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HIGH RANK ELLIPTIC CURVES
WITH TORSION GROUP Z/(2Z)

JULIÁN AGUIRRE, FERNANDO CASTAÑEDA, AND JUAN CARLOS PERAL

Abstract. We develop an algorithm for bounding the rank of elliptic curves
in the family y2 = x3−B x, all of them with torsion group Z/(2Z) and modular
invariant j = 1728. We use it to look for curves of high rank in this family
and present four such curves of rank 13 and 22 of rank 12.

1. Introduction

Let E be an elliptic curve and let E(Q) be the group of rational points of E .
By Mordell’s theorem E(Q) = E(Q)torsion ⊕ Zr, where the nonnegative integer
r = rank(E) is known as the rank of E . The problem of determining the rank is a
difficult one, and no general algorithm is known to solve it. It is a widely accepted
conjecture that there is no upper bound for the rank of elliptic curves, although no
curve (over Q) of rank greater than 24 is known. An example of a curve of rank at
least 24 was given by R. Martin and W. McMillen in May 2000. Current records
are available at www.math.hr/~duje/tors/tors.html (last visited March 2002).

Curves with a torsion point of order two are usually represented as

(1) y2 = x3 + a x2 + b x, a, b ∈ Z, a2 − 4 b 6= 0,

and show a tendency to have lower ranks. Fermigier ([3], [4]) constructed an infinite
family of such curves with rank greater than or equal to 8 and exhibited one with
rank exactly 14. A. Dujella gave an example in April 2001 of such a curve with
rank exactly 15.

We study the special family of curves

(EB) y2 = x3 −B x, B ∈ Z, B not a square,

obtained from the one considered by Fermigier by setting a = 0 and b = −B.
All of them have torsion group Z/(2Z) and modular invariant j = 1728. Nagao
constructed in [6] a polynomial P (t) ∈ Q(t) such that y2 = x3 + P (t)x has four
independent points over Q(t). By specializing t to rational numbers, he found
infinitely many curves of rank at least 4 and two of rank at least 6. Curves (EB)
with B a perfect square have been studied recently in [7].

In [1], the authors exhibited seven values of B for which the corresponding curve
has rank at least 8. Since then we have improved our algorithms and found 4 curves
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of rank 13 and 22 of rank 12, as well as a large number of curves whose rank is
between 9 and 11. The construction of the curves rests on two pillars:

(1) A strategy to search for curves with high rank, which is a modification of
the method described by Fermigier in [4].

(2) Algorithms to obtain lower and upper bounds on the rank, based on the
two descent method and the computation of the 2-Selmer group, which are
particularly simple for curves of the form (EB).

For curves with a torsion point of order two, a theorem of Tate ([11], [10]) reduces
the problem of determining their rank to the solvability of a set of diophantine equa-
tions, called the homogeneous spaces associated with the curve. The curves (EB)
are a subset of those to which Tate’s Theorem applies, and our algorithm for de-
termining their rank is based on it.

An obvious change of variable shows that without loss of generality, the integer
B in (EB) can be taken free of fourth powers. Thus, we consider nonzero integers

B = ± pα1
1 · · · pαNN ,

where pi are (positive) primes and 1 ≤ αi ≤ 3 for 1 ≤ i ≤ N .
Let D(B) be the set of squarefree divisors (both positive and negative) of B.

Endowed with multiplication modulo Q∗2, D(B) becomes a finite group. An inde-
pendent set of generators is {−1, p1, . . . , pN }, so that D(B) is of order 2N+1 and
is isomorphic to the direct product of N + 1 copies of Z/(2Z).

Definition. Let d be a divisor of B. We say that a triple (U, V, Z) of positive
integers isolates d if gcd(U, V ) = 1 and

(Cd) dU4 − B

d
V 4 = Z2.

The diophantine equations (Cd) are called homogeneous spaces.

Remark 1. Let d = d̂ q2, with d̂ squarefree, be a divisor of B and suppose that
(U, V, Z) isolates d. If r = (q, V ), then (q U/r, V/r, q Z/r2) isolates d̂. Thus, there
is no loss of generality in considering only squarefree divisors of B.

The set
{d ∈ D(B) : d can be isolated } ∪ {1,−B̂},

where B̂ is the squarefree part of B, generates a subgroup of D(B), that we denote
by T (B). Since the order of D(B) is a power of 2, the order of T (B) is 2r(B) for
some nonnegative integer r(B). If B < 0, then negative divisors of B cannot be
isolated, and we get the following upper bound on the value of r(B):

(2) r(B) ≤
{
N + 1 if B > 0,
N if B < 0.

