
MATHEMATICS OF COMPUTATION
Volume 72, Number 244, Pages 1655–1673
S 0025-5718(03)01473-X
Article electronically published on April 28, 2003

STABILIZED HYBRID FINITE ELEMENT METHODS
BASED ON THE COMBINATION

OF SADDLE POINT PRINCIPLES OF ELASTICITY PROBLEMS

TIANXIAO ZHOU

Abstract. How, in a discretized model, to utilize the duality and comple-
mentarity of two saddle point variational principles is considered in the paper.
A homology family of optimality conditions, different from the conventional
saddle point conditions of the domain-decomposed Hellinger–Reissner princi-
ple, is derived to enhance stability of hybrid finite element schemes. Based on
this, a stabilized hybrid method is presented by associating element-interior
displacement with an element-boundary one in a nonconforming manner. In
addition, energy compatibility of strain-enriched displacements with respect
to stress terms is introduced to circumvent Poisson-locking.

1. Introduction

Due to the good performances of several 4-node quadrilateral elements [9]–[14]
recently, there is a renewed interest in the construction of finite element schemes
that enhance or enrich standard displacement schemes. The two aims of this en-
hancement are (1) to achieve a greater order of accuracy when using coarse meshes,
and (2) to circumvent the locking response in the nearly incompressible regime
while preserving the convenience of the displacement finite element methods. The
different approaches, such as the assumed stress hybrid method [9, 10] and the en-
hanced strain method [11]–[14] have been considered in the literature. Rational use
of accuracy-enhanced displacements of nonconforming bubbles type is fundamental
to these methods. But, up to now, there is no mathematical conclusion for any
good numerical performance of these lower order elements. In particular, the con-
dition that guarantees the achievement of higher accuracy and the circumvention of
the locking response is not known. Besides in the past, two classes of saddle point
problems, derived from the potential energy principle and the complementary en-
ergy principle, respectively, were discretized each in isolation, and the duality and
complementarity of mechanical variational principles was not taken into account
for the construction of discretized models of high performance. Then the so-called
inf-sup condition [1] makes optimal construction complicated.

Following the basic idea of [18], we consider how to incorporate the strong points
of two mutually dual aspects into a hybrid model. The so-called third-class hybrid
variational method, different from the conventional hybrid methods, is given. The
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new method is based on a linear combination of two dual systems of saddle point
conditions. One of the two saddle point problems used is the domain-decomposed
Hellinger–Reissner principle, another is a dual to the former, primal hybrid varia-
tional principle. The paper shows that this combination leads to a homology family
of optimality conditions for the two variational principles, and the new hybrid fi-
nite element method does not require the inf-sup condition. Thus the method is
stabilized, but different from the various least square methods [3, 4, 5, 8]. For
convenience, it will be referred to as the combined hybrid method.

In addition, based on the convergence analysis for the stabilized hybrid method,
a concept of generalized compatibility, the so-called index of energy compatibility
is introduced to answer the previously mentioned question. It is pointed out in
this paper that the index of a nonconforming displacement subspace with respect
to a given stress space is crucially important to construct the “good” lower-order
elements.

The layout of the paper is as follows. The second section is devoted to derivation
of the homology family of optimality conditions for the saddle point variational
principles of elasticity. Then a mathematical foundation of the stabilized hybrid
method is established in the third section, and the convergence error estimates
that introduce the concept of index of energy compatibility are derived. In the
final section, the index of energy compatibility (E-C index) is defined. The higher
E-C index of the Wilson displacement mode with respect to the Pian–Sumihara
stress mode [9] is verified. The effectiveness of the E-C index on improvement of
accuracy and stability is illustrated by two new quadrilateral elements of lower
order.

2. Combined variational principle

Let us consider the following elasticity problems:

(2.1)

− divσ = f

σ = D[ε(u)]

ε(u) =
1
2

(∇u+∇Tu)

 in Ω,

u = 0 on ∂Ω,

where u is the displacement field, σ the stress tensor, ε the strain, f the body force,
D the fourth-order tensor of the elastic moduli, Ω the region in Rn (n = 2, 3) with
boundary ∂Ω.

Besides the usual symmetry properties for D, assume that there exists a constant
C > 0 such that for any ε(v),

D[ε(v)] · ε(v) ≥ Cε(v) · ε(v).

In the paper, the Sobolev spaces Hm(Ω), Hm
0 (Ω) and other relative notation

such as the divergence space H(div,Ω), norm ‖ · ‖m,n, semi-norm | · |m and so on,
will be employed without explanation. For the meaning of these notations, see [1].

It is known that the principles of minimum potential energy and minimum com-
plementary energy are two basic variational approaches to a solution of the prob-
lem, and the displacement space (H1

0 (Ω))n and the stress spaces H(div; Ω) :=
{τ ∈ (L2(Ω))

n(n+1)
2 |: div τ ∈ (L2(Ω))n} are two basic solution spaces.
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For the finite element needs of relaxing continuity, some piecewise Sobolev
spaces are introduced in various mixed/hybrid methods to replace (H1

0 (Ω))n or/and
H(div,Ω). In the paper, the following spaces are considered:

V =
∏

Ωi∈Th

H(div,Ωi),

U =

{
v ∈

( ∏
Ωi∈Th

H1(Ωi)

)n
|: v|∂Ω = 0

}
,

where Th = {Ωi} denotes a (finite element) subdivision of Ω. Because both the
displacement continuity and the normal stress continuity across the interfaces ∂Ωi
are relaxed simultaneously, we yet need a Lagrange multiplier space, i.e., the dis-
placement trace space

Uc =
(

H1
0 (Ω)∏

iH
1
0 (Ωi)

)n
=

{
trace of v ∈ (H1

0 (Ω))n at
∏
i

∂Ωi

}
.

For the stress/displacement space V × (U ×Uc), there are also two variational
approaches to the solution of problem (2.1). In other words, we have the following
theorem.

Theorem 2.1. Assume that f ∈ (L2(Ω))n. The problem (2.1) is equivalent to any
one of the following two saddle point problems.

Find (σ, u, uc) ∈ V ×U×Uc such that

a(σ, τ) − b2(τ, u) + b1(τ, u − uc) = 0 ∀τ ∈ V,(2.2)

b2(σ, v) − b1(σ, v − vc) = (f, v) ∀(v, vc) ∈ U×Uc.(2.3)

Find (σ, u, uc) ∈ V ×U×Uc such that

−b1(σ, v − vc) + d(u, v) = (f, v) ∀(v, vc) ∈ U×Uc,(2.4)

b1(τ, u− uc) = 0 ∀τ ∈ V,(2.5)

where

a(σ, τ) =
∫

Ω

σ ·D−1[τ ] dΩ, d(u, v) =
∑

Ωi∈Th

∫
Ωi

ε(u) ·D[ε(v)] dΩ,

b1(τ, v) =
∑

Ωi∈Th

∮
∂Ωi

(τ · ~n) · v ds, b2(τ, v) =
∑

Ωi∈Th

∫
Ωi

τ · ε(v) dΩ,

and ~n denotes the unit outer normal to ∂Ωi.

