
MATHEMATICS OF COMPUTATION
Volume 71, Number 237, Pages 297–309
S 0025-5718(01)01356-4
Article electronically published on August 2, 2001

ASYMPTOTIC PROPERTIES
OF THE SPECTRAL TEST, DIAPHONY,

AND RELATED QUANTITIES

HANNES LEEB

I dedicate the present work to the memory of Hans Stegbuchner

Abstract. This paper presents the limit laws of discrepancies defined via
exponential sums, and algorithms (with error bounds) to approximate the cor-
responding distribution functions. The results cover the weighted and the
nonweighted spectral test of Hellekalek and various instances of the general
discrepancies of Hickernell and Hoogland and Kleiss for the exponential func-

tion system, as well as classical quantities like the spectral test, diaphony, and
the Zaremba figure of merit.

1. Introduction

Recently, a series of papers from the Monte Carlo and quasi-Monte Carlo sim-
ulation community introduced new figures of merit for assessing random or quasi-
random sequences [9, 10, 12, 13, 14], which are more flexible alternatives to the
classical star-discrepancy. The star-discrepancy gives a worst-case integration er-
ror bound – the Koksma-Hlawka inequality – when the integrand is a function of
bounded variation. The new figures of merit study the worst-case and average-case
integration error over different classes of functions.

For these new figures of merit (which will be simply called discrepancies), ef-
ficient computational algorithms [6, 8], estimates for particular integration se-
quences [5, 7, 11], and integration error bounds [12] are currently being developed
(for more references, see the cited publications). Together with [15, 16, 17, 23], this
paper studies the average behaviour of a (randomly selected) sequence with respect
to these discrepancies. A discrepancy is used to find sequences and point-sets which
behave “like random” for Monte Carlo, or which behave “more uniform than ran-
dom” for quasi-Monte Carlo applications. To find sequences and point-sets with
the desired properties, information on the performance of a truly random sequence
or point-set with respect to the given discrepancy is required as a benchmark. This
paper presents the limit laws of discrepancies defined via exponential sums, and
algorithms (with error bounds) to approximate the corresponding cumulative dis-
tribution functions (cdfs). Among the yet nonunified, new discrepancies, the results
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apply to the weighted and the nonweighted spectral test of Hellekalek [9] and vari-
ous instances of the general discrepancies of Hickernell [12, 13], and Hoogland and
Kleiss [14] for the exponential function system, as well as classical quantities like
Coveyou and MacPherson’s spectral test [2], Zinterhof’s diaphony [24, 25], and the
Zaremba figure of merit.

The paper is organized as follows: In Section 2, the limit distributions of var-
ious discrepancies are derived. First, a class of discrepancies defined via expo-
nential sums is studied in Theorem 1 and Corollary 1. Examples 1–3 show that
our approach covers various classical as well as recently proposed discrepancies,
and Example 4 sketches possible applications. Second, discrepancies defined as the
worst-case quadrature error over a reproducing kernel Hilbert space (as introduced
by Hickernell [13]) are considered. For a particular space considered in [13], the
worst-case quadrature error discrepancy and related quantities are studied in The-
orem 2 and Corollary 2. For each of the discrepancies studied in Section 2, the
limiting cdf turns out to be the cdf of either a sum or a maximum of a (typically
infinite) number of independent, exponentially distributed random variables. As
the cdfs of such sums or maxima are usually hard to compute, approximations and
approximation error bounds are derived in Section 3; cf. Theorem 3 and Theo-
rem 4. Example 5 studies the performance of these approximations for a particular
discrepancy. The proofs are relegated to the Appendix.

2. Limit laws

Let d ≥ 1 denote the dimension, and let n ≥ 1 denote the sample size. For
1 ≤ p ≤ ∞ and a complex-valued net ρ = (ρk)k∈Zd indexed by Zd, let ||ρ||p =
(
∑

k∈Zd |ρk|p)1/p if p <∞ and ||ρ||∞ = supk∈Zd |ρk|. Let ldp(C) = {ρ : ||ρ||p <∞}.
For two nets ρ and ν, denote their component-wise product by ρ · ν = (ρkνk)k∈Zd .
Let ω = (ωj)j∈N be a sequence of points in the d-dimensional unit cube, i.e.,
ωj ∈ [0, 1]d (j ≥ 1). For each k ∈ Zd \ {0}, let

Sn,k(ω) =
1
n

n∑
j=1

e2πik′ωj(1)

be the k-th exponential sum (of the first n elements of ω), and let Sn,0(ω) ≡ 0.
Here and in the following, k′ωj denotes the inner product of the d-dimensional
vectors k and ωj. We will consider discrepancies which are functions of the net
Sn(ω) = (Sn,k(ω))k∈Zd , i.e., discrepancies which are constructed from the ensemble
Sn(ω) of all exponential sums Sn,k(ω) (k ∈ Zd).