We are now ready to restate Tate’s Theorem as it applies to curves in the special
family (EB).

Theorem 1 (Tate).

rank(EB) = r(B) + r(−4B)− 2.
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Tate’s Theorem and inequality (2) provide an upper bound for rank(EB) in terms
of the prime factorization of B, in general much larger than the true value of the
rank. A better estimate is obtained from the 2-Selmer group. To get a lower bound
on rank(EB), explicit solutions of the homogeneous spaces are exhibited. When
these bounds coincide, the exact rank of the curve has been found.

2. Bounds for rank(EB)

2.1. Upper bounds for r(B): the 2-Selmer group. The 2-Selmer group S2(B)
is defined as the set of all d ∈ D(B) such that the homogeneous space (Cd) is
solvable in Qp for all primes p (including Q∞ = R). For finite primes, we may
restrict ourselves to the bad primes: p = 2 and p odd dividing B. It is clear that
T (B) ⊂ S2(B) ⊂ D(B). The order of S2(B) is 2s(B) for a nonnegative integer s(B).
The 2-Selmer rank of (EB) is defined as

s2rank(EB) = s(B) + s(−4B).

The criteria for local solvability of the homogeneous spaces associated with the
curves (EB) are simple, making the computation of s(B) an easy task. We give
some of the details for odd primes p ‖ B.

Let P = { p : p is an odd prime and p ‖ B }. For any p ∈ P and d ∈ D(B) we
have:

• If p does not divide d, then (Cd) is locally solvable in Qp if and only if d is
a quadratic residue modulo p.
• If p divides d, then (Cd) is locally solvable in Qp if and only if −B/d is a

quadratic residue modulo p.
Define D(B, p) = { d ∈ D(B) : (Cd) is solvable in Qp } and

S2(B,P) = { d ∈ D(B) : (Cd) is solvable in Qp for all p ∈ P } =
⋂
p∈P
D(B, p).

It is easy to see that T (B) ⊂ S2(B) ⊂ S2(B,P) ⊂ D(B), where the inclusions
also hold in the sense of subgroups. The order of S2(B,P) is 2s(B,P) for some
nonnegative integer s(B,P), and

(3) r(B) ≤ s(B) ≤ s(B,P) ≤ N + 1.

Through the identification of D(B) with
(
Z/(2Z)

)N+1, conditions for local solv-
ability modulo p can be rewritten as linear equations modulo 2, and S2(B,P) can
then be efficiently computed by linear algebra methods. In practice, for each p ∈ P ,
we compute a basis of D+(B, p) = { d ∈ D(B,P) : d > 0 }.

The procedure is essentially the same for odd primes p such that p3 ‖ B and
somewhat more involved for odd primes p such that p2 ‖ B and for p = 2. However,
these last computations are carried out only for those B’s with s(B,P) large, which
are a small fraction of the total.

2.2. A lower bound for r(B). As a first step, we choose a family H of pairs of
relatively prime integers (U, V ), representing the set of homogeneous spaces to be
solved. The larger the H, the more precise is the bound on r(B), but the longer
the calculation. Once H is chosen, carry out the following computations.

(1) Construct S+
2 (B) = { d ∈ S2(B) : d > 0 } as described above.
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(2) Determine the set of those d ∈ S+
2 (B) for which there exist (U, V ) ∈ H

such that

dU4 − B

d
V 4 is a perfect square.

(3) Compute the order of the subgroup of D(B) generated by the divisors of B
found in the previous step. This will be 2r for some integer r. Then,

r(B) ≥ r(B,H) =def

{
r + 1 if B > 0,
r if B < 0.

3. The search strategy

We implement a variation of the method used by Fermigier in [4]. He starts with
a monic, even polynomial p(x) =

∏8
i=1(x2 − a2

i ) of degree 16, ai ∈ N, and then lets

p(x) =
(
q(x)

)2 − r(x),

where q is is an even polynomial of degree 8 and r(x) = r6x
6 + r4x

4 + r2x
2 + r0.

The curve y2 = r(x) has at least the 32 rational points (±ai,±q(ai)), 1 ≤ i ≤ 8.
For it to have genus 1, r(x) must be of degree 4 and must be irreducible, hence
r6 = 0. A sufficient condition for this is

a2
1 + a2

2 = a2
3 + a2

4 = a2
5 + a2

6 = a2
7 + a2

8.

