
MATHEMATICS OF COMPUTATION
Volume 73, Number 246, Pages 659–689
S 0025-5718(03)01550-3
Article electronically published on October 17, 2003

SUBSTRUCTURING PRECONDITIONERS
FOR THE THREE FIELDS

DOMAIN DECOMPOSITION METHOD

SILVIA BERTOLUZZA

Abstract. We study a class of preconditioners based on substructuring, for
the discrete Steklov-Poincaré operator arising in the three fields formulation of
domain decomposition in two dimensions. Under extremely general assump-
tions on the discretization spaces involved, an upper bound is provided on the
condition number of the preconditioned system, which is shown to grow at most
as log(H/h)2 (H and h denoting, respectively, the diameter and the discretiza-
tion mesh-size of the subdomains). Extensive numerical tests—performed on
both a plain and a stabilized version of the method—confirm the optimality
of such bound.

1. Introduction

The use of nonconforming domain decomposition methods is becoming increas-
ingly popular. This is due to several factors: the possibility of easily coupling dif-
ferent discretizations in different subdomains without the need for imposing strong
matching conditions allows us to employ without any adaptation the technologies
developed for treating the problem with a single-domain approach. As an example,
in an adaptive strategy, refinement can be carried out in each subdomain inde-
pendently. Moreover, it is possible to use a different type of discretization (finite
elements, spectral methods, wavelets) in the different subdomains, and therefore
to employ, in each subdomain, the best-suited method (spectral methods where
the solution is expected to be very smooth, finite elements where a complicated
geometry requires it, wavelets where isolated singularities in a regular background
are expected).

Among the different nonconforming domain decomposition method, we consider
here the three fields formulation, as proposed by F. Brezzi and L.D. Marini in [14].
Differently from other nonconforming formulations [3, 18] of domain decomposition,
weak continuity is not imposed by requiring that the jump across the interface be
orthogonal to some multiplier space, but by introducing a space Φh, approximating
the traces of functions in H1(Ω) on the interface Σ. The elements of Φh are to be
used as a Dirichlet boundary condition — imposed by means of Lagrange multipli-
ers — for the functions in the subdomains. As with other nonconforming methods,
great freedom is left in the choice of the discretization in the subdomains which,
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after applying a suitable stabilization method if needed [2, 7], can be chosen inde-
pendently from each other. The disadvantage of introducing a third unknown field
is compensated for by the fact that all subdomains are treated exactly in the same
way, which results in an easier implementation and possibly, when considering the
parallelization of the method, in an easier balancing of the load between processors.

We deal, in this paper, with the problem of the efficient solution of the linear
system arising when applying such a method. By applying a Schur complement
technique, the solution of the resulting discrete problem can be reduced to the
solution of an equation on the “trace” unknown, involving a Steklov-Poincaré type
operator which can be shown to be a pseudo-differential operator of order one.
The resulting linear system will then be solved by an iterative procedure, at each
step of which there will be the need of computing the action of such operator on
a given function. This reduces to solving independent Dirichlet problems on the
subdomains, a task which can be carried out in parallel, subdomain by subdomain
in a completely independent way.

In order to have an efficient scheme for solving the equation for the interface
unknown, we will then need two things:

• efficient solvers for the local Dirichlet problems on the subdomains;
• a preconditioner for the discrete Steklov-Poincaré operator so that the num-

ber of iterations is kept as low as possible.

We will concentrate here on the second issue, by analyzing and testing a class
of preconditioners for the discrete Steklov-Poincaré operator. The approach that
we will follow is the substructuring one, proposed by J.H. Bramble, J.E. Pasciak
and A.H. Schatz [9] in the framework of conforming domain decomposition and
already applied in the framework of nonconforming methods to the mortar method
in [1]. This consists in decomposing the trace space Φh in a direct sum of a coarse
subspace (essentially linked to the geometrical decomposition of Ω in subdomains)
and of suitable local subspaces and then considering the related block-Jacobi type
preconditioners.