Proof. By virtue of the integration by parts formula∫
K

σ : ε(v) dΩ =
∮
∂K

(σ · ~n) · v ds−
∫
K

div σ · v dΩ,

the problem (2.1) can be changed into the weak formulation∑
i

[∫
Ωi

τ ·D−1σ dΩ−
∫

Ωi

τ · ε(u) dΩ
]

= 0 ∀τ ∈ V,(2.6)

∑
i

[∫
Ωi

σ · ε(v) dΩ−
∮
∂Ωi

(σ · ~n) · v ds
]

= (f, v) ∀v ∈ U.(2.7)
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Setting uc = u|∂Ωi and recalling that σ = Dε(u) ∈ H(div; Ω) and for vc ∈
(H1

0 (Ω))n
∫

Ω[ε(u)Dε(vc) + div σ · vc] dΩ = 0 implies that
∑

i

∮
∂Ωi

(σ · ~n) · vc ds = 0,
(2.6),(2.7) is equivalent to the following saddle point formulation:∑

i

[∫
Ωi

τ ·D−1σ dΩ−
∫

Ωi

τ · ε(u) dΩ +
∮
∂Ωi

(τ · ~n) · (u− uc)ds
]

= 0 ∀τ ∈ V,

∑
i

[∫
Ωi

σ · ε(v) dΩ−
∮
∂Ωi

(σ · ~n) · (v − vc)ds
]

= (f, v) ∀(v, vc) ∈ U×Uc.

Then the first part of the theorem is proved, and the second formulation can be
derived in the same way from the second order equation − divDε(u) = f . �

Remark 2.1. In mechanics, the problem (2.2),(2.3) without the decomposition of
Ω is referred to as Hellinger–Reissner principle. Pian’s hybrid method [6, 9, 10] is
based on (2.2),(2.3). Tong’s hybrid method is based on (2.4),(2.5). In addition,
we can point out that (2.2),(2.3) and (2.4),(2.5) are, respectively, the optimality
conditions of the following saddle point problems:

inf
τ∈V

sup
(v,vc)∈U×Uc

{
1
2
a(τ, τ) − b2(τ, v) + b1(τ, v − vc) + (f, v)

}
and

inf
(v,vc)∈U×Uc

sup
τ∈V

{
1
2
d(v, v)− b1(τ, v − vc)− (f, v)

}
.

In the present paper, we do not directly discretize the above two saddle point
problems that require the Babuska–Brezzi condition. Motivated by incorporating
the second order terms a(τ, τ) and d(v, v) into one system so that the inf-sup
condition is weakened or circumvented, we will study the following problem.

Find (σ, u, uc) ∈ V ×U×Uc such that

αa(σ, τ) − αb2(τ, u) + b1(τ, u− uc) = 0 ∀τ ∈ V,(2.8)

αb2(σ, v) − b1(σ, v − vc) + (1− α)d(u, v) = (f, v) ∀(v, vc) ∈ U×Uc,(2.9)

which can be viewed as a weighted average of (2.2),(2.3) and (2.4),(2.5) with the
weight factor α : 0 < α < 1.

In order to clearly display the enhanced stability of the combined variational
principle (2.8),(2.9) and to learn how to circumvent the inf-sup condition, we will
study the well-posedness of the problem (2.8),(2.9) in an abstract framework.

V and U×Uc can be equipped with the norms

‖τ‖V =

[
‖τ‖20,Ω +

∑
Ωi∈Th

h2
i ‖ div τ‖20,Ωi

] 1
2

,

‖(v, vc)‖∗U×Uc
=

[ ∑
Ωi∈Th

(‖ε(v)‖20,Ωi + ‖v − vc‖21
2 ,∂Ωi

)

] 1
2

,

where ‖v‖ 1
2 ,∂Ωi = infw∈(H1

0 (Ωi))n [h−2
i ‖v+w‖20,Ωi +‖ε(v+w)‖20,Ωi ]

1
2 , and hi denotes

the diameter of Ωi.
For the validity of the second norm, it is merely needed to check that

‖(v, vc)‖∗U×Uc
= 0→ v = vc = 0.
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In fact,
∑
i ‖v − vc‖21

2 ,∂Ωi
= 0 implies v ∈ (H1

0 (Ω))n. Hence, Korn’s inequality can
be used to conclude that ‖ε(v)‖ = 0→ v = 0. Then, V and U×Uc are two Hilbert
spaces.

Theorem 2.2. For the problem (2.8),(2.9), there exists a unique solution (σ,u,uc)∈
V×U×Uc and u ∈ (H1

0 (Ω))n, (u−uc)|∂Ωi = 0 ∀Ωi ∈ Th, and σ = D[ε(u)], divσ+
f = 0. In other words, for any α : 0 < α < 1, the system (2.8),(2.9) is another
variational formulation of problem (2.1) that admits nonconforming displacements
and piecewise discontinuous stresses.

In the proof of this theorem we need two lemmas. So, let us introduce the closed
subspace of piecewise rigid displacements

Ud = {v ∈ U|:d(v, v) = 0},
and the linear mapping G : U→ Ud,

G(v)|Ωi =

{
0 if Ωi ∈ B(Th),
R(v) + 1

2R(curl v)× (X −R(X)) if Ωi /∈ B(Th),

where B(Th) := {Ωi ∈ Th|:(n− 1)−meas(∂Ωi ∩ ∂Ω) > 0} is a set of the boundary
subdomains. R and X are two n-dimensional vectors. X denotes the coordinate
vector of any point X ∈ Ω, R(w) = (meas(Ωi))−1

∫
Ωi
w dΩ.

Lemma 2.1. G(v) = v ∀v ∈ Ud and there exists a constant C > 0, independent
of hi, such that for v ∈ U

‖v −G(v)‖t,Ωi ≤ Ch1−t
i ‖ε(v)‖0,Ωi (t = 0, 1)

and
‖v −G(v)‖ 1

2 ,∂Ωi ≤ C‖ε(v)‖0,Ωi .

Proof. Since v ∈ Ud can be expressed by v|Ωi = C1 + C2 × X , where C1, C2 are
two n-dimensional constant vectors, it follows that 1

2R(curl(C2 × X)) = C2 and
R(C1 + C2 ×X)− C2 ×R(X) = C1. Then the first conclusion is proved.

Next, by the well-known error estimates for the interpolated approximation [2],
it can easily be derived from the definition of G(v) that for w ∈ U,

‖w −G(w)‖0,Ωi

=
∥∥∥∥[w − (meas(Ωi))−1

∫
Ωi

w dΩ
]

+
1
2
R(curlw)

×
[
(meas(Ωi))−1

∫
Ωi

X dΩ−X
]∥∥∥∥

0,Ωi

≤ Chi|w|1,Ωi +
1
2
|R(curlw)|Chi[meas(Ωi)]

1
2 ≤ Chi|w|1,Ωi ,

where the constant C > 0 is independent of hi.
Since G(v −G(v)) = G(v)−G2(v) = 0, it follows by setting up w = v−G(v) in

the above estimation that

(2.10) ‖v −G(v)‖0,Ωi = ‖v −G(v)−G(v −G(v))‖0,Ωi ≤ Chi|v −G(v)|1,Ωi .
On the other hand, by virtue of the definition of G(v), we get∫

Ωi

curl(G(v) − v) dΩ = 0,
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which enables us to apply Korn’s inequality to G(v)−v (see [7, §42, Thm. 2]). Thus
we have

|v −G(v)|1,Ωi ≤ C‖ε(v −G(v))‖0,Ωi ≤ C‖ε(v)‖0,Ωi ,
where C > 0 is independent of hi. Combining this estimation with (2.10) leads to
the required second results. The proof is completed. �

Lemma 2.2. Let us define

‖(v, vc)‖U×Uc =

[ ∑
Ωi∈Th

(‖ε(v)‖20,Ωi + ‖G(v)− vc‖21
2 ,∂Ωi

)

] 1
2

.