Let u = (uj)j∈N be a sequence of independent random variables, each uniformly
distributed on [0, 1]d. Throughout this section, discrepancies of the random se-
quence u are considered. (An i.i.d. uniform sequence such as u is not the only kind
of random sequence occurring in the (quasi-) Monte Carlo context. Others include
randomized low discrepancy sequences such as the shifted lattices of Cranley and
Patterson [3] or the scrambled nets of Owen [19, 20, 21]. These, however, are beyond
the scope of this paper.) Corollary 1 below gives the weak limit of discrepancies
of the form Φ(ρ ·

√
nSn(u)), i.e., discrepancies constructed from exponential sums,

where Φ is an appropriate function and ρ ·
√
nSn(u) = (ρk

√
nSn,k(u))k∈Zd is the

ensemble of the weighted exponential sums with appropriate weights ρk (k ∈ Zd).
Write Sn and Sn,k as shorthand notation for Sn(u) and Sn,k(u), respectively. To
describe the weak limits, let T = (Tk)k∈Zd be such that T0 ≡ 0 and, for k 6= 0,
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Tk = Mk+ iNk, where Mk and Nk are i.i.d. N(0, 1/2); finally, let the correlation of
Tk and Tl be such that Tk is independent of Tl if k 6= ±l, and such that Tk = T−k.

Theorem 1. If ρ ∈ ldp(C) (1 ≤ p <∞), then ρ ·
√
nSn converges weakly to ρ ·T in

ldp(C).

Corollary 1. Let Φ be a continuous function on ldp(C) and ρ ∈ ldp(C) (1 ≤ p <∞).
From Theorem 1 and the Continuous Mapping Theorem, we immediately obtain
that Φ(ρ ·

√
nSn) converges weakly to Φ(ρ · T ). If Φ(ρ · T ) is real-valued and if

the cdf of Φ(ρ · T ) is continuous (as is the case in the examples considered below),
then P (Φ(ρ ·

√
nSn) ≤ x) converges to P (Φ(ρ · T ) ≤ x) uniformly in x by Polya’s

Theorem.

Various discrepancies have the form Φ(ρ·
√
nSn), as we shall show in the examples

below. The (asymptotic) distribution of a discrepancy can be used to answer some
questions of interest for (quasi-) Monte Carlo use; given a particular sequence ω
and its discrepancy Φ(ρ ·

√
nSn(ω)), one may ask, say: Is ω better (with respect

to that discrepancy) than an average random sequence, i.e., is Φ(ρ · √nSn(ω)) <
E(Φ(ρ ·

√
nSn))? Is ω likely to outperform a randomly selected sequence, i.e., is

P (Φ(ρ ·
√
nSn(ω)) < Φ(ρ ·

√
nSn)) > 1/2? Does ω mimic the behaviour of a truly

random sequence; e.g., does Φ(ρ · √nSn(ω)) ∈ [a, b] hold (where a is the α/2 and b
the 1−α/2 quantile of the discrepancy’s distribution)? What is the ‘natural’ scale
of the discrepancy, i.e., what is the value of Var(Φ(ρ ·

√
nSn))? A sketch of how the

results in this paper can be used to address these questions is given in Example 4.

Example 1. (The weighted spectral test for the exponential function system, and
the diaphony): If ρ ∈ ld2(C) is real- and positive-valued, then ||ρ · Sn||2 is just
the weighted spectral test introduced by Hellekalek [9] or the Fourier discrepancy
considered by Hoogland and Kleiss [14]. Since the norm is continuous on ld2(C), the
weak limit of ||ρ ·

√
nSn||2 is ||ρ ·T ||2, the square root of a quadratic form in normal

random variables. In particular, for η = (ηk)k∈Zd ∈ ld2(C) defined by ηk =
∏d
l=1 η

(l)
k ,

η
(l)
k = i/k(l) if k(l) 6= 0, η(l)

k = 1 if k(l) = 0, for k = (k(1), . . . , k(d))′ ∈ Zd \ {0}, and
η(0,...,0)′ = 0, ||η · Sn||2 is the diaphony introduced by Zinterhof [24].