From the theoretical point of view, we study the dependence of the condition
number of the resulting preconditioned matrix on the mesh size of the discretiza-
tions, aiming at giving bounds which, under suitable assumptions, are independent
of the number and size of the subdomains. In particular we provide an upper bound
which applies to a wide variety of approximation spaces, including finite elements
and wavelets. Though only suboptimal in terms of the mesh size on the skele-
ton (the condition number of the preconditioned matrix grows like (log(H/h))2,
H and h being, respectively, the diameter of the subdomains and the mesh size
of the corresponding discretization), the estimate obtained is uniform with respect
to the number and size of subdomains. The resulting method is then potentially
almost perfectly scalable. Moreover this approach has the advantage over other
asymptotically better preconditioners for the three fields formulation ([7]) of be-
ing itself naturally computable in parallel (each edge in the skeleton being treated
independently of the others).

We conclude the paper by reporting a series of extensive numerical tests, per-
formed on both the plain and on a stabilized formulation as proposed in [7]. The
results of the tests are in agreement with the theory and confirm the polylogarithmic
growth (with respect to the mesh size of the discretization) of the preconditioned
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system, as well as the independence (asymptotically) with respect to the number
and size of the subdomains.

2. Domain decomposition method: the three fields formulation

Let Ω ⊂ R2 be a convex polygonal domain. We will consider the following simple
model problem: given f ∈ L2(Ω), find u satisfying

(1) −
2∑

i,j=1

∂

∂xj

(
ai,j(x)

∂u

∂xi

)
+ a0(x)u = f in Ω, u = 0 on ∂Ω.

We assume that for almost all x ∈ Ω we have 0 ≤ a0(x) ≤ R and that the matrix
(aij(x))i,j=1,2 is symmetric positive definite, with smallest eigenvalue ≥ α > 0 and
largest eigenvalue ≤ α′, α, α′ independent of x.

In a domain decomposition framework, we will consider the three fields formula-
tion ([14]) of such a problem. Let Ω =

⋃K
k=1 Ωk, Ωk polygons, which, for simplicity,

we will assume to be quadrangles. We set Γk = ∂Ωk, Σ =
⋃
k Γk being the skele-

ton of the decomposition. Remark that differently from [14] here we define Σ so
that it includes the external boundary of the domain Ω, so that there is no need
of distinguishing between interior subdomains and subdomains which are adjacent
to the boundary ∂Ω. This results in a simplification both on the notational and
on the implementation point of view, since all subdomains are treated in the same
way. We will make the following regularity assumptions on the subdomains Ωk:

(A1) The subdomains are regular in shape and the geometrical decomposition is
graded, that is,
(a) there exists a positive constant c0 such that, for all k, Ωk contains a

ball of diameter c0Hk, it is contained in a ball of diameter Hk, and
the length of each side is bounded from below by c0Hk; moreover
any interior angle ω satisfies 0 < c1 < ω < c2 < π (c0, c1, and c2
independent of k);

(b) there exists a positive constant c3 such that, if `, k are such that
|∂Ωk ∩ ∂Ω`| > 0, then it holds that

Hk/H` ≤ c3.

For technical reasons, we also need to make the following assumption (needed
for the proof of (25) in the following), which in many cases can be shown to be
actually a consequence of the previous one:

(A2) There exists a constant C0 such that for all y, denoting by `y the line of
equation x2 = y and setting Ky = {k : length(`y ∩ Ωk) > 0}, it holds that∑

k∈Ky Hk ≤ C0.

We are interested here in explicitly studying the dependence of the estimates
that we are going to prove on the number and size of the subdomains. To this end,
in the following we will employ the notation A . B (resp. A & B) to say that
the quantity A is bounded from above (resp. from below) by cB, with a constant
c independent of k and of the Hk’s, as well as of any mesh size parameter. The
expression A ' B will stand for A . B . A.