Then ‖(·, ·)‖U×Uc is a norm equivalent to ‖(·, ·)‖∗U×Uc
; that is, there exists a con-

stant C > 0, independent of hi, such that for (v, vc) ∈ U×Uc,

(2.11) C−1‖(v, vc)‖U×Uc ≤ ‖(v, vc)‖∗U×Uc
≤ C‖(v, vc)‖U×Uc .

Proof. By virtue of Lemma 2.1, there exists a constant C such that for (v, vc) ∈
U×Uc,

‖v − vc‖ 1
2 ,∂Ωi ≤ ‖G(v)− vc‖ 1

2 ,∂Ωi + ‖v −G(v)‖ 1
2 ,∂Ωi

≤ ‖G(v)− vc‖ 1
2 ,∂Ωi + C‖ε(v)‖0,Ωi .

By the definitions of ‖(·, ·)‖∗U×Uc
and ‖(·, ·)‖U×Uc , this inequality yields the desired

result, i.e., ‖(v, vc)‖∗U×Uc
≤ C‖(v, vc)‖U×Uc .

In the same way, we can conclude that the left-hand side inequality holds as well.
Then, the lemma is proved. �

Proof of Theorem 2.2. This proof is nothing less than a concrete application of
Theorem 3.1 in [18]. For the sake of completeness, we sketch the proof here to give
a clue to a new stabilized discretization of the problem (2.8),(2.9).

First, it is easily derived from Lemma 2.1 that the orthogonal complementary
space of Ud × UC , with respect to the norm ‖(·, ·)‖U×UC , can be expressed as
(Ud ×UC)⊥ = U⊥d ×{0}, where U⊥d := {v−G(v), ∀v ∈ U} = {v ∈ U|:G(v) = 0}.
Thus, we can express (v, vc) ∈ Ud ×UC by the orthogonal decomposition

(v, vc) = (vd, vc)⊕ (v0, 0),

where v0 = v−vd, vd = G(v). Based on this decomposition, the problem (2.8),(2.9)
can be written as follows:

Find ((σ, u0), (ud, uc)) ∈ (V ×U⊥d )× (Ud ×Uc) such that

αa(σ, τ) − bα(τ, u0) + b1(τ, ud − uc) = 0 ∀τ ∈ V,(2.12)

bα(σ, v0) + (1− α)d(u0, v0) = (f, v0) ∀v0 ∈ U⊥d ,(2.13)

−b1(σ, vd − vc) = (f, vd) ∀(vd, vc) ∈ Ud ×Uc,(2.14)

where bα(τ, v0) = αb2(τ, v0)− b1(τ, v0).
For the equation (2.13), it follows from Lemmas 2.1 and 2.2 that for (τ, v0) ∈

V ×U⊥d (v0 = v −G(v)),

|bα(τ, v0)| ≤ ‖τ‖V · ‖(v0, 0)‖∗U×Uc
≤ C‖τ‖V · ‖(v0, 0)‖U×Uc
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and

‖(v0, 0)‖U×Uc =

[∑
i

(
‖ε(v0)‖20,Ωi + ‖G(v0)‖21

2 ,∂Ωi

)] 1
2

=

[∑
i

‖ε(v0)‖20,Ωi

] 1
2

≤ Cd
1
2 (v0, v0),

which say that bα(τ, v0) is bounded on V × (U⊥d × {0}), and d(·, ·) is U⊥d × {0}-
elliptic. Then, by virtue of the Lax–Milgram theorem, there exists a resolvent
operator T : V→ U⊥d such that

(1− α)d(T (τ), v0) = −bα(τ, v0) ∀v0 ∈ U⊥d

and

‖(T (τ), 0)‖U×Uc ≤
C∗

1− α‖(αB2 −B1)τ‖(U×Uc)′ ,

where (U ×UC)′ denotes the dual spaces of U ×Uc, and B2 and B1 denote two
linear operators defined respectively by

b2(τ, v) = 〈B2(τ), (v, 0)〉(U×Uc)′×(U×Uc)

b1(τ, v − vc) = 〈B1(τ), (v, vc)〉(U×Uc)′×(U×Uc)

}
∀(τ, (v, vc)) ∈ V × (U×Uc).

In addition, there exists a unique solution u⊥f ∈ U⊥d such that

(1− α)d(u⊥f , v0) = (f, v0) ∀v0 ∈ U⊥d .

Thus the solution u0 for (2.13) can be expressed by

(2.15) u0 = T (σ) + u⊥f ,

and we have

−bα(τ, u0) = (1 − α)d(T (τ), T (σ) + u⊥f )

= (1 − α)d(T (σ), T (τ)) + (f, T (τ)),

which enables the problem (2.12),(2.13),(2.14) to reduce into the following.
Find (σ, ud, uc) ∈ V ×Ud ×Uc such that

αa(σ, τ) + (1 − α)d(T (σ), T (τ))

+ b1(τ, ud − uc) = −(f, T (τ)) ∀τ ∈ V,(2.16)

− b1(σ, vd − vc) = (f, vd) ∀(vd, vc) ∈ Ud ×Uc.(2.17)

This is a stability-enhanced saddle point problem. By virtue of Theorem II-1.1
in [1], the existence and uniqueness of the solution (σ, ud, uc) can be guaranteed by
checking the corresponding inf-sup condition and the kernel-ellipticity condition.

To the end, we equip the space V with another norm defined by

‖τ‖∗V :=
[
αa(τ, τ) +

1
1− α‖(αB2 −B1)τ‖2(U×Uc)′

] 1
2

.
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By Lemma 2.2 and Schwarz inequality, we have

‖(αB2 −B1)τ‖(U×Uc)′ = sup
(v,vc) 6=0

αb2(τ, v)− b1(τ, v − vc)
‖(v, vc)‖U×Uc

≤ C sup
(v,vc) 6=0

αb2(τ, v)− b1(τ, v − vc)
‖(v, vc)‖∗U×Uc

≤ C‖τ‖V.

Then

(2.18) ‖τ‖∗V ≤ C‖τ‖V.

By the definition of ‖·‖∗V, it is obvious that b1(τ, v−vc) is bounded on V×Ud×Uc,
i.e.,

|b1(τ, v − vc)| ≤ C‖τ‖∗V · ‖(v, vc)‖U×Uc ∀(τ, v, vc) ∈ V ×Ud ×Uc.