The quartic y2 = r4x
4+r2x

2+r0 is interpreted as a homogeneous space for the curve
whose cubic model is (1) with a and b given by a = −r2/2 and b = (a2 − r0r4)/4.
Fermigier goes on to get explicit expressions for a and b in terms of the ai. It turns
out that b is always a multiple of a, so that if a = 0, then also b = 0 and the curve
is singular.

Since we want a = 0 and b 6= 0, some changes in the above procedure are
necessary. We begin with a monic, even polynomial of degree 8

p(x) =
4∏
i=1

(x2 − a2
i ) = x8 − s1x

6 + s2x
4 − s3x

2 + s4,

where si is the ith elementary symmetric polynomial in 4 variables, 1 ≤ i ≤ 4,
evaluated at (a2

1, a
2
2, a

2
3, a

2
4). Then p = q2 − r with

q(x) = x4 − s1

2
x2 +

s3

s1
and r(x) =

(s2
1

4
+

2 s3

s1
− s2

)
x4 +

s2
3

s2
1

− s4.

The associated cubic model for the quartic y2 = r(x) is a curve (EB) with

(4) B = −
(s2

1

4
+

2 s3

s1
− s2

)(s2
3

s2
1

− s4

)
.

It has at least the eight rational points (r4 a
2
i ,±r4 ai q(ai)), where r4 is the coefficient

of x4 in r. The right-hand side of (4) is homogeneous of degree 12 in the ai. Given
a quadruple of positive integers (a1, a2, a3, a4) (which without loss of generality can
be taken to be relatively prime), we can find a positive integer multiplier λ such
that the quadruple λ(a1, a2, a3, a4), when inserted in (4), produces an integer. In
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fact, we can take λ = 2(a2
1 + a2

2 + a2
3 + a2

4). Carrying out the computations and
factoring out fourth powers, we get

B = 4(a1a2 + a3a4)(a1a2 − a3a4)(a1a3 + a2a4)(a1a3 − a2a4)

× (a1a4 + a2a3)(a1a4 − a2a3)(a2
1 + a2

2 − a2
3 − a2

4)

× (a2
1 − a2

2 + a2
3 − a2

4)(a2
1 − a2

2 − a2
3 + a2

4)(a2
1 + a2

2 + a2
3 + a2

4).

(5)

For specific values of the quadruple (a1, a2, a3, a4), the value of B given by the
above formula is in general not free of fourth powers, so that a further reduction
modulo Q∗4 may be necessary. Moreover, if B < 0, then we multiply it by −4, and,
if necessary, divide it by 16; we denote the result by B(a1, a2, a3, a4).

4. The results

We have computed upper and lower bounds of the rank of curves (EB) with
B = B(a1, a2, a3, a4) using a2

1 + a2
2 + a2

3 + a2
4 as a parameter. Given a positive

integer σ, let

B(σ) = {B(a1, a2, a3, a4) : a2
1 + a2

2 + a2
3 + a2

4 = σ }.
It can be seen that B(2 σ) = B(σ), so that it is enough to consider odd values of
σ. We computed B(σ) for 1 < σ < 302000. For values of σ between 1 and 20000,
we looked for curves of rank at least 9, of which we found over one thousand. Of
them, 135 were of rank 10, 19 of rank 11 and one of rank 12. For σ > 20000 we
focused on finding curves of rank greater than or equal to 12, following a process
that we describe next.

4.1. The search algorithm. We selected two families of homogeneous spaces:

H1 = { (U, V ) : 1 ≤ V ≤ U ≤ 33, gcd(U, V ) = 1 },
H2 = { (U, V ) : 1 ≤ U ≤ 2001, 1 ≤ V ≤ min(U, 128), gcd(U, V ) = 1 }.

The first one has 344 elements and was used to select integers B for which rank(EB)
is likely large. The second has 151387 elements and was used to calculate a better
lower bound of rank(EB) for those B selected previously. For each (a1, a2, a3, a4) ∈
N4 such that 1 ≤ a1 < a2 < a3 < a4, gcd(a1, a2, a3, a4) = 1 and 20000 < a2

1 + a2
2 +

a2
3 + a2

4 ≤ 302000, we proceed as follows:
(1) Compute B = B(a1, a2, a3, a4). If B is a perfect square, then reject it.
(2) Compute s(B,P). If s(B,P) < 6, then reject B. Otherwise, go to the next

step.
(3) Compute s(−4B,P). If s(B,P) + s(−4B,P) < 14, then reject B. Other-

wise, go to the next step.
(4) Compute s2rank(EB). If s2rank(EB) < 14, then reject B. Otherwise, go to

the next step.
(5) Compute r(B,H1). If r(B,H1) < 5, then reject B. Otherwise, go to the

next step.
(6) Compute R = r(B,H2) + r(−4B,H2).