For each k we let the norm and seminorm of H1(Ωk) be defined as usual by
‖u‖2H1(Ωk) =

∫
Ωk
|u|2 dx +

∫
Ωk
|∇u|2 dx and |u|2H1(Ωk) =

∫
Ωk
|∇u|2 dx. On the
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boundary ∂Ωk we let the norm of H1/2(∂Ωk) be defined by

‖ϕ‖H1/2(∂Ωk) = inf
u∈H1(Ωk)
u=ϕ on ∂Ωk

‖u‖H1(Ωk).

For all s in ]0, 1[, we define the Hs(∂Ωk) seminorm by

(2) |ϕ|2Hs(∂Ωk) =
∫
∂Ωk

∫
∂Ωk

(ϕ(x) − ϕ(y))2

|x− y|2s+1
ds(x) ds(y).

The space H−1/2(∂Ωk) is defined as the dual of H1/2(∂Ωk).
For e ⊂ ∂Ωk segment of extrema a and b, we define the Hs(e) seminorm as usual

by the integral expression (2) where the integrals are taken over e. On e we will
also consider the spaces Hs

0(e) (s 6= 1/2) and H1/2
00 (e) of functions whose extension

by zero is in Hs(∂Ωk) (s 6= 1/2) and H1/2(∂Ωk), respectively, which we will equip
with the norm

‖ϕ‖2
H

1/2
00 (e)

= |ϕ|2H1/2(e) +
∫
e

|ϕ(x)|2
|x− a|2s ds(x) +

∫
e

|ϕ(x)|2
|x− b|2s ds(x).

We recall that for s < 1/2 the two spaces Hs(e) and Hs
0(e) coincide, and the

two corresponding norms are equivalent. However, the constant in the equivalence
depends a priori on Hk and on s. In particular it explodes as s converges to 1/2.
The behaviour of such a constant as s approaches the limit value 1/2 (see (44)) will
play a key role in the forthcoming analysis.

Remark also that, for ϕ ∈ H1/2
00 (e), letting ϕ̌ ∈ H1/2(∂Ωk) denote the function

coinciding with ϕ on e and identically vanishing on ∂Ωk \ e, it holds that

(3) ‖ϕ‖
H

1/2
00 (e)

' |ϕ|H1/2(∂Ωk),

the constant in the equivalence being uniformly bounded, provided that the ratio
between the length of ∂Ωk and the length of e is uniformly bounded.

The functional setting for the three fields domain decomposition method is given
by the following spaces:

(4) V =
K∏
k=1

H1(Ωk), Λ =
K∏
k=1

H−1/2(∂Ωk),

and

(5) Φ = {ϕ ∈ L2(Σ) : there exists u ∈ H1
0 (Ω), u = ϕ on Σ} = H1

0 (Ω)|Σ,

respectively equipped with the norms:

(6) ‖u‖V =

(∑
k

‖uk‖2H1(Ωk)

)1/2

, ‖λ‖Λ =

(∑
k

‖λk‖2H−1/2(∂Ωk)

)1/2

,

and (see [4])

(7) ‖ϕ‖ϕ = inf
u∈H1

0 (Ω)
u=ϕ on Σ

‖u‖H1(Ω) '
(∑

k

|ϕ|2H1/2(∂Ωk)

)1/2

.
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Let ak : H1(Ωk) ×H1(Ωk) → R denote the bilinear form corresponding to the
linear operator considered:

ak(w, v) =
∫

Ωk

 2∑
i,j=1

aij(x)
∂w

∂xi

∂v

∂xj
+ a0(x)wv

 dx.

Under the assumptions made on the matrix (aij(x))i,j=1,2 and on a0, the bilinear
forms ak are uniformly H1(Ωk)-continuous, and semidefinite. More precisely, there
exist positive constants α and L independent of k and Hk such that for all w, v in
H1(Ωk)

α|w|2H1(Ωk) ≤ ak(w,w), |ak(w, v)| ≤ L‖w‖H1(Ωk)‖v‖H1(Ωk).