Thus, recalling that τ · ~n : H(div; Ωi)→ H−
1
2 (∂Ωi) is surjective, we have

sup
τ 6=0

b1(τ, vd − vc)
‖τ‖∗V

≥ C sup
τ 6=0

b1(τ, vd − vc)
‖τ‖V

≥ C
[∑

i

‖(vd − vc)‖21
2 ,∂Ωi

] 1
2

≥ C‖(vd, vc)‖∗U×Uc

≥ C‖(vd, vc)‖U×Uc ∀(vd, vc) ∈ Ud ×Uc,

(2.19)

that is, the inf-sup condition is verified.
Now we return to prove that there exists a constant C > 0, independent of hi,

such that

αa(τ, τ) + (1− α)d(T (τ), T (τ)) ≥ C‖τ‖∗V ∀τ ∈ ker(B1),

where ker(B1) := {τ ∈ V|:b1(τ, vd − vc) = 0, ∀(vd, vc) ∈ Ud ×Uc}.
In fact, since b2(τ, vd) = 0, ∀τ ∈ V, it follows by U×Uc = (Ud×Uc)⊕(U⊥d ×{0})

that for τ ∈ ker(B1),

〈(αB2 −B1)τ, (vd, vc)〉(U×Uc)′×(U×Uc) = 0 ∀(vd, vc) ∈ Ud ×Uc,

then

‖(αB2 −B1)τ‖(U×Uc)′ = sup
v0∈U⊥d
v0 6=0

〈(αB2 −B1)τ, (v0, 0)〉(U×Uc)′×(U×Uc)

‖(v0, 0)‖U×Uc

= sup
v0 6=0

(1− α)d(T (τ), v0)
(
∑

i ‖ε(v0)‖20,Ωi)
1
2

≤ (1− α)d
1
2 (T (τ), T (τ)) sup

v0 6=0

d
1
2 (v0, v0)

(
∑

i ‖ε(v0)‖20,Ωi)
1
2

≤ C(1− α)d
1
2 (T (τ), T (τ)).
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Hence,

(‖τ‖∗V)2 = αa(τ, τ) +
1

1− α‖(αB2 −B1)τ‖2(U×Uc)′

≤ C2[αa(τ, τ) + (1− α)d(T (τ), T (τ))];

that is, the bilinear form αa(τ, σ)+(1−α)d(T (σ), T (τ)) in (2.16) is ker(B1)-coercive.
Up to now, all the conditions are satisfied which are required by the Babuska–

Brezzi theory [11], thus the existence and uniqueness of the solution (σ, u⊥d +ud, uc),
is proved. Moreover, the other results in Theorem 2.2 can be obtained by the
standard variational calculus arguments. Then the theorem is proved. �

In a word, Theorem 2.2 provides us with a new discretization approach to hybrid
schemes. This analysis shows that in the case of UC being completely independent
of U, only the inf-sup condition (2.19) is required; i.e., for (v, vc) ∈ (U × UC)d :=
{(v, vc) ∈ U×UC : d(v, v) = 0},

(2.20) sup
τ∈V

b1(τ, v − vc)
‖τ‖V

≥ C‖(v, vc)‖U×UC .

In the next section we will point out that if associating Uc with U so that U
is a strain-enriched space of Uc, this condition can be circumvented. A combined
hybrid method of avoiding this inf-sup condition can be presented.

3. Hybrid finite element schemes

of avoiding the inf-sup condition

From the proof of Theorem 2.1, it is known that vc ∈ (H1
0 (Ω))n may not be

independent of v ∈ U. We can consider another type of the combined varia-
tional principle that UC is associated with U. In fact, let U be a subspace of U,
U ⊃ (H1

0 (Ω))n, and let Tc(v) : U→ (H1
0 (Ω))n be a linear mapping such that

Tc(v) = v ∀v ∈ (H1
0 (Ω))n;(3.1)

there exists a constant C > 0, such that for (τ, v) ∈ V ×U,(3.2)

|b1(τ, v − Tc(v))| ≤ C‖τ‖V · d
1
2 (v, v).

By replacing the displacement space U ×UC with U × Tc(U), the variational
formulation (2.8),(2.9) is changed into the following.

Find (σ, u) ∈ V ×U such that

αa(σ, τ) − bα(τ, u) = 0 ∀τ ∈ V,(3.3)

bα(σ, v) + (1− α)d(u, v) = (f, v) ∀v ∈ U,(3.4)

where bα(τ, v) := αb2(τ, v) − b1(τ, v − Tc(v)).
Two displacement variables are reduced into one. For convenience, Tc(·) will be

referred to as a coupling operator.
In this case, the additional assumption that

{v ∈ U : d(v, v) = 0} =: Ud = {0}
enables us to equip the space U with the norm ‖v‖U := d

1
2 (v, v). Thus, since

bα(τ, v) is a bounded bilinear form on V × U and |bα(τ, v)| ≤ C‖τ‖V‖v‖U, by
virtue of the resolvent operator T (τ) : V→ U previously defined by

(1− α)d(T (τ), v) = −bα(τ, v) ∀v ∈ U,
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the same treatment as in the proof of Theorem 2.2 makes the problem (3.3),(3.4)
reduce into the following.

Find σ ∈ V such that

(3.5) αa(σ, τ) + (1− α)d(T (σ), T (τ)) = −(f, T (τ)) ∀τ ∈ V,

which is merely an extreme value problem.
In contrast with the saddle point problem (2.16),(2.17) the inf-sup condition

(2.20) is avoided in this case, but by the same argument as before, we can still
conclude that the problem (3.5) is V-coercive. Then the following lemma is proved:

Lemma 3.1. Assume that

Tc(v) is a coupling operator;(3.6)

for v ∈ U, d(v, v) = 0→ v = 0.(3.7)

Then thee exists a unique solution (σ, u) ∈ V ×U of the problem (3.3),(3.4) such
that div(σ) + f = 0 and σ = Dε(v), and the inf-sup condition (2.20) is avoided.

Now we focus our attention on a class of particular piecewiseH1-spaces, including
the so-called strain-enriched displacement spaces used in [11]–[14]. Let UI be a
finite dimensional space of nonconforming bubble type, such that

UI ∩ (H1
0 (Ω))n = {0},(3.8)

‖vI‖0,Ωi ≤ Chi‖ε(vI)‖0,Ωi ∀vI ∈ UI ,(3.9)

where C is independent of hi.
For practical purposes, the following spaces can be viewed as typical examples

of this type:
U(1)
I |Ωi := {v̂I ◦ F−1

i : v̂I ∈ span(1− ξ2, 1− η2)},
where Fi(ξ, η) denotes the affine mapping from the referential square {(ξ, η) ∈
[−1, 1]× [−1, 1]} to the quadrilateral Ωi;

U(2)
I |Ωi := {v̂I◦F−1

i : v̂I ∈ span(1−ξ2, 1−η2, ξ(1−ξ2), η(1−ξ2), ξ(1−η2), η(1−η2))}
and so on, as well as the corresponding three-dimensional counterparts. It can be
shown by Proposition 3.1 below that the conditions (3.8),(3.9) are satisfied for all
these spaces. Following the mechanics, U := (H1

0 (Ω))n ⊕UI will be referred to as
a strain-enriched space.

