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CLASS NUMBERS OF SOME ABELIAN EXTENSIONS
OF RATIONAL FUNCTION FIELDS

SUNGHAN BAE, HWANYUP JUNG, AND JAEHYUN AHN

Abstract. Let P be a monic irreducible polynomial. In this paper we gener-
alize the determinant formula for h(K+

Pn) of Bae and Kang and the formula for

h−(KPn ) of Jung and Ahn to any subfields K of the cyclotomic function field
KPn . By using these formulas, we calculate the class numbers h−(K), h(K+)
of all subfields K of KP when q and deg(P ) are small.

1. Introduction

Let A = Fq[T ] be the ring of polynomials over the finite field Fq with q elements,
and k = Fq(T ). For each polynomial N ∈ A, one uses the Carlitz module ρ to
construct a field extension KN , called the N -th cyclotomic function field, and its
maximal real subfield K+

N . Let K be any subfield of some KN , and K+ = K∩K+
N . It

is well known that the divisor class number h(K) ofK is divisible by the divisor class
number h(K+) of K+. The relative divisor class number of K, denoted by h−(K),
is given by h(K)/h(K+). In a recent paper Bae and Kang [BK] have obtained
determinant formulas for h−(KPn) and h(K+

Pn), where P is a monic irreducible
polynomial in A. In [JA1], Jung and Ahn have obtained a determinant formula
for h−(KPn). In this paper we generalize the Bae-Kang determinant formula for
h(K+

Pn) and the Jung-Ahn formula for h−(KPn) to any subfield K of KPn . Our
proof is much simpler than the proofs of [BK] and [JA1].

In the classical case Girstmair [G] generalized the Maillet determinant and ex-
pressed the relative class number h−(K) of an imaginary abelian number field K in
terms of the generalized Maillet determinant. He also computed the relative class
number h−(K) when K has a prime conductor and its degree over Q is small.

The layout of this paper is as follows. In section 2, we give some notation for
cyclotomic extensions and their subfields of rational function fields, and we also
state some earlier results needed in this paper. In section 3, we extend Kučera’s
lemma [Ku, Lemma 2] to the function field case. By using this lemma, we obtain
determinant class number formulas for h−(K) and h(K+) (Theorem 3.2). In section
4, we consider the case of a prime conductor P. Since KP /k is a cyclic extension,
all subfields of KP can be characterized by their degrees over k. We obtain reduced
determinant class number formulas (Propositions 4.1 and 4.3) by using a primitive
root modulo P. In the final section, these reduced formulas are used to calculate

Received by the editor March 27, 2002 and, in revised form, May 20, 2002.
2000 Mathematics Subject Classification. Primary 11R60, 11R29.
Key words and phrases. Class number, function field.

c©2003 American Mathematical Society

377



378 S. BAE, H. JUNG, AND J. AHN

the class numbers h−(K) and h(K+) of all subfields K of KP when q and deg(P )
are small.

Throughout the paper, K is assumed to be contained in some cyclotomic function
field.

2. Basic facts and notation

For any nonzero polynomial A ∈ A, let sgn(A) be the leading coefficient of
A. A nonzero polynomial A ∈ A is called monic if sgn(A) = 1. We fix a monic
polynomial N. For any polynomial A ∈ A, we denote by Ā the unique polynomial
such that Ā ≡ AmodN and deg(Ā) < deg(N). We also define sgnN (A) = sgn(Ā)
and degN (A) = deg(Ā).

It is well known that the Galois group of KN over k is canonically isomorphic to
(A/N)∗. Explicitly, there is an isomorphism given as follows:

Ψ : (A/N)∗ → GN , AmodN 7→ σA,

where σA(λN ) = ρA(λN ) for any N -torsion element λN of the Carlitz module.
Moreover, Ψ(F∗q) = J = Gal(KN/K

+
N). Let us denote byMN the set of polynomials

in A with degree less than deg(N) and prime to N , and by M+
N the subset of MN

consisting of monic polynomials.
For any A ∈ MN , ZN(s,A) denotes the partial zeta function associated to the

class of A in Cl(A). For A ∈ A, we let 〈A〉N = 1 if sgnN (A) = 1 and 〈A〉N = 0
otherwise. Then from [JA2, Lemma 3.1], we have

(2.1) ZN(0, A) = 〈A〉N −
1

q − 1
.