Example 2. (The spectral test for the exponential function system, the traditional
spectral test, and the Zaremba figure of merit): If ρ ∈ ldp(C) (1 ≤ p <∞) is real- and
positive-valued, then σn(ρ) = ||ρ · Sn||∞ is the spectral test of Hellekalek [9]. The
weak limit of

√
nσn(ρ) is ||ρ · T ||∞, the square root of a maximum of independent,

exponentially distributed random variables (because Tk = T−k; cf. (6)). For
γ = (γk)k∈Zd defined by γk = 1/||k||2 for k 6= 0 and γ0 = 0, σn(γ) is the traditional
spectral test of Coveyou and MacPherson [2], as pointed out by Hellekalek [9]. (Here
and in the following, the standard Euclidean norm on Rd is denoted by || · ||2.) Also
note that for the particular choice of η as in Example 1, ||η · Sn(ω)||∞ coincides
with the Zaremba figure of merit if the points of ω form a grid in [0, 1]d.

Example 3. (Discrepancies as worst-case quadrature error bounds): This notion
of discrepancy, which gives a worst-case quadrature error bound over a certain class
of functions, was introduced by Hickernell [12, 13]; with Theorem 1, we obtain
the weak limit for several instances of this concept. For η as in Example 1, set
ηx = (ηxk )k∈Zd ; then ||ηα/2 · Sn||2 is, except for a constant shift, the quantity in
(3.9) of [13], and ||ηα ·Sn||p is that in (3.16) of [13]. Adapting the vector η, we also
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obtain the weak limits of the ANOVA decomposition discrepancy (4.5) of [13] and
the weighted generalization (4.11) of [13].

Example 4. As outlined in the discussion following Corollary 1, the results in this
paper can be used to compare a particular fixed (quasi-) Monte Carlo sequence ω
with an i.i.d. uniform random sequence u with respect to, say, the diaphony, i.e.,
with respect to ||η ·

√
nSn(ω)||2 (cf. Examples 1 and 3). Consider first the case

where ω is intended for quasi-Monte Carlo use. Since the limiting cdf of ||η ·
√
nSn||22

is continuous, we obtain from Corollary 1 that

P
(
||η ·
√
nSn(ω)||2 < ||η ·

√
nSn||2

)
−→ 1,

i.e., the probability of ω outperforming a randomly selected sequence converges to
one, as n → ∞, if and only if ||η · √nSn(ω)||2 → 0 as n → ∞. For a finite-sample
comparison, we note that elementary calculations give the finite-sample moments

E(||η ·
√
nSn||22) = (1 + π2/3)d − 1

and

Var(||η ·
√
nSn||22) = 2((1 + π4/45)d − 1)(n− 1)/n,

while the large-sample moments are µ = E(||η · T ||22) = (1 + π2/3)d − 1 and σ2 =
Var(||η ·T ||22) = 2((1+π4/45)d−1). Moreover, Corollary 1 together with Theorem 3
below gives an approximation for P (||η ·

√
nSn(ω)||2 < ||η ·

√
nSn||2), namely 1 −

P (R ≤ (2ν/σ2)1/2(||η ·
√
nSn(ω)||22 − µ) + ν), where R is gamma-distributed with

mean ν and variance 2ν = 2(
∑
k |ηk|4)3(

∑
k |ηk|6)−2. For the diaphony, elementary

calculations show that

ν = ((1 + π4/45)d − 1)3((1 + 2π6/945)d − 1)−2

(see Example 5 concerning the accuracy of this approximation). For the actual
value of the diaphony of ω, i.e., for ||η ·

√
nSn(ω)||2, either estimates such as given

in [5, 7, 11] or direct computation may be employed. (Concerning the latter, we note
that the algorithm of Heinrich [8] can be adapted to the diaphony; this algorithm
requires O(n(log n)d) operations.) For the case where ω is intended for Monte Carlo
use, the above observations can be used to construct various tests on the hypothesis
that ω is a realization of an i.i.d. uniform sequence u.

In Hickernell’s concept of discrepancy as worst-case quadrature error for a given
reproducing kernel Hilbert space [13], the discrepancy is expressed as the norm of a
particular function called the ‘representer’ from that space, which depends on the
sequence of points u. For a particular instance of the spaces considered in [13], we
derive the weak limit of the representer as a random function below. From this,
the corresponding limit of the discrepancy and of any other continuous function of
the representer follows immediately. Let B1(x) = (x mod 1)− 1/2 be the periodic
extension of the first Bernoulli polynomial on [0, 1), and, for t = (t(1), . . . , t(d))′ ∈
Rd, let

f(t) =
d∏
l=1

(
2πB1

(
t(l)
)

+ 1
)
− 1 and(2)

g(t) =
∫

[0,1]d
f(x)f(x − t)dx =

d∏
l=1

(
h(t(l)) + 1

)
− 1,(3)
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where dx denotes integration w.r.t. Lebesgue measure and where

h(x) = 4π2

∫ 1

0

B1(z)B1(z − x)dz = 2π2(x2 − x+ 1/6).