Due to the assumptions (3.8),(3.9), vI ∈ UI and vI 6= 0 imply that d(vI , vI) 6= 0
and d(vI − v∗I , vI − v∗I ) 6= 0, where v∗I ∈ (H1

0 (Ω))n denotes the orthogonal projector
of vI on (H1

0 (Ω))n with respect to the norm d
1
2 (v, v); i.e.,

d(vI − v∗I , w) = 0 ∀w ∈ (H1
0 (Ω))n.

Thus, for v ∈ U such that v = vc + vI , vc ∈ (H1
0 (Ω))n, vI ∈ UI and vI 6= 0, we

have an orthogonal decomposition of

v = (vc + v∗I )⊕ (vI − v∗I )

such that

(3.10) d(v, v) ≥ d(vI − v∗I , vI − v∗I ) > 0.

Hence, d(v, v) = 0 yields that vI = 0 and v = vc ∈ (H1
0 (Ω))n, then vc = 0 due to

Korn’s inequality. Based on this, the first conclusion of the following theorem is
proved.
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Theorem 3.1. The strain-enriched space U is a Hilbert space with norm ‖v‖U :=
d

1
2 (v, v), and for v = vc + vI ∈ U, TC(v) = vc is a coupling operator. Therefore

the variational formulation (3.3),(3.4) in which U and Tc(·) are replaced by U and
T c(·), respectively, is equivalent to (2.1), and the inf-sup condition corresponding
to (2.20) is avoided.

Proof. It is obvious that T c(·) is linear and T c(v) = v for v ∈ (H1
0 (Ω))n. Therefore,

for the second conclusion it remains to prove that there exists C > 0 such that

|b1(τ, v − T c(v))| ≤ C‖τ‖Vd
1
2 (v, v) ∀(τ, v) ∈ V ×U.

In fact, by the assumption (3.9), we have

(3.11) ‖v − T c(v)‖0,Ωi ≤ Chi‖v − T c(v)‖U.

Since UI is finite dimensional and d(vI , vI) > 0 implies that d(vI −v∗I , vI −v∗I ) > 0,
we obtain

(3.12) min
vI∈UI
vI 6=0

d(vI − v∗I , vI − v∗I )
d(vI , vI)

= C0 > 0,

where C0 denotes the minimum characteristic value of the matrix[
d(v(t)

I , v
(j)
I )

d
1
2 (v(t)

I , v
(t)
I )d

1
2 (v(j)

I , v
(j)
I )

]
t,j

,

and vtI := v
(t)
I −v

∗(t)
I , {v(t)

I }t is a complete set of linearly independent base functions.
Thus by (3.10) and (3.12), we get

(3.13) C0‖v − T c(v)‖2U ≤ ‖vI − v∗I‖2U ≤ ‖v‖2U.

By Green’s formula and Schwarz’s inequality,

|b1(τ, v − T c(v))| =
∣∣∣∣∣∑
i

∫
Ωi

[div τ · vI + τ · ε(vI)] dΩ

∣∣∣∣∣
≤ ‖τ‖V ·

{∑
i

[
‖vI‖20,Ωi
h2
i

+ ‖ε(vI)‖20,Ωi

]} 1
2

≤ C‖τ‖V‖v‖U due to (3.11) and (3.13).

Then T c(·) is a coupling operator. Therefore, by Lemma 3.1, the theorem is proved.
�

Now we turn to discuss the finite element approximations and convergence anal-
ysis. Let Vh and Uh be two finite element spaces such that Vh ⊂ V and Uh ⊂ U

Vh := {τ ∈ V : τ |Ωi = p̂r ◦ F−1
i , ∀Ωi ∈ Th} =: Vh

r ,

Uh := {v ∈ U : v|Ωi = p̂s ◦ F−1
i , ∀Ωi ∈ Th},

where r and s denote nonnegative integers, P̂r the set of polynomials of order ≤ r,
Fi(·) the affine mapping from a referential element K to Ωi. Thus, the combined
hybrid schemes can be established as follows.
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Find (σh, uh) ∈ Vh ×Uh such that

αa(σh, τ)− bα(τ, uh) = 0 ∀τ ∈ Vh,(3.14)

bα(σh, v) + (1− α)d(uh, v) = (f, v) ∀v ∈ Uh.(3.15)

The existence and uniqueness of the hybrid finite element solution (σh, uh) is
guaranteed by the argument in Theorem 3.1. Then from the following theorem, we
can know that the hybrid scheme (3.14),(3.15) is stabilized.

Theorem 3.2. Assume that Uh is a strain-enriched subspace and there exists
C > 0, independent of hi, such that for Ωi ∈ Th and v ∈ Uh,

‖v − Tc(v)‖ 1
2 ,∂Ωi ≤ C‖ε(v)‖0,Ωi .

Then

‖σ − σh‖0,Ω +
(

1− α
α

) 1
2

(1 − 2ν)−1‖u− uh‖U ≤ C[α(1 − α)]−
1
2

·
{

inf
τ∈Vh

‖σ − τ‖V + (1− 2ν)−1 inf
v∈Uh

[
‖u− v‖U + sup

τ∈Vh

b1(τ, v − Tc(v))
‖τ‖V

]}
,

where ‖v‖U := (
∑

Ωi∈Th
‖ε(v)‖20,Ωi)

1
2 and C is independent of h, α and the Poisson

ratio ν.

Proof. Let us first assume that (Π1σ,Π0u) ∈ Vh ×Uh is any given approximation
of (σ, u). Subtracting the equations (3.14),(3.15) from (3.3),(3.4), respectively, and
recalling that (u− uc)|∂Ωi = 0, we have

αa(Π1σ − σh, τ)− αb2(τ,Π0u− uh) + b1(τ,Π0u− uh − Tc(Π0u− uh))
(3.16)

= αa(Π1σ − σ, τ) − αb2(τ,Π0u− u) + b1(τ,Π0u− Tc(Π0u)) ∀τ ∈ Vh,

αb2(Π1σ − σh, v)− b1(Π1σ − σh, v − Tc(v)) + (1 − α)d(Π0u− uh, v)
(3.17)

= αb2(Π1σ − σ, v) − b1(Π1σ − σ, v − Tc(v)) + (1− α)d(Π0u− u, v)

∀v ∈ Uh.

Setting up τ = δσh := Π1σ − σh and v = δuh := Π0u− uh in the above equations
and then adding both, we get

αa(δσh, δσh) + (1− α)d(δuh, δuh)

= {αa(Π1σ − σ, δσh)− αb2(δσh,Π0u− u) + αb2(Π1σ − σ, δuh)}
+ {−b1(Π1σ − σ, δuh − Tc(δuh)) + (1− α)d(Π0u− u, δuh)}
+ b1(δσh,Π0u− Tc(Π0u))

=:
∑

(σ, u) + b1(δσh,Π0u− Tc(Π0u)).

