Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Discrete absorbing boundary conditions for Schrödinger-type equations. Practical implementation
HTML articles powered by AMS MathViewer

by Isaías Alonso-Mallo and Nuria Reguera PDF
Math. Comp. 73 (2004), 127-142 Request permission

Abstract:

Recently, some absorbing boundary conditions for Schrödinger-type equations have been studied by Fevens, Jiang and Alonso-Mallo, and Reguera. These conditions make it possible to obtain a very high absorption at the boundary avoiding the nonlocality of transparent boundary conditions. However, the implementations used in the literature, where the boundary condition is chosen in a manual way in accordance with the solution or fixed independently of the solution, are not practical because of the small absorption. In this paper, a new practical adaptive implementation is developed that allows us to obtain automatically a very high absorption.
References
  • I. Alonso-Mallo and N. Reguera, Condiciones frontera transparentes y absorbentes para la ecuación de Schrödinger en una dimensión, Proceedings of the 16th Congress on Differential Equations and Applications and 6th Congress on Applied Mathematics, Las Palmas de Gran Canaria, Spain, 1999, 467–473.
  • I. Alonso-Mallo and N. Reguera, Weak ill-posedness of spatial discretizations of absorbing boundary conditions for Schrödinger-type equations, SIAM J. Numer. Anal., 40, (2002), 134–158.
  • I. Alonso-Mallo and N. Reguera, Discrete absorbing boundary conditions for Schrödinger-type equations. Construction and error analysis, to appear in SIAM J. Numer. Anal.
  • Bradley Alpert, Leslie Greengard, and Thomas Hagstrom, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM J. Numer. Anal. 37 (2000), no. 4, 1138–1164. MR 1756419, DOI 10.1137/S0036142998336916
  • V. A. Baskakov and A. V. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation, Wave Motion 14 (1991), no. 2, 123–128. MR 1125294, DOI 10.1016/0165-2125(91)90053-Q
  • Laurent Di Menza, Transparent and absorbing boundary conditions for the Schrödinger equation in a bounded domain, Numer. Funct. Anal. Optim. 18 (1997), no. 7-8, 759–775. MR 1472153, DOI 10.1080/01630569708816790
  • Eric Dubach, Artificial boundary conditions for diffusion equations: numerical study, J. Comput. Appl. Math. 70 (1996), no. 1, 127–144. MR 1392390, DOI 10.1016/0377-0427(95)00140-9
  • Thomas Fevens and Hong Jiang, Absorbing boundary conditions for the Schrödinger equation, SIAM J. Sci. Comput. 21 (1999), no. 1, 255–282. MR 1722142, DOI 10.1137/S1064827594277053
  • Laurence Halpern, Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation, Math. Comp. 38 (1982), no. 158, 415–429. MR 645659, DOI 10.1090/S0025-5718-1982-0645659-6
  • L. Halpern and J. Rauch, Absorbing boundary conditions for diffusion equations, Numer. Math. 71 (1995), no. 2, 185–224 (English, with English and French summaries). MR 1347164, DOI 10.1007/s002110050141
  • Laurence Halpern and Lloyd N. Trefethen, Wide-angle one-way wave equations, J. Acoust. Soc. Amer. 84 (1988), no. 4, 1397–1404. MR 965847, DOI 10.1121/1.396586
  • Robert L. Higdon, Radiation boundary conditions for dispersive waves, SIAM J. Numer. Anal. 31 (1994), no. 1, 64–100. MR 1259966, DOI 10.1137/0731004
  • W. Huang, C. Xu, S. Chu and S. Chaudhuri, The Finite-Difference Vector Beam Propagation Method: Analysis and Assesment, J. Lightwave Techn., 10, (1992), 295–305.
  • C. Lubich and A. Schädle, Fast convolution for non-reflecting boundary conditions, SIAM J. Sci. Comput., 21, (2002), 161–182.
  • S. Lawrence Marple Jr., Digital spectral analysis with applications, Prentice Hall Signal Processing Series, Prentice Hall, Inc., Englewood Cliffs, NJ, 1987. MR 920370
  • Albert Messiah, Quantum mechanics. Vol. I, North-Holland Publishing Co., Amsterdam; Interscience Publishers Inc., New York, 1961. Translated from the French by G. M. Temmer. MR 0129790
  • N. Reguera, Stability of a class of matrices with applications to absorbing boundary conditions for Schrödinger-type equations, to appear in Appl. Math. Lett.
  • N. Reguera, Analysis of a third order absorbing condition for the Schrödinger equation discretized in space, to appear in Appl. Math. Lett.
  • F. Schmidt, An adaptive approach to the numerical solution of Fresnel’s wave equation, J. Lightwave Technol., 11, (1993), 1425–1434.
  • Frank Schmidt and David Yevick, Discrete transparent boundary conditions for Schrödinger-type equations, J. Comput. Phys. 134 (1997), no. 1, 96–107. MR 1455257, DOI 10.1006/jcph.1997.5675
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2000): 65M12, 65M20, 65M99
  • Retrieve articles in all journals with MSC (2000): 65M12, 65M20, 65M99
Additional Information
  • Isaías Alonso-Mallo
  • Affiliation: Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid, Spain
  • Email: isaias@mac.cie.uva.es
  • Nuria Reguera
  • Affiliation: Departamento de Matemáticas y Computación, Universidad de Burgos, Burgos, Spain
  • Email: nreguera@ubu.es
  • Received by editor(s): November 20, 2001
  • Received by editor(s) in revised form: May 7, 2002
  • Published electronically: June 6, 2003
  • Additional Notes: The authors have obtained financial support from MCYT BFM 2001-2013 and JCYL VA025/01
  • © Copyright 2003 American Mathematical Society
  • Journal: Math. Comp. 73 (2004), 127-142
  • MSC (2000): Primary 65M12, 65M20; Secondary 65M99
  • DOI: https://doi.org/10.1090/S0025-5718-03-01548-5
  • MathSciNet review: 2034113