Then

Xn(t, u) =
1√
n

n∑
j=1

f(uj − t)(4)

defines a real-valued, random function Xn on the d-dimensional unit cube. Note
that the Fourier-coefficients of f are just the values of η from Example 1, and hence
||η ·
√
nSn||2 = ||Xn||2.

Theorem 2.
1. The sequence (Xn)n∈N converges weakly to a continuous Gaussian process X

with E(X(t)) = 0, E(X(s)X(t)) = g(t − s) in the space C([0, 1]d) of real-
valued continuous functions on [0, 1]d.

2. The limit process X has the representation X(t) =
∑
k∈Zd ηkTke

2πik′t, where
the sequence converges uniformly in t with probability one.

Corollary 2. Let Φ be a continuous function on C([0, 1]d). From Theorem 2, we
can conclude that Φ(Xn) converges weakly to Φ(X), and that the distribution of
Φ(X) is just that of limK Φ(

∑
k∈Zd,||k||2≤K ηkTke

2πik′t). In particular, the convo-
lution operator is continuous on C([0, 1]d).

Remark 1. The ensemble of exponential sums, i.e., Sn(ω), was chosen in this section
because many discrepancies in use today can be expressed by Sn(ω). Yet, other
systems of orthonormal functions might be used to construct discrepancies, like the
dyadic diaphony [10] which is based on the system of Walsh functions of base 2.
Inspection of the proof shows that Theorem 1 readily adapts to this case (for an
appropriate choice of T ). Extensions of Theorem 2 to other reproducing kernel
Hilbert spaces will be discussed elsewhere.

3. Approximations to the limiting distribution functions

In the following, approximations to the limiting cdfs of the discrepancies en-
countered in the previous section are considered, i.e., approximations to the cdfs
of ||ρ · T ||2 and ||ρ · T ||∞ for appropriate weights ρ. Recall that the correlation of
Tk and Tl is such that |Tk| is independent of |Tl| for k 6= ±l and |Tk| = |T−k|. Let
I+ = {k ∈ Zd \ {0} : k = (0, . . . , 0, kl, . . . , kd)′, kl > 0, 1 ≤ l ≤ d} be the set of
those k ∈ Zd \ {0} for which the first nonzero coordinate is positive. Observing
that Zd \ {0} = I+ ∪ {−k : k ∈ I+}, we obtain that

||ρ · T ||22 =
∑
k∈I+

(|ρk|2 + |ρ−k|2)(M2
k +N2

k ),(5)

||ρ · T ||2∞ = sup
k∈I+

max{|ρk|2, |ρ−k|2}(M2
k +N2

k ).(6)

Hence, the cdf of (5) and (6) is that of a sum and a maximum, respectively, of
independent exponentially distributed random variables. (Whenever |ρk| = |ρ−k|,
as in some of the examples, this representation is further simplified.)

In case d = 1 the cdf of ||η · T ||22 from Example 1, i.e., the limiting distribution
of the diaphony in one dimension, is up to trivial scaling the Kolmogorov-Smirnov
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Figure 1. Empirical cdf of ||η ·
√
nSn||2 with n = 128 and d = 2

obtained from 1024 repetitions (dotted line), gamma approxima-
tion (dashed line), and normal approximation (solid line).

distribution [16], for which a rapidly converging series-representation is known. In
higher dimensions, the cdf of ||ρ · T ||22 (properly scaled and centered) approaches a
normal cdf [16, 23]. While the normal approximation is satisfactory in high dimen-
sions, the gamma approximation given below performs even better. To simplify
notation for the rest of this section, we consider real-valued, nonnegative weights
% = (%k)k∈N, i.i.d. standard normal variates N = (Nk)k∈N, and i.i.d. standard
exponentially distributed random variables C = (Ck)k∈N (i.e., E(Ck) = 1, k ≥ 1).
The cases (5) and (6) reduce to ||%·C||22 and ||%·C||∞ by relabelling and appropriate
choice of %.