Let K be a finite abelian extension of k which is contained in some cyclotomic
function field. By the conductor of K, we mean the monic polynomial N ∈ A such
that KN is the smallest cyclotomic function field which contains K. Let K+ =
K ∩K+

N be the maximal real subfield of K. Let GK be the Galois group of K/k
and JK = Gal(K/K+). Let ĜK be the set of characters of GK with values in C.
We denote by χ0 the trivial character of GK . A character χ ∈ ĜK is called real if
χ(JK) = 1 and nonreal otherwise. Denote by Ĝ+

K the set of all real characters of
GK , and put Ĝ−K = ĜK\Ĝ+

K . Let Q[GK ] be the group ring with coefficients in Q.
For any subset H of GK , let s(H) =

∑
σ∈H σ ∈ Q[GK ]. Let e+ = s(JK)/|JK | and

e− = 1 − e+. Let Q[GK ]± = {x ∈ Q[GK ] : e∓x = 0}. There are well known class
number formulas [Y, BK]

(2.2) h−(K) =
∏
χ∈Ĝ−K

∑
A∈MN

ZN (0, A)χ̄(A)

and

(2.3) h(K+) =
∏
χ∈Ĝ+

K
χ 6=χ0

(−
∑
A∈M+

N

deg(A)χ(A)).

3. Determinant class number formulas

Let K be a finite abelian extension of k with conductor N = Pn, a power of a
monic irreducible polynomial P. Fix a system C of representatives of GK/JK . For
any τ ∈ GK , we denote by τ̃ the unique element of C such that τ τ̃−1 ∈ JK . Let
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χ ∈ ĜK . Then χ induces a homomorphism C[GK ] → C in an obvious way. We
denote it also by χ.

Lemma 3.1. Let C be any system of representatives of GK/JK.
(i) For any θ =

∑
σ∈GK tσσ

−1 ∈ Q[GK ]−, we have

(3.1) det(tστ − tστ̃ : σ, τ 6∈ C) = ±
∏
χ∈Ĝ−K

χ(θ).

(ii) For any η =
∑

σ∈GK sσσ
−1 ∈ Q[GK ]+, we have

(3.2) det(sστ : σ, τ ∈ C) = ±|JK |−[K+:k]
∏
χ∈Ĝ+

χ(η).

Proof. For each χ ∈ Ĝ, let eχ = 1
|GK |

∑
σ∈GK χ(σ)σ−1 be the idempotent element

associated to χ. For (i) we consider the linear transformation T of C[GK ]− into
C[GK ]− defined as multiplication by θ. Clearly the matrix of T with respect to
the basis {eχ : χ ∈ Ĝ−K} is given as diag(χ(θ) : χ ∈ Ĝ−K). One can easily show
that X = {(1 − j)σ−1 : 1 6= j ∈ JK , σ ∈ C} forms a basis of C[GK ]−. Since
C ′ = {σ−1 : σ ∈ C} is also a system of representatives of GK/JK , it follows that
X ′ = {(1− j)σ : 1 6= j ∈ JK , σ ∈ C} is also a basis of C[GK ]−. Then the matrix of
T from X ′ to X is given by (tστ − tστ̃ : σ, τ 6∈ C). Since X and X ′ are bases of the
free abelian group Z[GK ]−, the transition matrix from X to X ′ has determinant
±1, so we get (i).

For (ii) we consider the linear transformation S of C[GK ]+ into C[GK ]+ defined
by multiplication by η. Clearly S has the matrix diag(χ(θ) : χ ∈ Ĝ+

K) with respect
to the basis {eχ : χ ∈ Ĝ+

K}. It is easy to show that Y = {s(JK)σ−1 : σ ∈ C} and
Y ′ = {s(JK)σ : σ ∈ C} constitute bases of Q[GK ]+, and the matrix of S from Y ′

to Y is given by (|JK |sστ : σ, τ ∈ C). Since Y and Y ′ are also bases of the free
abelian group Z[GK ]+, the transition matrix from Y to Y ′ has determinant ±1, so
we get (ii). �

For A ∈ MN , let σ′A be the restriction of σA to K. By using Lemma 3.1 and the
class number formulas (2.2) and (2.3), we obtain the following determinant class
number formulas.