(3.18)
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For the algebraic sum
∑

(σ, u), by virtue of the Schwarz inequality and |b2(τ, v)| ≤
a

1
2 (τ, τ) · d 1

2 (v, v), we have∣∣∣∑(σ, u)
∣∣∣ ≤ αa

1
2 (Π1σ − σ,Π1σ − σ) · a 1

2 (δσh, δσh)

+ (1− α)d
1
2 (Π0u− u,Π0u− u) · d 1

2 (δuh, δuh)

+ |αb2(δσh,Π0u− u)− αb2(Π1σ − σ, δuh)

+ b1(Π1σ − σ, δuh − Tc(δuh))|

≤ αa
1
2 (δσh, δσh)[a

1
2 (Π1σ − σ,Π1σ − σ) + d

1
2 (Π0u− u,Π0u− u)]

+ (1− α)d
1
2 (δuh, δuh)

[
d

1
2 (Π0u− u,Π0u− u)

+
α

1− αa
1
2 (Π1σ − σ,Π1σ − σ)

]
+ C‖Π1σ − σ‖V‖δuh‖U.

Noticing that

‖v‖U ≤ C(1− 2ν)
1
2 d

1
2 (v, v) ≤ C0‖v‖U

and

a
1
2 (τ, τ) ≤ C(1− 2ν)

1
2 ‖τ‖V,

where C and C0 are independent of ν and h, by using the Schwarz inequality again,
the above estimate yields that∣∣∣∑(σ, u)

∣∣∣ ≤ [αa(δσh, δσh) + (1− α)d(δuh, δuh)]
1
2

·
[(
α+

α2

1− α

)
a(Π1σ − σ,Π1σ − σ)

+(α+ 1− α)d(Π0u− u,Π0u− u) +
C(1− 2ν)

1− α ‖Π1σ − σ‖2V
] 1

2

≤ C[αa(δσh, δσh) + (1− α)d(δuh, δuh)]
1
2

·
[(

1− 2ν
1− α

)
‖Π1σ − σ‖2V +

1
1− 2ν

‖u−Π0u‖2U
] 1

2

.

From this estimate and (3.18), we can deduce that

[αa(δσh, δσh) + (1− α)d(δuh, δuh)]
1
2

≤ C
{[(

1− 2ν
1− α

)
‖σ −Π1σ‖2V +

1
1− 2ν

‖u−Π0u‖2U
] 1

2

+[α(1− 2ν)]−
1
2 sup
δσh

b1(δσh,Π0u− Tc(Π0u))
‖δσh‖V

}
.
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Thus, by triangular inequality, we obtain[
α(1− 2ν)‖σ − σh‖20,Ω +

(
1− α
1− 2ν

)
‖u− uh‖2U

] 1
2

≤ [αa(σ −Π1σ, σ −Π1σ) + (1− α)d(u −Π0u, u−Π0u)]
1
2

+ [αa(δσh, δσh) + (1− α)d(δuh, δuh)]
1
2

≤ C
{(

1− 2ν
1− α

) 1
2

‖σ −Π1σ‖V +
(

1
1− 2ν

) 1
2

‖u−Π0u‖U

+[α(1 − 2ν)]−
1
2 sup
τ∈Vh

b1(τ,Π0u− Tc(Π0u))
‖τ‖V

}
.

Because this estimate holds for any (Π1σ,Π0u) ∈ Vh ×Uh, the theorem is proved.
�

For helping various applications of the theorem, we want to show that a lot of
nonconforming finite element spaces can be viewed as the so-called strain-enriched
subspace. Particularly, we have the following proposition.

Proposition 3.1. If a continuity node point set Si of a nonconforming space Uh

contains all the vertices of Ωi, Uh can be regarded as a strain-enriched subspace,
Tc(v) = vc is the conforming part of v, and

‖v − Tc(v)‖ 1
2 ,∂Ωi ≤ C‖ε(v)‖0,Ωi and ‖v − Tc(v)‖ 1

2 ,∂Ωi ≤ Chi|v|2,Ωi ,
where C is independent of hi.

Proof. By virtue of the continuity of v ∈ Uh at the vertices, it is known from [2]
that there exists a unique piecewise linear (or bilinear) interpolant vL ∈ C(0)(Ω)
such that for any vertex q of Ωi, v − vL|q = 0, and

(3.19) |v − vL|t,Ωi ≤ Ch2−t
i |v|2,Ωi , t = 0, 1,

where C is independent of hi.
Since vc = Tc(v) or vL is a conforming component of TC(v), the estimates (3.19)

imply that

(3.20) ‖v − Tc(v)‖ 1
2 ,∂Ωi ≤ C|v − Tc(v)|1,Ωi ≤ Chi|v|2,Ωi ;

that is, the second inequality in the proposition is proved.
Now we turn to prove the first inequality. By the uniqueness of the Lagrange

interpolation Tc(v) = vL we can conclude that for v ∈ Uh ∩ (H1
0 (Ω))n, Tc(v) = v

and ‖ε(v)‖0,Ωi = 0 leads to v − Tc(v) = 0. Thus, by compactness of a bounded
sequence in the finite dimensional space Uh and by reduction to absurdity, we can
deduce that there exists a constant C(Ωi) > 0, such that for v ∈ Uh(Ωi),

(3.21) |v − Tc(v)|1,Ωi ≤ C(Ωi)‖ε(v)‖0,Ωi .
By a scaling argument (for details, see the similar discussion in [16] or [17]), we can
confirm that

sup
Ωi∈Th
0<hi≤1

sup
v∈Uh

|v − Tc(v)|1,Ωi
‖ε(v)‖0,Ωi

= C <∞;

that is, C(Ωi) in (3.21) can be independent of hi. Then it follows from (3.20),(3.21)
that the first inequality is proved. �
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Remark 3.1. It is obvious that Wilson’s n-quadrilateral Uh
W is an example that the

assumption of Proposition 3.1 can be fulfilled. By virtue of (3.20), Theorem 3.2
concludes that, for the combination of Uh

W with Vh
r and α 6= 0, 1, the corresponding

combined hybrid methods CH(r) are convergent by rate O(h) as h → 0. But, if
α = 1, CH(0) becomes the conventional assumed stress hybrid method and does
not converge due to rank deficiency of element stiffness matrices.

Remark 3.2. Due to the feature that the stress variables can be eliminated at
the element level, the combined hybrid method can be considered as a generalized
incompatible displacement scheme. Theorem 3.2 shows that α = 1

2 is, in general, a
rational and safe choice.

4. Accuracy-enhanced condition: Energy compatibility

In this section we discuss under what condition the enhancement of accuracy and
stability, mentioned in the introduction, can be achieved by the combined hybrid
scheme.

Due to appearance of the error term supτ
b1(τ,v−Tc(v))

‖τ‖V in the error estimate of
Theorem 3.2, the optimal error estimate that is of the same order as(

inf
τ∈Vh

‖σ − τ‖V + inf
v∈Uh

‖u− v‖U
)

cannot in general be obtained. Therefore, for the construction of a “good” scheme,
it is of crucial importance to reduce the error caused by b1(τ, v − Tc(v)). As far as
a strain-enhanced space Uh that infv∈Uh ‖u−v‖U is smaller than infv∈Uh(

∑
i ‖u−

Tc(v)‖21
2 ,∂Ωi

)
1
2 , an approach to the reduction is to construct Vh appropriately so

that
∮
∂Ωi

τ · ~n · (v − Tc(v)) ds is small enough.