Theorem 3. Let
∑

k %
2 <∞. Then

µ = E
(
||% ·N ||22

)
=
∑
k

%2
k, σ2 = Var

(
||% ·N ||22

)
= 2

∑
k

%4
k.

If R is gamma-distributed with E(R) = ν = (
∑

k %
4
k)3(

∑
k %

6
k)−2 and Var(R) = 2ν,

then ∣∣∣∣P ( ||% ·N ||22 − µσ
≤ t
)
− P

(
R− ν√

2ν
≤ t
)∣∣∣∣ ≤ B,

uniformly in t, where the constant B, given in (11), is explicitly computable from
%.

Since the cdf of ||% ·C||2 equals that of ||ϑ ·N ||2 if ϑ2j = ϑ2j−1 = %j/2 for j ≥ 1,
Theorem 3 also gives an approximation to the cdf of the quantity in (5).

Example 5. Consider the particular weights η used in Examples 1 and 3 above.
When we approximate the limiting cdf of the diaphony, i.e., the cdf of ||η · T ||22, by
a normal law [16, 23], we can derive an error bound similar to that of Theorem 3.
However, we found the normal approximation less satisfactory than the gamma
approximation in moderate dimensions, and Figure 1 seems to support this. To
apply Theorem 3, i.e., to compute the error bound B as given in (11), we note
for the constants occurring in B that the sum of (powers of) |ηk|2 can be easily
computed, and we have %2

∗ = 1 and K = 3d− 1 in dimension d. In Table 1, we give
the error bounds for approximation of the cdf of ||η · T ||22 for various dimensions
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Table 1. Error bound from Theorem 3 for approximating the cdf
of ||η · T ||22 by a gamma distribution’s cdf. The shown dimensions
d are those where the accuracy increases by an order of magnitude.

d approximation error bound
2 0.150321
3 0.0441517
5 0.00292051
6 0.000835115
8 0.0000726281

10 0.0000063662

d. Together with Corollary 1, Theorem 3 also gives an approximation to the finite-
sample cdf of the diaphony, uniformly in t. The quality of this approximation,
however, depends on the speed of convergence of the cdf of ||η ·

√
nSn||22 to the cdf

of ||η · T ||22. In two dimensions, i.e., for d = 2, Figure 1 suggests that these cdfs
are fairly close for n ≥ 128. The rate of convergence for other values of d ≥ 1 and
related topics are subject to further research.

Remark 2. Theorem 3 is motivated by a result of Buckley and Eagleson [1], who
consider the case of finitely many nonzero %k. We extend the result to infinitely
many nonzero %k and improve the error bound.

Remark 3. If the weights % are such that the approximation from Theorem 3 is
unsatisfactory (which happens, say, for the dyadic diaphony [10] in dimension 2;
cf. Remark 1), the cdf of ||% ·N ||22 can, alternatively, be approximated by that of
||%(m) · N ||22 for large m, where %(m) = (%(m)

k )k∈N with %
(m)
k = %k for k ≤ m and

%
(m)
k = 0 otherwise. This follows from Corollary 1 and a standard uniform approx-

imation argument [22, p.70]. The cdf of the finite sum of squares of independent
normal variates ||%(m) ·N ||22 can be computed with the algorithm of Farebrother [4].

Proceeding as in Remark 3, we also obtain an approximation to the cdf of
||% · C||2∞ by the cdf of a maximum of finitely many independent exponentially
distributed random variables, which is directly computable. As before, let %(m) =
(%(m)
k )k∈N with %

(m)
k = %k for k ≤ m and %(m)

k = 0 otherwise.

Theorem 4. Let m ≥ p be positive integers, and set αp = E(Cp1 ). If
∑

k %
p
k <∞,

then ∣∣∣P (||% · C||∞ ≤ t)−P (||%(m) · C||∞ ≤ t)
∣∣∣

≤ αp

(∑
k>m

|%k|p
)

min

{
p∏
l=1

1
|%l|

, t−p

}
,

uniformly in t > 0.