The three fields formulation of equation (1) is the following: find (u, λ, ϕ) ∈ V ×
Λ× Φ such that

(8)



∀k, ∀vk ∈ H1(Ωk), ∀µk ∈ H−1/2(∂Ωk) :

ak(uk, vk) −
∫
∂Ωk

vkλk ds =
∫

Ωk

fvk dx,∫
∂Ωk

ukµk ds −
∫
∂Ωk

µkϕds = 0,

and ∀ψ ∈ Φ :

∑
k

∫
∂

Ωkλkψ ds = 0.

It is known that this problem admits a unique solution (u, λ, ϕ) where u is indeed
the solution of (1) and such that

(9) λk =
∂uk

∂νka
on Γk, ϕ = u on Σ,

where νka denotes the outer conormal derivative to the subdomain Ωk. Remark that
in such a formulation the homogeneous Dirichlet boundary condition is embedded
in the definition of the space Φ.

Equation (8) can be discretized by a Galerkin scheme: after choosing discretiza-
tion spaces Vh =

∏K
k=1 V

k
h ⊂

∏K
k=1 H

1(Ωk), Λh =
∏K
k=1 Λkh ⊂

∏K
k=1H

−1/2(∂Ωk)
and Φh ⊂ Φ, we consider the problem: find (uh, λh, ϕh) ∈ Vh ×Λh ×Φh, such that
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one has

(10)



∀k, ∀vkh ∈ V kh , ∀µkh ∈ Λkh :

ak(ukh, v
k
h) −

∫
∂Ωk

vkhλ
k
h ds =

∫
Ωk

fvkh dx,∫
∂Ωk

ukhµ
k
h ds −

∫
∂Ωk

µkhϕh ds = 0,

and ∀ψh ∈ Φh :

∑
k

∫
∂

Ωkλkhψh ds = 0.

Existence, uniqueness and stability of the solution of (10) rely on the validity of
suitable inf-sup conditions. More precisely we can make the following assumption:

(A3) The spaces V kh , Λkh and Φh are such that
(a) Λkh contains the constant functions;
(b) the following compatibility condition between V kh and Λkh holds uni-

formly in k:

(11) inf
λkh∈Λkh

sup
ukh∈V kh

∫
∂

Ωkλkhu
k
h ds

‖ukh‖H1(Ωk)‖λkh‖H−1/2(∂Ωk)

≥ β > 0;

(c) the following compatibility condition between Λh and Φh holds:

(12) inf
ϕh∈Φh

sup
λh∈Λh

∑
k

∫
∂

Ωkλkhϕh ds

‖λh‖Λ‖ϕh‖Φ
≥ α > 0.

Remark that (A3)(a) implies that for all vkh ∈ kerBkh = {vkh ∈ V kh :
∫
∂ Ωkvkhµ

k
h =

0 ∀µkh ∈ Λkh} it holds that
∫
∂

Ωkvkh ds = 0 and then it is not difficult to see that a
is elliptic on kerBkh. Then, by a well-known argument ([11]), there exists a unique
solution to problem (10), which converges with an optimal rate to the solution of
(8).

The linear system stemming from (10) takes the form

(13)

 A BT 0
B 0 CT

0 C 0

 ·
 uh

λh
ϕ
h

 =

 f
h

0
0

 ,

(uh, λh, and ϕ
h

being the vectors of the coefficients of uh, λh and ϕh in the bases
chosen for Vh, Λh and Φh, respectively). By a Schur complement argument the
solution of (13) can be reduced to a system in the unknown ϕ

h
of the form

(14) CA−1CT ϕ
h

= CA−1

(
f
h

0

)
, C = [ 0 C ], A =

(
A BT

B 0

)
.