Theorem 3.2. Let K/k be any finite abelian extension with conductor N = Pn.
Let C be any system of representatives of GK/JK .

(i) For σ ∈ GK , let tσ =
∑

A∈MN ,σ′A=σ ZN(0, A). Then

(3.3) h−(K) = |det(tστ − tστ̃ : σ, τ 6∈ C)|.

(ii) For σ ∈ GK , let sσ = − |JK|q−1

∑
A∈MN ,σ′A=σ deg(A). Then

(3.4) h(K+) =
1

d(N)
|det(sστ : σ, τ ∈ C)|,

where d(N) =
∑

A∈M+
N

deg(A).

Proof. (i) Take

θ =
∑
σ∈GK

( ∑
A∈MN ,σ′A=σ

ZN (0, A)
)
σ−1.
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We note that θ ∈ Q[GK ]− and χ(σ) = χ(A) for any A ∈ MN with σ′A = σ. Thus
for any χ ∈ Ĝ−K , we have

χ(θ) =
∑
σ∈GK

χ̄(σ)
∑
A∈MN
σ′
A

=σ

ZN (0, A) =
∑
A∈MN

ZN (0, A)χ̄(A).

By Lemma 3.1 (i) and the class number formula (2.2), we get (3.3).
(ii) Take η =

∑
σ∈GK sσσ

−1 with sσ = − |JK |q−1

∑
A∈MN ,σ′A=σ deg(A). For any

χ ∈ Ĝ+
K , we have

χ(θ) = − |JK |
q − 1

∑
σ∈GK

χ̄(σ)
∑
A∈MN
σ′
A

=σ

deg(A)

= − |JK |
q − 1

∑
A∈MN

deg(A)χ̄(A) = −|JK |
∑
A∈M+

N

deg(A)χ̄(A).

In particular, if χ = χ0, then χ(θ) = −|JK |d(N). Thus by Lemma 3.1 (ii) and the
class number formula (2.3), we get (3.4). �

Remark 3.3. (i) One can easily see that Proposition 3.2 (i) and (ii) are gener-
alizations of [JA1, Proposition 2.5] and [BK, Theorem 4], respectively.

(ii) Let t̄σ =
∑

A∈MN ,σ′A=σ〈A〉N . Then by (2.1), Theorem 3.2 can be read as

h−(K) = |det(t̄στ − t̄στ̃ : σ, τ 6∈ C)|.

4. The case of prime conductor

In this section we assume that K has the conductor P , where P is a monic
irreducible polynomial of degree d in A. Let n = [K : k], n0 = [K+ : k]. Choose
a primitive root Q modulo P. Clearly we may assume that deg(Q) < deg(P ). For
each i ∈ Z, let Qi ∈ MP be the unique element such that Qi ≡ Qi modP. Thus
Qi = Qi′ if i ≡ i′mod(qd − 1). Let σ ∈ GK be the restriction of σQ ∈ GP to
K. Then GK is a cyclic group of order n generated by σ. Since Gal(KP /K) =
{σQnj : 0 ≤ j ≤ qd−1−n

n } and Gal(KP /K
+) = {σQn0j

: 0 ≤ j ≤ qd−1−n0
n0

}, the
sign group JK is generated by σn0 . Thus C = {σi : 0 ≤ i ≤ n0 − 1} is a system
of representatives of GK/JK . For each i ∈ Z, we define i∗ to be the unique integer
such that i ≡ i∗modn0 and 0 ≤ i∗ < n0. Then σ̃i = σi

∗
. For each i ∈ Z, we let

ti = tσi and si = sσi . Clearly ti = ti′ , si = si′ if i ≡ i′modn. Then we have

ti =
∑
j

ZP (0, Qi+jn), si = − |JK |
q − 1

∑
j

deg(Qi+jn),

where 0 ≤ j ≤ qd−1−n
n . We note that by (2.1) we have

ti =
∑
j

〈Qi+jn〉P − (qd − 1)/n(q − 1).