Appendix: Proofs

Proof of Theorem 1. Let {x} denote the fractional part of x. Since the Lebesgue
measure λ is the Haar measure on the torus, it follows that, for k ∈ Zd \ {0},
({k′uj})j∈N is a sequence of independent random variables, each uniformly dis-
tributed on [0, 1]. Since exp(2πik′x) = exp(2πi{k′x}), the Central Limit Theorem
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immediately gives that
√
nSn,k converges weakly to Tk for fixed k ∈ Zd. By or-

thogonality of the exponential function system, we obtain, for each m ∈ N and
each set of indices {k1, . . . , km} ⊂ Zd, that the vector

√
n(Sn,k1 , . . . , Sn,km) con-

verges weakly to (Tk1 , . . . , Tkm). For m ∈ N, let ρ(m) = (ρ(m)
k )k∈Zd with ρ(m)

k = ρk

if ||k||2 ≤ m and ρ
(m)
k = 0 otherwise. Since, for fixed m, ρ(m) ·

√
nSn converges

weakly to ρ(m) · T , weak convergence of ρ · √nSn to ρ · T in ldp(C) follows from
a standard uniform approximation argument [22, p.70], if ρ · T and ρ ·

√
nSn are

random elements in ldp(C), and if, for each ε > 0,

lim
m
P

(∣∣∣∣∣∣ρ · T − ρ(m) · T
∣∣∣∣∣∣
p
≥ ε
)

= 0,(7)

lim
m

sup
n
P

(∣∣∣∣∣∣ρ · √nSn − ρ(m) ·
√
nSn

∣∣∣∣∣∣
p
≥ ε
)

= 0.(8)

To show that ρ · T ∈ ldp(C), we remark that we shall prove (7) using Chebyshev’s
inequality; i.e., we shall show that E||ρ(m) ·T − ρ ·T ||p ≤ K <∞ for each m. Since
E||ρ(m) · T ||p < ∞, it follows that E||ρ · T ||p < ∞ and hence ||ρ · T ||p < ∞ with
probability one. Hence, we may adjust the probability space such that ρ·T ∈ ldp(C).
The same argument gives ρ · √nSn ∈ ldp(C). For (7), set µp = E|Tk|p. Since |Tk|2
is exponentially distributed, µp <∞, and we obtain

P

(∣∣∣∣∣∣ρ · T − ρ(m) · T
∣∣∣∣∣∣
p
≥ ε
)
≤ µp

εp

∑
k∈Zd

||k||2>m

|ρk|p,

which gives (7). Similarly, for (8), we obtain

P

(∣∣∣∣∣∣ρ · √nSn − ρ(m) ·
√
nSn

∣∣∣∣∣∣
p
≥ ε
)
≤ 1

εp

∑
k∈Zd

||k||2>m

|ρk|pE
(∣∣√nSn,k∣∣p) .

Since, for each fixed k 6= 0, ({k′uj})j∈N is distributed as an independent se-
quence (vj)j∈N of random variables uniform on [0, 1], we conclude that µp,n =
E
(
|√nSn,k|p

)
is independent of k. The proof is complete if µp,n is uniformly

bounded in n. From Jensen’s inequality, we see that µp,n ≤ (µq,n)p/q whenever
p ≤ q. Therefore, it is sufficient to show that µ4a,n is uniformly bounded in n,
where a is a positive integer. Now

µ4a,n = E


 1√

n

n∑
j=1

cos 2πvj

2

+

 1√
n

n∑
j=1

sin 2πvj

2


2a

=
2a∑
l=0

(
2a

l

)
E


 1√

n

n∑
j=1

cos 2πvj

2l 1√
n

n∑
j=1

sin 2πvj

2(2a−l)
 .

With Hoelder’s inequality, this is uniformly bounded in n, if, for each positive in-
teger b, E(( 1√

n

∑n
j=1 cos 2πvj)2b) = E(( 1√

n

∑n
j=1 sin 2πvj)2b) is uniformly bounded
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in n. The first of these expectations is the sum of n2b terms, each of the form

1
nb
E

(
2b∏
l=1

cos 2πvjl

)
,(9)

where (j1, . . . , j2b) ∈ {1, . . . , n}2b. But whenever an index, say, j1 is different from
the others, the value of (9) is zero by independence of the vi. Conversely, (9) is
nonzero only for at least pairwise equal indices. Since this is possible for at most
Cbn

b terms, where Cb is a finite combinatorial constant depending only on b, we
obtain E(( 1√

n

∑n
j=1 cos 2πvj)2b) ≤ Cb.