If R = s2rank(EB), then rank(EB) = s2rank(EB) − 2, while if R < s2rank(EB),
then we only have the inequalities R − 2 ≤ rank(EB) ≤ s2rank(EB) − 2. There are
two reasons why this could happen:

(1) Not all d ∈ D(B) for which equation (Cd) has a rational solution have been
found.
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Table 1. Curves of rank 12

B (r, r̄) σ (a1, a2, a3, a4)

454 719 638 875 058 296 871 292 (7, 7) 60695 (47, 129, 138, 151)

715 970 874 943 386 994 467 852 (7, 7) 235331 (103, 172, 213, 387)

1 214 095 827 971 924 150 174 460 (8, 6) 245375 (53, 203, 294, 339)

1 645 077 324 548 360 946 504 525 (7, 7) 111035 (21, 47, 184, 273)

5 169 170 820 204 434 510 666 892 (8, 6) 18809 (54, 57, 70, 88)

58 821 272 836 753 123 416 329 100 (8, 6) 204085 (121, 152, 206, 352)

75 678 650 779 410 795 595 704 225 (8, 6) 115045 (62, 152, 176, 239)

15 011 634 178 110 530 936 913 092 525 (7, 7) 134705 (29, 120, 230, 258)

28 135 643 357 680 741 625 006 358 497 (7, 7) 72495 (26, 117, 139, 197)

116 336 368 496 576 127 302 236 525 692 (7, 7) 164775 (37, 198, 239, 259)

172 792 290 506 501 154 725 844 507 900 (7, 7) 112669 (4, 26, 229, 244)

566 685 291 293 488 600 339 545 971 532 (7, 7) 146371 (87, 173, 213, 252)

783 009 180 239 218 955 118 450 366 012 (8, 6) 268279 (154, 181, 211, 409)

2 308 516 307 675 706 889 377 609 045 900 (8, 6) 46995 (17, 33, 44, 209)

3 577 257 554 785 727 695 575 721 968 225 (7, 7) 180449 (5, 30, 210, 368)

9 669 224 911 726 890 971 188 351 254 540 (8, 6) 269875 (161, 253, 283, 316)

365 270 130 088 647 753 858 238 745 495 100 (7, 7) 274365 (72, 74, 251, 448)

634 069 893 288 350 019 987 584 209 395 900 (8, 6) 231613 (58, 125, 320, 332)

14 712 331 120 225 575 885 203 830 147 929 357 (7, 7) 110925 (17, 18, 214, 254)

59 265 540 998 867 979 915 642 579 193 217 100 (8, 6) 110385 (66, 104, 163, 262)

179 951 925 306 622 698 660 887 676 991 871 100 (8, 6) 149017 (6, 16, 90, 375)

368 992 705 100 019 698 676 996 450 186 445 692 (8, 6) 247871 (65, 78, 291, 391)

Table 2. Curves of rank 13

B (r, r̄) σ (a1, a2, a3, a4)

1 525 990 877 673 927 911 985 309 090 (8, 7) 269125 (72, 186, 329, 348)

2 827 529 113 871 322 622 866 959 217 (8, 7) 31213 (19, 86, 100, 116)

93 922 872 848 724 146 729 053 666 257 (7, 8) 59737 (14, 26, 167, 176)

19 348 006 334 886 975 416 600 173 605 900 (8, 7) 298595 (96, 183, 233, 449)

(2) Equation (Cd) is solvable in Qp for all primes p but has no rational solu-
tion. This implies in particular that the Tate-Shafarevich group IIIEB is
nontrivial.

We found 22 curves of rank 12 and 4 of rank 13. They are listed in Ta-
bles 1 and 2, respectively. The first column is the number B; the second is
(r, r̄) = (r(B), r(−4B)); the third column is σ; and the last one is the corresponding
quadruple.