In this case Theorem 3.2 can be written as follows.
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Proposition 4.1. Let K/k be a finite abelian extension with prime conductor P.
With the same notation as above, we have the following class numbers formulas:

(i) h−(K) = |det(ti+j − ti+j∗ : n0 ≤ i, j ≤ n− 1)|,
(ii) h(K+) = 1

d(P ) |det(si+j : 0 ≤ i, j ≤ n0 − 1)|.

Since Gal(KP /K
+
P ) = 〈σ(qd−1)/(q−1)

Q 〉 and Gal(KP /K) = 〈σnQ〉, we have

Gal(KP /K
+) = 〈σq

d−1/q−1
Q , σnQ〉.

Thus n0 = gcd(n, q
d−1
q−1 ). Since KP/k is a cyclic extension, we can completely

determine all subfields, their sign groups and their class numbers by Proposition
4.1.

Lemma 4.2. For each i, j ∈ {0, . . . , n− 1}, we have

(i)
∑

0≤e≤(n/n0)−1 ti+en0 = 0,
(ii) si = si′ if i ≡ i′modn0,
(iii) s0 + . . .+ sn0−1 = −d(P ).

Proof. Let Si = {Qi+jn : j = 0, . . . , q
d−1−n
n } for i = 0, . . . , n − 1. Then {Si :

i = 0, . . . , n − 1} forms a partition of MP . It is easy to see that if σ′A = σe for
some A ∈ MP , then multiplication by A followed by reduction modulo P defines
a one-to-one map from Si to Si+e for each i. Suppose that ZP (0, A) appears in
the summation of (i) with nonzero coefficient. Since JK is generated by σn0 and
resKP /K(Gal(KP /K

+
P )) = JK , for any α ∈ F∗q we have σ′α = σen0 , and so ZP (0, αA)

also appears in the summation of (i) exactly once. Since
∑

α∈F∗q ZP (0, αA) = 0 by
(2.1), we get (i). Suppose that (ii) is true. Then we have

s0 + . . .+ sn0−1 = − |JK |
q − 1

∑
0≤i≤n0−1

∑
0≤j≤ qd−1−n

n

deg(Qi+jn)

= − 1
q − 1

∑
0≤i≤n−1

∑
0≤j≤ qd−1−n

n

deg(Qi+jn) = −d(P ),

so we get (iii). It remains to prove (ii). Suppose that i′ = i+ en0 for some e. Then
there exists α ∈ F∗q with σ′α = σen0 , and so we have

si′ = − |JK |
q − 1

∑
j

deg(αQi+jn) = si. �

Now we give reduced matrices of the matrices given in Proposition 4.1. Define

SK =


1 1 1 . . . 1 1
s0 s1 s2 . . . sn0−2 sn0−1

...
...

...
...

...
sn0−2 sn0−1 s0 . . . sn0−4 sn0−3

 .

Proposition 4.3. (i) h−(K) = |JK |[K
+:k]|det(ti+j : n0 ≤ i, j ≤ n− 1)|.

(ii) h(K+) = |det(SK)|.
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Proof. Consider the matrix (ti+j − ti+j∗ : n0 ≤ i, j ≤ n− 1) in Proposition 4.1 (i).
For each 0 ≤ j∗ ≤ n0− 1, add all (j∗+ un0)-columns with u = 2, . . . , (n/n0)− 1 to
the (j∗ + n0)-column. Then the (i, j∗ + n0)-entry becomes∑

1≤u≤(n/n0)−1

ti+j∗+un0 − ((n/n0)− 1)ti+j∗

=
∑

0≤u≤(n/n0)−1

ti+j∗+un0 − (n/n0)ti+j∗

= −(n/n0)ti+j∗

by Lemma 4.2 (i). By using Lemma 4.2 (i) again, we get (i). From Lemma 4.2
(ii), (iii) and elementary row operations, we can change the matrix in Proposition
4.1 (ii) to 

−d(P ) −d(P ) −d(P ) . . . −d(P ) −d(P )
s0 s1 s2 . . . sn0−2 sn0−1

...
...

