estimate λD,α(w), we split A(wn − wm) = S1 + S2 where

S1 =
n∑

k=m+1

hk Ar(tn, tk−1) vk

and, due to r(tl, tk−1)− r(tl−1, tk−1) = hlAr(tl, tk), we get

S2 =
m∑
k=1

hk A
(
r(tn, tk−1)− r(tm, tk−1)

)
vk =

m∑
k=1

hk

n∑
l=m+1

hl A
2r(tl, tk−1) vk.

As before, we premultiply vk with (κ − A)α and use (5.2) and the corresponding
integrals to estimate S1 and S2 by

‖S1‖ ≤
C tαN
α

eω
+
1 tNµα(v) (tn − tm)αt−αm ,

‖S2‖ ≤
C tαN

α(1 − α)
eω

+
1 tNµα(v) (tn − tm)αt−αm .

This concludes the proof of the lemma.

Lemma 5.7. The inequality
m∑
k=1

hk

n∑
l=m+1

hl
(tm − tk)α

(tl − tk−1)2 tαk
≤ 4
α(1 − α)

(tn − tm)αt−αm

holds for 1 ≤ m < n ≤ N .

Proof. By comparing with the corresponding integral, we get
n∑

l=m+1

hl
(tl − tk−1)2

≤ tn − tm
(tm − tk−1)(tn − tk−1)

for 1 ≤ k ≤ m.

We thus have to estimate

(tn − tm)
m∑
k=1

hk
(tm − tk−1)1−α tαk (tn − tk−1)

.
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For this we consider the function

G(s) =
1

(tm − s)1−α sα (tn − s)
, 0 < s < tm.

Let t∗ be the point where G attains its minimum, and let 1 ≤ p ≤ m be the index
such that tp−1 ≤ t∗ ≤ tp. We split the sum into three parts (from 1 to p − 1, the
term with k = p, and from p to m) and compare each part with a corresponding
integral. By means of the variable change σtm = s, we get

(tn − tm)
m∑
k=1

hk
(tm − tk−1)1−α tαk (tn − tk−1)

≤ θ
∫ 1

0

dσ
(1− σ)1−α σα (θ + 1− σ)

,

where θ = (tn − tm)/tm. The elementary estimates

θ

∫ 1/2

0

dσ
(1− σ)1−α σα (θ + 1− σ)

≤ 2 θ
2 θ + 1

1
1− α ≤

2 θα

1− α
and

θ

∫ 1

1/2

dσ
(1− σ)1−α σα (θ + 1− σ)

≤ 2αθα
∫ ∞

0

dτ
(1 + τ)τ1−α ≤

θα

α
+

2 θα

1− α,

where we used 1− σ = θτ , finally prove the lemma.

Lemma 5.8. Let u : [0, T ] → D be a solution of (2.1). Then, for every σ > 0,
there exists a partition 0 = T0 < T1 · · · < TJ = T such that

2‖uTj − u(Tj−1)‖L∞([0,Hj ],D) + ‖uTj‖Cαα ((0,Hj ],D) ≤ σ, 1 ≤ j ≤ J,(5.13)

where Hj = Tj − Tj−1 and uTj (t) = u(Tj−1 + t), 0 ≤ t ≤ Hj.

Proof. Choose R > 0 and L > 0 as in (2.2) for u∗ = u(0). From the proof of
Theorem 8.1.1 in [12], it follows that there exist constants C > 0 and 0 < H1 ≤ T
such that

2‖u− u(0)‖L∞([0,H1],D) + ‖u‖Cαα((0,H1],D)

≤ C
∥∥(e(·)A − 1

)
(Au(0) + f(u(0)))

∥∥
Cαα ((0,H1],X)

.
(5.14)

The constant C depends on L and the bound is valid as long as ‖u(t)−u(0)‖D ≤ R
for 0 ≤ t ≤ H1. The right-hand side of (5.14) tends to 0 as H1 goes to 0. Thus,
after a possible reduction of H1, we get (5.13) with j = 1. We go on with this
construction, and since the constants L and R can be taken uniformly, the final
time T is reached after a finite number of steps.
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5. C. González and C. Palencia, Stability of Runge-Kutta methods for quasilinear parabolic
problems. Math. Comp. 69 (2000), 609–628. MR 2000i:65130

6. E. Hairer and M. Zennaro, On error growth functions of Runge-Kutta methods. Appl. Nu-
mer. Math. 22 (1996), 205-216. MR 97j:65116

http://www.ams.org/mathscinet-getitem?mr=2000e:65075
http://www.ams.org/mathscinet-getitem?mr=99i:65069
http://www.ams.org/mathscinet-getitem?mr=99m:47083
http://www.ams.org/mathscinet-getitem?mr=99d:65281
http://www.ams.org/mathscinet-getitem?mr=2000i:65130
http://www.ams.org/mathscinet-getitem?mr=97j:65116


TIME DISCRETIZATION OF FULLY NONLINEAR PARABOLIC PROBLEMS 145

7. D. Henry, Geometric Theory of Semilinear Parabolic Equations. LNM 840, Springer, 1981.
MR 83j:35084
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