The matrix S = CA−1CT does not need to be assembled. The system (14) can
rather be solved by an iterative technique (like for instance a conjugate gradient
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method) and therefore only the action of S on a given vector needs to be imple-
mented. Multiplying by S implies the need for solving a linear system with matrix
A. This reduces, by a proper reordering of the unknowns, to independently solv-
ing K discrete Dirichlet problems with Lagrange multipliers in the K subdomains.
Moreover under the above assumptions it is possible to prove that the bilinear form
s : Φh × Φh −→ R,

(15) s(ϕh, ψh) = ψT
h
Sϕ

h
, S = CA−1CT ,

corresponding to the Schur complement matrix S, satisfies the following continuity
and coercivity assumptions:

Lemma 2.1. If (A3) holds, then the bilinear form s is continuous and coercive
with respect to the Φ norm:

s(ϕh, ψh) . ‖ϕh‖Φ‖ψh‖Φ,(16)
s(ϕh, ϕh) & ‖ϕh‖2Φ.(17)

Assumption (A3) is, in practice, quite restrictive. In particular the requirement
that both (A3)(b) and (A3)(c) hold simultaneously poses some serious limitation
on the choice of the discretization spaces for the three unknowns u, λ and ϕ. In
order to be more free in such a choice, and more specifically in order to be allowed
to choose the discretization space for the interface unknown ϕ independently of
the choice of the other two discretization spaces, it is also possible to consider a
stabilized version. Different ways have been proposed for stabilizing the three fields
formulation ([2, 12, 13]). We consider here the approach of [7, 4]. For all k let
a bilinear form [·, ·] 1

2 ,k
: H1/2(∂Ωk) × H1/2(∂Ωk) → R be given, satisfying the

following bounds: for all η, ξ ∈ H1/2(∂Ωk)

(18) [η, η] 1
2 ,k
≥ 0, [η, ξ] 1

2 ,k
≤ B|η|1/2,∂Ωk |ξ|1/2,∂Ωk ,

for B positive constant independent of k and Hk.
We consider then the following discrete stabilized formulation: find uh ∈ Vh,

λh ∈ Λh, ϕh ∈ Φh such that it holds that
(19)

∀k, ∀vkh ∈ V kh , ∀µkh ∈ Λkh :

ak(ukh, v
k
h) + γ[ukh, v

k
h] 1

2 ,k
−
∫
∂Ωk

vkhλ
k
h ds − γ[ϕh, vkh] 1

2 ,k
=
∫

Ωk

fvkh dx,∫
∂Ωk

ukhµ
k
h ds −

∫
∂Ωk

µkhϕh ds = 0,

and ∀ψh ∈ Φh :

−
∑
k

γ[ukh, ψh] 1
2 ,k

+
∑
k

∫
∂

Ωkλkhψh ds+
∑
k

γ[ϕh, ψh] 1
2 ,k

= 0,

where γ > 0 is a parameter independent of the choice of the discretization spaces.
Such formulation is consistent with the original continuous problem, i.e., by sub-
stituting the solution (u, λ, ϕ) of (8) at the place of (uh, λh, ϕh) in (19), we obtain
an identity.

The assumptions needed to guarantee existence and uniqueness of the solution
of the discrete problem, as well as an error estimate, can now be made on the one
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hand on the spaces Vh and Λh and on the other hand in a completely independent
way, on the action of the bilinear forms [·, ·] 1

2 ,k
on Φh|∂Ωk. For example we can

replace assumption (A3)(c) with
(A3)(c′) There exists a positive constant b such that for all ϕh ∈ Φh it holds for

all k that
[ϕh, ϕh] 1

2 ,k
≥ b|ϕh|2H1/2(∂Ωk).

It is then possible to show that the discrete problem (19) admits a unique solution
satisfying an optimal error estimate ([4]). It is beyond the goals of this paper to
thoroughly discuss the construction of suitable bilinear forms [·, ·] 1

2 ,k
. We recall that

this can be done with the aid of multiscale techniques and we refer to [7, 5, 10, 6]
for a detailed analysis of possible solutions.