Definition 4.1. A strain-enriched finite element space Uh is referred to as (l, k)-
order energy-compatible (or E-compatible) with respect to the stress space Vh if
there exist two constants l, k > 0 and C > 0, independent of hi, such that for any
Ωi ∈ Th, v ∈ Uh,

1) ‖v − Tc(v)‖ 1
2 ,∂Ωi ≤ C‖ε(v)‖0,Ωi ,

2) ‖v − Tc(v)‖ 1
2 ,∂Ωi ≤ Chli|v|l+1,Ωi ,

3) |
∮
∂Ωi

T (τ) · (v − Tc(v)) ds| ≤ Chki ‖τ‖V,Ωi · ‖v − Tc(v)‖ 1
2 ,∂Ωi ∀τ ∈ Vh.

For convenience, the pair (l, k) is named as the index of E-compatibility in what
follows, and we denote the incompatible part v − TC(v) of v by vI .

Theorem 4.1. (I) For the combined hybrid scheme (3.14),(3.15) with index (l, k)
of E-compatibility, we have the error estimates of so-called accuracy-enhanced type

‖σ − σh‖0,Ω +
(

1− α
α

) 1
2

(1 − 2ν)−1‖u− uh‖U

≤ C[α(1 − α)]−
1
2 ·
{

inf
τ∈Vh

‖σ − τ‖V + (1− 2ν)−1

· inf
v∈Uh

[
‖u− v‖U + hl+k

(∑
i

|v|21+l,Ωi

) 1
2
]}

.
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(II) In addition, assume that u ∈ (H1
0 (Ω) ∩Hm+1(Ω))n, m ≥ l and

P̂m(F−1
i ) ⊂ Uh(Ωi) ∀Ωi ∈ Th.

Then the following error estimates of locking-free convergence hold uniformly for
ν ≤ 0.5− h

2 as h→ 0:

‖σ − σh‖0,Ω +
(

1− α
α

) 1
2

(1− 2ν)−1‖u− uh‖U

≤ C[α(1 − α)]−
1
2 · { inf

τ∈Vh
‖σ − τ‖V + (hm−1 + hl+k−1)‖u‖l+1,Ω}.

Proof. Because the index (l, k) of E-compatibility implies that

|b1(τ, vI)| ≤
∑
i

∣∣∣∣∮
∂Ωi

τ · ~n · vI ds
∣∣∣∣ ≤ C∑

i

(hki ‖τ‖V,Ωi · ‖v − Tc(v)‖ 1
2 ,∂Ωi)

≤ Chk+l
∑
i

(‖τ‖V,Ωi · |v|1+l,Ωi) ≤ Chk+l‖τ‖V

(∑
i

|v|21+l,Ωi

) 1
2

,

the first conclusion of Theorem 4.1 can be derived immediately from Theorem 3.2.
Next, if the hypothesis in (II) is satisfied as well, it is well known (see [2]) that

there exist Π0u ∈ Uh and a constant C > 0, independent of hi and u, such that

‖u−Π0(u)‖t,Ωi ≤ Chm+1−t‖u‖m+1,Ω, t = 0, 1

and

|Π0(u)|l+1,Ωi ≤ C‖u‖l+1,Ωi.

Thus, in view of the assumption h ≤ 1− 2ν, we get

(1 − 2ν)−1 inf
v∈Uh

‖u− v‖U + hl+k

(∑
i

|v|21+l,Ωi

) 1
2


≤ (1− 2ν)−1

‖u−Π0(u)‖U + hl+k

(∑
i

|Π0(u)|21+l,Ωi

) 1
2


≤ C[hm−1 + hl+k−1] · ‖u‖m+1,Ω,

which means that the proof has been finished. �

Now we turn to discuss how to identify the index of E-compatibility for a given
incompatible space as well as how to construct (Uh,Vh) so that a higher E-C
index can be achieved. In order to construct the high performance schemes, we will
consider Wilson displacement space Uh

W in what follows.
First, following the paper [15], we introduce a condition on mesh subdivisions.

Condition (B). The distance dΩi between the midpoints of the diagonals of Ωi ∈
Th is of order O(h2

i ) uniformly for all element Ωi as hi → 0.

It has already been mentioned in the paper [15] that the quadrilaterals, produced
by bisection scheme of mesh subdivisions, satisfy Condition (B).
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Proposition 4.1. Assume that Condition (B) is fulfilled. Then the index (l, k)
of E-compatibility of Wilson’s quadrilateral with respect to the stress space Vh

0 =
{τ ∈ V|:τ |Ωi = const} is equal to (1, 1).

Proof. By Green’s formula
∮
∂Ωi

τ · ~n · vI ds =
∫

Ωi
[div τ · vI + τ · ε(vI)] dΩ, for

(τ, v) ∈ Vh
0 ×Uh

W , we get |
∮
∂Ωi

τ · ~n · vI ds| ≤ |τ ·
∫

Ωi
ε(vI) dΩ|.

Recalling that v̂I = (v − Tc(v)) =
∑2

t=1[vI,t(1−ξ2
t )] vI,t ∈ R2 and vI = v̂I(F−1

i ),
where Fi =

∑4
i=1(1 + ξ1,tξ1)(1 + ξ2,tξ2)xi,t denotes the element mapping from the

vertex (ξ1,t, ξ2,t) of square K̂ = [−1, 1] × [−1, 1] to the vertex xi,t of Ωi, and its
Jacobian is defined by

[J ] =

 ∂x(1)

∂ξ1
∂x(2)

∂ξ1

∂x(1)

∂ξ2
∂x(2)

∂ξ2

 =
[
a1 + a2ξ2 b1 + b2ξ2
a3 + a2ξ1 b3 + b2ξ1

]
,

at and bt (t = 1, 2, 3) are some algebraic sums of the coordinates of the vertex xi,t.
Particularly {

a2 = 1
4 (x(1)

i,1 − x
(1)
i,2 + x

(1)
i,3 − x

(1)
i,4 ),

b2 = 1
4 (x(2)

i,1 − x
(2)
i,2 + x

(2)
i,3 − x

(2)
i,4 ),

as shown in [14], max(|a2|, |b2|) ≤ CdΩi ≤ Ch2
i .

By some simple computations (see [14]), we can obtain∣∣∣∣∮
∂Ωi

τ · ~n · vI ds
∣∣∣∣ ≤ ∣∣∣∣τ · ∫

Ωi

ε(vI) dΩ
∣∣∣∣

≤ C
[

max(|a2|, |b2|)
hi

]
‖τ‖0,Ωi(|vI,1|+ |vI,2|)

≤ Chi‖τ‖0,Ωi‖ε(vI)‖0,Ωi .
Then this estimation and Proposition 3.1 together conclude that Proposition 4.1

is true. �
Proposition 4.2. Assume that Condition (B) is fulfilled. Then the index (l, k)
of E-compatibility of Wilson’s quadrilateral with respect to Pian–Sumihara’s stress
space (proposed in the paper [9] and denoted here by Vh

PS) is equal to (1, 1).