...
...

...
sn0−2 sn0−1 s0 . . . sn0−4 sn0−3

 .

Thus we get (ii). �

Remark 4.4. Let OK be the integral closure of A in K and O∗K the unit group of
OK . Let h(OK) and h(OK+) be the ideal class numbers of OK and OK+ , and let
h−(OK) = h(OK)/h(OK+) be the relative ideal class number of OK . Then from
[BJA, (2.1)], we have h−(K) = |JK |[K

+:k]−1h−(OK). Thus by Proposition 4.3,

(4.1) h−(OK) = |JK | · |det(ti+j : n0 ≤ i, j ≤ n− 1)|.

Let ` be a prime divisor of q − 1. We consider the subfields K of KP of degree
` over k, which are characterized as follows [An, Lemma 3.2].

Lemma 4.5. Let K/k be a finite abelian extension with prime conductor P , whose
degree over k is `.

(i) If d ≡ 0 mod `. Then K = k(
√̀
P ) and it is contained in K+

P .
(ii) If d 6≡ 0 mod `, let e, 1 ≤ e ≤ ` − 1, be such that ed ≡ 1 mod `. Then

K = k(
√̀
−P e) and it is not contained in K+

P .

We calculate the class number h(K) by using Proposition 4.3. We note that if
d 6≡ 0 mod `, then K+ = k,GK = JK , h(K) = h−(K), and if d ≡ 0 mod `, then
K+ = K, JK = {1}, h(K) = h(K+). Define

DK =


t0 t1 t2 . . . t`−3 t`−2

t1 t2 t3 . . . t`−2 t`−1

...
...

...
...

...
t`−2 t`−1 t0 . . . t`−5 t`−4

 , if d 6≡ 0 mod `,

and DK = SK if d ≡ 0 mod `.

Corollary 4.6. We let ε = 1 if d 6≡ 0 mod `, and ε = 0 otherwise. Then h(K) =
`ε|det(DK)|.
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Proof. We only prove the case that d 6≡ 0 mod `. By using the fact that
∑`−1

i=0 ti =∑
A∈MN ZN (0, A) = 0 and by elementary row operations, we can change the matrix

(ti+j : 1 ≤ i, j ≤ ` − 1) in Proposition 4.3 (i) to DK up to ±1. Thus we get the
result. �

Assume that q is odd. Then the class number of the quadratic subfield of KP

can be obtained in a simple form as follows.

Corollary 4.7. Let q be odd. Let X0 and X1 be the subsets of MP consisting of
quadratic residues modulo P and quadratic nonresidues modulo P , respectively.

(i) If deg(P ) is odd, then the class number of k(
√
−P ) is

|2S − qd − 1
q − 1

|,

where S = |X0 ∩M+
P |.

(ii) If deg(P ) is even, then the class number of k(
√
P ) is

1
q − 1

|(q − 1)d(P )− 2
∑
A∈X0

deg(A)|.

In particular, if deg(P ) = 2, then h(k(
√
P )) = 1.

Proof. Let K be the unique quadratic subfield of KP . Assume that d 6≡ 0 mod 2.
Note that for any A ∈ MP , σ

′
A = 1 if and only if A is a quadratic residue modulo

P. Then by Corollary 4.6, we have h(K) = 2|t0|, where t0 =
∑
A∈MP∩X0

ZP (0, A).

By the definition of S, we have t0 = S − qd−1
2(q−1) , which implies (i).

Now assume that d ≡ 0 mod 2. Then by Lemma 4.2 (iii) and Corollary 4.6, we
have h(K) = |s0 − s1| = |2s0 + d(P )|. Since

s0 = − 1
q − 1

∑
1≤j≤ qd−3

2

deg(Q2j) = − 1
q − 1

∑
A∈X0

deg(A),

we get (ii). �

5. Some numerical examples

Let K/k be a finite abelian extension with conductor P. In this section, we
give some numerical examples for the class numbers h−(K) and h(K+) of K using
Proposition 4.3. Here we used MAPLE for the computation. As the k-isomorphisms
T 7→ T + α with α ∈ F∗q send a monic irreducible polynomial to another monic
irreducible polynomial, it suffices to consider only the monic irreducible polynomials
up to these k-isomorphisms. In [Ar], Artin calculated the class number of quadratic
function fields. One can see that our numerical data coincide with Artin’s [Ar, p.
80-81] in the real quadratic function field case.