Proof of Theorem 2. As the classical empirical process is defined by the class of all
indicator functions on rectangles with one vertex in the origin, the process Xn is
defined by the class

F =
{
f(· − t) : t ∈ [0, 1]d

}
of functions indexed by t ∈ [0, 1]d. Limit theorems for an empirical process defined
by a class of functions are trivial for a finite class and still hold if the class is
not too large in a certain sense [22]. We show that this is true for F . Equip F
with the L2(λ)-norm, where λ is the Lebesgue measure on [0, 1]d. It is easy to
verify that F is a set of measurable, uniformly bounded and, in the sense of [22,
p.196], permissible functions. Since ||f(· − t) − f(· − t0)||22 = 2(g(0) − g(t − t0)),
and g is continuous at 0, F is also totally bounded with respect to the L2(λ)-
norm. Let us first show that the family of graphs G = {Gft : ft ∈ F}, where
Gft = {(s, z) : s ∈ [0, 1]d, z ∈ R, 0 ≤ z ≤ ft(s) or ft(s) ≤ z ≤ 0}, is a polynomial
class in the sense of [22, p.17, Definition 13]. By Lemma 28 of [22, p.30], the set
P of graphs of polynomials on [0, 1]d of degree at most one in each coordinate is a
polynomial class. Now each t ∈ [0, 1]d partitions the unit cube in 2d quadrants Qi,t
(i = 1, . . . , 2d), and on each quadrant, f(· − t) ∈ F is a polynomial of degree one in
each coordinate. Since the quadrants themselves form a polynomial class, the same
is true for F by Lemma 15 of [22, p.18]. Part 1 now follows from Theorem 21 of [22,
p.157] together with the Equicontinuity Lemma of [22, p.150]: Since the graphs of
functions from F form a polynomial class, the covering numbers are bounded [22,
p.34, Lemma 36] in such a way that the corresponding covering integrals fulfill the
condition of the Equicontinuity Lemma.

For part 2, consider X as a random Fourier series. Uniform convergence of the
random Fourier series X follows from sufficiently rapid convergence of the corre-
sponding series of squared coefficients [18]. We show that a necessary and sufficient
condition is fulfilled. Set

X(m)(t) =
∑
k∈Zd

||k||2≤m

ηkTke
2πik′t.

Since the ηk are the Fourier-coefficients of f , the pointwise limit of X(m) is a
Gaussian process with the same finite-dimensional distributions as X . Let I+ be
defined as in Section 3, set I− = {−k : k ∈ I+}, and define X

(m)
+ , X+, and

X
(m)
− , X− like X(m) and X but with the index-range Zd replaced by I+ and I−,

respectively. Since ||X−X(m)||∞ ≤ ||X+−X(m)
+ ||∞+||X−−X(m)

− ||∞, it is sufficient
to show that both X

(m)
+ and X

(m)
− converge uniformly. For X(m)

+ , note that the
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(Tk)k∈I+ are independent, and set

σ(s) =

∑
k∈I+

|ηk|2|e2πik′s − 1|2
1/2

for s ∈ [0, 1]d. Since |ηk|2 = |η−k|2, Fourier-expansion gives σ(s) = (g(0)−g(s))1/2.
Moreover, let

mσ(ε) = λ{s ∈ [0, 1)d : σ(s) < ε} and
σ(u) = sup{y ∈ R : mσ(y) < u},

where λ denotes the Lebesgue measure. Since the first partial derivatives of g are
continuous and bounded, g is Lipschitz-continuous on [0, 1]d, i.e., σ(s) ≤ c||s||∞ for
some positive constant c. This gives σ(u) ≤ cu1/d, and for

I(σ) =
∫ 1

0

σ(u)

u
(
log 4

u

)1/2 du,
we obtain I(σ) < ∞. With Theorem 1.1 from [18, p.9], X(m)

+ is uniformly con-
vergent with probability one. Repeating this argument with X

(m)
− completes the

proof.

Proof of Theorem 3. Let X = (||% ·N ||22 − µ)/σ, Y = (R − ν)/
√

2ν, and let

fX(t) = e−itµ/σ
∏
k

(1− 2it%2
k/σ)−1/2 and

fY (t) = e−it
√
ν/2(1 − it/

√
ν/2)−ν/2

be the characteristic function of X and Y , respectively. Taylor-expansion of the
corresponding cumulant generating functions gives

log fX(t) =
−t2
2
− it3

3
√
ν/2

+ 2t4
∑
k

(
%2
k/σ

1− 2iη%2
k/σ

)4

and

log fY (t) =
−t2
2
− it3

3
√
ν/2

+
t4

2ν

(
1− iη/

√
ν/2
)−4

.

From the Inversion Theorem, we obtain

2π |P (X ≤ t)− P (Y ≤ t)| ≤
∫ ∞
−∞

1
|t| |fX(t)− fY (t)|dt

≤
∫
|t|<T

1
|t| |fX(t)− fY (t)|dt +

∫
|t|≥T

1
|t| |fX(t)|dt +

∫
|t|≥T

1
|t| |fY (t)|dt

= I1 + I2 + I3.