4.2. Rational points on the curves. From the solutions of the equations

dU4 − B

d
V 4 = Z2, d ∈ D(B), d̄ Ū4 + 4

B

d̄
V̄ 4 = Z̄2, d̄ ∈ D(−4B),

we obtain rational points of infinite order on the curve (EB):(dU2

V 2
,
d Z U

V 3

)
,

( Z̄ V̄
4 d̄ Ū

,
Z̄ V̄ (d̄ Ū2 − 4B V̄ 2)

8 d̄ Ū3

)
.
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Table 3. Rational points on y2 = x3 − 1525990877673927911985309090x

x-coordinate Height

39413976156831 21.473

40502815695250 17.612

50289827997240 18.948

91403564224440 22.617

94820358842040 22.689

188018729972415 20.454

898132328130375 19.943

313976463023161/22 33.491

1838016872665801/62 35.378

5597088660298249/82 36.438

10708120954962601/122 37.114

2041823852075112361/382 42.179

181177719039357121/422 39.892

Table 4. Rational points on y2 = x3 − 2827529113871322622866959217x

x-coordinate Height

57802481969281 20.601

2463952792028124 18.874

2659109867774031 18.817

10194232424354319 21.741

53366153545551 21.688

56075012802831 21.916

3193703671713159 20.097

1362706667330449/22 34.916

1008541918487401/22 34.637

2120724718460929/42 35.452

38895157647413809/102 38.259

17814532666614649/122 37.590

19593697986655081/142 37.720

All such points are of the form P = (a/c2, b/c3), where a, b and c are integers
with gcd(a, c) = gcd(b, c) = 1. The näıve height of such a point is defined as
h(P ) = log(max(|a|, |c|2)), and the canonical height as ĥ(P ) = limn→∞ 4−nh(2nP ),
where 2P is the double of the point P . For each of the curves of rank 13, Tables 3
through 6 give the x-coordinate of 13 independent points of infinite order of the
Mordell-Weil group of the curve, together with its height. The points have been
chosen to have as small a denominator as possible.

4.3. Final observations. We finish with some comments and observations coming
from the results obtained along our investigations.

(1) The integers B produced by formula (5) have in general many prime fac-
tors, which in view of inequality (2) is a somewhat necessary condition
for the curve (EB) to have high rank. Moreover, the prime factors are
in general small, in fact they are bounded by σ. An extreme case is
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Table 5. Rational points on y2 = x3 − 93922872848724146729053666257x

x-coordinate Height

306470225435625 19.897

339591992999857 16.702

1001302871976927 18.148

10361196200475081 18.149

16411319158318513 18.330

3810572356653064431/72 24.343

743162066478001 34.061

15102001501820401 36.916

574324244593969 33.844

126920957456144329 39.037

1077912054328041 33.287

27972519349516641/72 36.633

24848678782121769/22 36.675

Table 6. Rational points on y2 = x3 − 19348006334886975416600173605900x

x-coordinate Height

4399936592496676 24.134

4428422453912205 22.752

7395170181651525 21.061

14431675270763520 21.796

50390034811827670 17.597

66814197937168080 24.292

67885400694630645 19.701

5776295187771364 35.878

133546225497652900 37.145

17882826281089225/22 36.155

185226264400224100/32 37.549

553402906401302500/32 38.584

113356886513589353881/102 46.179

B = 10356583068229284172, for which rank(EB) = 9 and

B = 22 · 11 · 13 · 23 · 29 · 31 · 372 · 43 · 53 · 59 · 67 · 71.

(2) The curves (Cd) are constructed with four integer points, so that one expects
them to have rank greater than or equal to 4. This is true on average for
low values of σ: the average of the computed lower estimate of the rank for
the curves with σ < 16000 is slightly above 4. However, as σ grows, this
average decreases.

(3) On the other hand, the average of s2rank(EB) remains above 5 for all the
values of σ in the range of our experiments.

(4) It is relatively easy to find curves with large 2-Selmer rank but with low
rank, meaning that they have a large Tate-Shafarevich group. Among the
curves coming from σ < 16000, at least 23 percent of them are such that
rank(B) = s2rank(EB) − 2, that is, IIIEB [2] is trivial. This percentage
decreases as σ grows, in accordance with the previous observations.
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(5) When solving the homogeneous spaces, we find that for most of the solutions
the value of V (and V̄ ) is quite small, in fact most of the time it is equal
to 1. As a consequence, we are able to find rational points on the curves
with small denominator.

(6) All the computations were done on a desktop computer using Mathemat-
icar.
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