Example 5.1. Assume q = 3. There is only one monic irreducible polynomial T
of degree 1 up to the above k-isomorphisms. It is already known that h−(KT ) =
h(K+

T ) = 1.
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Table 1. q = 3, degP = 2

P [K : k] [K+ : k] h−(K) h(K+)

2 2 1 1

T 2 + 1 4 4 1 1

8 4 23 1

Table 2. q = 3, degP = 3

P [K : k] [K+ : k] h−(K) h(K+)

2 1 1 1

T 3 + 2T + 1 13 13 1 39

26 13 212 · 36 39

2 1 7 1

T 3 + 2T + 2 13 13 1 39

26 13 212 · 33 · 37 39

2 1 5 1

T 3 + T 2 + 2 13 13 1 53 · 313

26 13 212 · 5 · 79 53 · 313

2 1 3 1

T 3 + 2T 2 + 1 13 13 1 53 · 313

26 13 212 · 3 · 131 53 · 313

Table 3. q = 3, P = T 4 + T + 2

P [K : k] [K+ : k] h−(K) h(K+)

2 2 1 22

4 4 1 23 · 17

5 5 1 71

8 8 1 24 · 17 · 97

T 4 + T + 2 10 10 1 22 · 71 · 491

16 8 27 · 881 24 · 17 · 97

20 20 1 23 · 112 · 17 · 71 · 491 · 541

40 40 1 24·112·17·41·71·97·491·541
·881·1564361

80 40 239·241·641·881
·532611841

24·112·17·41·71·97·491·541
·881·1564361

There is also one monic irreducible polynomial T 2 +1 of degree 2 up to the above
k-isomorphisms. Table 1 gives the degrees [K : k], [K+ : k] and class numbers
h−(K), h(K+) for all subfields K of KT 2+1.

There are four monic irreducible polynomials T 3+2T+1, T 3+2T+2, T 3+T 2+2
and T 3 + 2T 2 + 1 of degree 3 up to the above k-isomorphisms. The table for these
polynomials are given in Table 2.

There are six monic irreducible polynomials of degree 4 up to the above k-
isomorphisms. We only give the table for T 4 + T + 2 (Table 3).
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Table 4. q = 5, P = T 2 + 2

P [K : k] [K+ : k] h−(K) h(K+)

2 2 1 1

3 3 1 1

4 2 2 · 5 1

T 2 + 2 6 6 1 1

8 2 22 · 5 · 17 1

12 6 25 · 5 1

24 6 210 · 5 · 72 · 17 1

Example 5.2. Assume q = 5. For P = T 2 + 2, it is easy to check that Q = T + 1
is a primitive root modulo T 2 +2. Note that [KP : k] = 24. We consider the unique
subfield K of KP with degree [K : k] = 12. Then [K+ : k] = 6 and |JK | = 2. The
matrix (ti+j : n0 ≤ i, j ≤ n− 1) in Proposition 4.3 becomes

1

2

1

2

−1

2

1

2

1

2

1

2
1

2

−1

2

1

2

1

2

1

2

−1

2
−1

2

1

2

1

2

1

2

−1

2

−1

2
1

2

1

2

1

2

−1

2

−1

2

1

2
1

2

1

2

−1

2

−1

2

1

2

−1

2
1

2

−1

2

−1

2

1

2

−1

2

−1

2



.

Then we have h−(K) = 25 · 5 and h−(OK) = 5. The matrix SK in Proposition 4.3
becomes 

1 1 1 1 1 1
0 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 0
−1 −1 −1 −1 0 −1
−1 −1 −1 0 −1 −1
−1 −1 0 −1 −1 −1

 .

Thus we have h(K+) = 1. Moreover, the table for T 2 + 2 is Table 4.
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