Proof. Notice that for τ ∈ Vh
PS , as defined in [9],

τ |Ωi =

1 0 0 a2
1ξ2 a2

3ξ1
0 1 0 b21ξ2 b23ξ1
0 0 1 a1b1ξ2 a3b3ξ1


β1

...
β5

 .
Let us divide τ ∈ Vh

PS into τ1 and τ2, τ = τ1 + τ2, τ1 ∈ Vh
0 is a piecewise

constant stress. As shown in [10], for τ ∈ Vh
PS and v ∈ Uh

W ,∮
∂Ωi

τ2 · ~n · vI ds = 0 ∀Ωi ∈ Th.

Thus, by virtue of Proposition 4.1,∣∣∣∣∮
∂Ωi

τ · ~n · vI ds
∣∣∣∣ =

∣∣∣∣∮
∂Ωi

τ1 · ~n · vI ds
∣∣∣∣

≤ Chi‖τ1‖V,Ωi‖ε(vI)‖0,Ωi ≤ Chi‖τ‖V,Ωi‖ε(vI)‖0,Ωi ,
which confirms that the proposition is true as well. �
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Let us denote two 4-node combined hybrid elements, constructed by using Vh
r ×

Uh
W and Vh

PS ×Uh
W , respectively by CH(r) and CH(PS). By virtue of Proposi-

tions 4.1 and 4.2, the hypothesis of Theorem 4.1 is fulfilled, respectively, for CH(0)
element and CH(PS) element. In addition, the inclusion P̂2(F−1

i ) ⊆ Uh
W is sat-

isfied. Theorem 4.1 states that CH(0) and CH(PS) can be considered as two
accuracy-enhanced schemes.

Proposition 4.3. Assume that u ∈ (H1
0 (Ω) ∩H3(Ω))n and Condition (B) is ful-

filled. For the finite element solutions (σh,0, uh,0) and (σh,PS , uh,PS) determined
respectively by CH(0) and CH(PS), we have

‖σ − σh,0‖0,Ω +
(

1− α
α

) 1
2

(1− 2ν)−1‖u− uh,0‖U

≤ C[α(1 − α)]−
1
2 ·
{

inf
τ∈Vh

0

‖σ − τ‖V +
(

h2

1− 2ν

)
‖u‖3,Ω

}
≤ C[α(1 − α)]−

1
2 · {h‖u‖2,Ω + h‖u‖3,Ω}

and

‖σ − σh,PS‖0,Ω +
(

1− α
α

) 1
2

(1− 2ν)−1‖u− uh,PS‖U

≤ C[α(1 − α)]−
1
2 ·
{

inf
τ∈Vh

PS

‖σ − τ‖V +
(

h2

1− 2ν

)
‖u‖3,Ω

}
≤ C[α(1 − α)]−

1
2 · {h‖u‖2,Ω + h‖u‖3,Ω},

where C is independent of h and ν, ν ≤ 0.5− h
2 as h→ 0.

Remark 4.1. Notice that infτ∈Vh
PS
‖σ − τ‖V < infτ∈Vh

0
‖σ − τ‖V, we can believe

that the degree of accuracy of the CH(PS) element is higher than that of the
CH(0) element. Furthermore, the numerical experiments [19] show that CH(0) and
CH(PS) are locking free, and CH(PS) is much more accurate than the classical
conforming bilinear element when using coarse meshes. Therefore, Proposition 4.3
provides a theoretical interpretation for why numerical results of 4-node enriched
stress/strain elements, such as CH(PS), are of high performance. For the details
on numerical experiments, see the published paper [19].

Remark 4.2. Numerical experiments in [19] also show that, by contrast with CH(0)
and CH(PS), the numerical performance of another combined hybrid element
CH(1), constructed by Vh

1 and Uh
W , is quite poor due to E-compatibility deficiency.

Therefore whether b1(τ, v − T (v)) ≈ 0 or not is a key point for the construction of
“good” hybrid elements.

Acknowledgments

I would like to thank the referees for their valuable suggestions, which helped
improve this paper.



STABILIZED HYBRID FINITE ELEMENT METHODS 1673

References

1. Brezzi F., Fortin, M: Mixed and hybrid finite element methods. Springer-Verlag, 1991. MR
92d:65187

2. Ciarlet P. G.: The Finite Element Method for Elliptic Problems: North-Holland, Amsterdam,
1978. MR 58:25001

3. Bochev P. B., Gunzburger M. D.: Finite element methods of least-squares type, SIAM Review
40 (1998), 789–837. MR 99k:65104

4. Franca L. P., Highes T. J. R.: Two classes of mixed finite element methods. Comput. Methods
Appl. Mech. Engrg. 69 (1988), 89-129. MR 90b:65202

5. Hughes T. J. R., France L. P., Balestra M.: A new finite element formulation of computational
fluid dynamics, a stable Petrov-Galerkin formulation of the stokes problem accommodating
equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59 (1986), 85-99. MR
89j:76015d; MR 89j:76015e

6. Kang D. S., Pian T. H. H.: A 20-DOF hybrid general shell element. Comput. Struct. 30
(1988), 789–794.

7. Mikhlin S. G.: The problem of the minimum of a quadratic functional. Holden-Day, San
Francisco, London, Amsterdam, 1965. MR 30:1427

8. Pehlivanov A. I., Carey G. F., Vassilevski P. S.: Least-squares mixed finite element methods
for non-selfadjoint elliptic problem: I. Error estimates. Numer. Math. 72 (1996), 501–522.
MR 97f:65068

9. Pian T. H. H., Sumihara K.: Rational approach for assumed stress finite elements. Inter. J.
Numer. Meth. Engrg. 20 (1984), 1685–1695.

10. Pian T. H. H., Wu C.-C.: A rational approach for choosing stress terms for hybrid finite
element formulations. Internat. J. Numer. Meth. Engrg. 26 (1988), 2331–2343. MR 89f:73052

11. Piltner P., Taylor, R. L.: A quadrilateral mixed finite element with two enhanced strain
modes. Internat. J. Numer. Meth. Engrg. 38 (1995), 1783–1808. MR 96a:73062

12. Piltner R., Taylor R. L.: A systematic construction of B-bar functions for linear and nonlinear

mixed-enhanced finite elements for plane elasticity problems. Internat. J. Numer. Meth. Engrg.
44 (1999), 615–639. MR 99j:73099

13. Reddy B. D., Simo J. C.: Stability and convergence of a class of enhanced strain methods,
SIAM J. Numer. Anal. 32 (1995), 1705–1728. MR 96k:73082a

14. Simo J. C., Rifai M. S.: A class of mixed assumed strain methods and the method of incom-
patible modes. Internat. J. Numer. Meth. Engrg. 29 (1990), 1595–1638. MR 91d:73062

15. Shi. Z.-C.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44
(1984), 349–361. MR 86d:65151

16. Zhou T.-X.: Equivalency theorem for “saddle point” finite element schemes and two criteria
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