Since fY (t) 6= 0, we have I1 ≤
∫
|t|<T

∣∣∣ fY (t)
t

∣∣∣ ∣∣∣fX (t)
fY (t) − 1

∣∣∣ dt. Since |ex − 1| ≤ |x|e|x|,
we set δ(t) = log(fX(t)/fY (t)) and get

I1 ≤
∫
|t|<T

∣∣∣∣fY (t)
t

∣∣∣∣ |δ(t)| e|δ(t)|dt,
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with

|δ(t)| ≤ t4

2ν

∣∣∣1− iη/√ν/2∣∣∣−4

+ 2t4
∑
k

∣∣∣∣ %2
k/σ

1− 2iη%2
k/σ

∣∣∣∣4
≤ t4

(
1

2ν
+

2
∑
k %

8
k

σ4

)
.(10)

Set c = ( 1
2ν + 2

∑
k %

8
k

σ4 ) and choose T such that cT 4 = 2/3. We thus obtain a
computable estimate for I1:

I1 ≤ 2
∫ T

0

∣∣∣1− it/√ν/2∣∣∣−ν/2 ct3ect4dt = 2
∫ T

0

ct3

(1 + 2t2/ν)ν/4
ect

4
dt

≤ 2cecT
4
∫ T

0

t3

(1 + 2t2/ν)ν/4
dt

= 2cecT
4 ν2/2− (1 + 2T 2/ν)−ν/4(T 4(ν/2− 2) + (ν/2)2(T 2 + 2))

(ν/2− 4)(ν/2− 2)
.

Note that, for ν/2 = 2, the upper bound becomes I1 ≤ 2cecT
4
(T 2−2 log(1+T 2/2)),

while, for ν/2 = 4, it becomes I1 ≤ 16cecT
4
(log(1 + T 2/4) − T 2/(4 + T 2)). With

the choice of T , we have ecT
4

= e2/3. For I2, we set %∗ = max{%k : k ≥ 1} and
denote the number of occurrences of %∗ in the sequence %1, %2, . . . by K. With this,
we obtain that

I2 ≤
∫
|t|>T

1
|t| |1− 2it%2

∗/σ|−K/2dt

=
∫
|t|>T

1
|t| (1 + 4t2(%2

∗/σ)2)−K/4dt

=
4
K

(2T%2
∗/σ)−K/2H2(K/4,K/4,K/4 + 1,−(2T%2

∗/σ)−2),

where H2 denotes the second hypergeometric function. Similarly, for I3, we obtain

I3 ≤ 2(ν/2)ν/4−1T−ν/2H2(ν/4, ν/4, ν/4 + 1,−T−2ν/2).

If we denote the thus derived bounds of I1, I2 and I3 byB1, B2, andB3, respectively,
and set

B = (B1 +B2 +B3)/(2π),(11)

we obtain |P (X ≤ t)− P (Y ≤ t)| ≤ B.

Proof of Theorem 4. Let %(−m) = %− %(m) where the difference is evaluated point-
wise. Since %(m) ·C and %(−m) ·C are independent, and since ||%·C||∞ = max{||%(m) ·
C||∞, ||%(−m) · C||∞}, we have

0 ≤ P (||%(m) · C||∞ ≤ t)− P (||% · C||∞ ≤ t)
= P (||% · C||∞ > t)− P (||%(m) · C||∞ > t)

= P (||% · C||∞ > t and ||%(m) · C||∞ ≤ t)
= P (||%(−m) · C||∞ > t and ||%(m) · C||∞ ≤ t)
= P (||%(m) · C||∞ ≤ t)P (||%(−m) · C||∞ > t).
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Setting αp = E(Cp1 ), we obtain

P
(
||%(−m) · C||∞ > t

)
≤ P

(∑
k>m

|%k|pCpk > tp

)
=

αp
tp

∑
k>m

|%k|p.(12)

Since m ≥ p,

P
(
||%(m) · C||∞ ≤ t

)
≤

p∏
k=1

P

(
Ck ≤

t

|%k|

)
=

p∏
k=1

(
1− e−t/|%k|

)
=

p∏
k=1

e−t/|%k|
∣∣∣et/|%k| − 1

∣∣∣
≤

p∏
k=1

e−t/|%k|
t

|%k|
et/|%k| = tp

p∏
k=1

1
|%k|

.(13)

The result follows from (12) and (13).
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