The linear system stemming from such a problem takes the following form this
time:

(20)

 Ǎ BT −γDT

B 0 CT

−γD C γE

 ·
 uh

λh
ϕ
h

 =

 f
h

0
0

 ,

with Ǎ = A+ γF (the matrices D, E and F deriving from the stabilizing terms).
Again, the solution of (20) can be reduced to a system in the unknown ϕ

h
, this

time taking the form

(21) Sϕ
h

:=
(
−DǍ−1DT + γE

)
ϕ
h

= −DA−1

(
f
h

0

)
with

(22) Ǎ =
(
Ǎ BT

B 0

)
, D = [ −γD C ].

Once again we let s : Φh × Φh −→ R be the bilinear form corresponding to the
Schur complement matrix S

(23) s(ϕh, ψh) = ψT
h
Sϕ

h
,

and also for the stabilized formulation the following holds ([4]):

Lemma 2.2. Under assumptions (A3)(a), (b), (c′) the bilinear form s is continuous
and coercive with respect to the Φ norm:

s(ϕh, ψh) . ‖ϕh‖Φ‖ψh‖Φ,(24)
s(ϕh, ϕh) & ‖ϕh‖2Φ.(25)

3. Preconditioning by substructuring

For both original and stabilized three fields formulation, we end up with an
equation on the interface space Φh of the form

Sϕ
h

= f
h

corresponding, through a relation of the form (23), to a bilinear form s : Φh×Φh →
R verifying for all ϕh, ψh ∈ Φh that

(26) |s(ϕh, ψh)| . ‖ϕh‖Φ‖ψh‖Φ, s(ϕh, ϕh) & ‖ϕh‖2Φ.
Our aim is to provide a preconditioner for the matrix S. The approach that we will
follow is the one proposed, in the framework of conforming domain decomposition,
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by J.H. Bramble, J.E. Pasciak and A.H. Schatz in [9] and already studied in [1] for
the mortar method case.

Let us consider a splitting of the interior part of the skeleton Σ\Ω as the disjoint
union of M segments ei of extrema ai and bi

Σ \ ∂Ω =
M⋃
i=1

ei,

(corresponding, for instance, to the splitting of Σ as the union of segments of the
form ∂Ωk ∩∂Ω`). For each k let Ek individuate those segments that, together with
∂Ω ∩ ∂Ωk, build up the boundary of the subdomain Ωk:

∂Ωk \ ∂Ω =
⋃
i∈Ek

ei, with Ek = {i : |ei ∩ ∂Ωk| > 0}.

We make the following assumption:
(A4) There exists a constant c4 such that it holds that

sup
k

sup
i∈Ek

|∂Ωk|
|ei|

≤ c4.

Note that (A4) implies that #(Ek) ≤ c4 for all k. This will allow us several times
to write inequalities of the form ‖

∑
i∈Ek qi‖

2 .
∑

i∈Ek ‖qi‖
2, where ‖ · ‖ stands for

various norms and seminorms (the constant in the inequality depending on c4).
Following [9], the main idea for constructing a preconditioner for the matrix S

is to decompose Φh as the direct sum of a coarse space LH and some local spaces
Φ0
h,i (one for each edge ei of the decomposition of Σ) and then considering the

corresponding block-Jacobi type preconditioners. More precisely, let LH ⊂ Φ,

LH = {ϕ ∈ C0(Σ) : ∀i = 1, . . . ,M, ϕ|ei ∈ P1(ei), ϕ = 0 on ∂Ω},
denote the subset of those functions of Φ whose restriction to each segment ei is
linear. In order to construct the preconditioner we make the following assumptions
on the approximation space Φh:

(A5) The following two conditions hold:
(a) LH ⊂ Φh;
(b) for all ϕh ∈ Φh such that at the extrema ai and bi of some edge ei it

holds that ϕh(ai) = ϕh(bi) = 0, the function ϕ0
h,i defined as

ϕ0
h,i = ϕh on ei, ϕ0

h,i = 0 on Σ \ ei
verifies

ϕ0
h,i ∈ Φh.

(A6) Φh ⊂ H1(Σ) and for all ϕh ∈ Φh the following two inverse inequalities hold
for all k, k = 1, . . . ,K, and for all r, t, 0 ≤ r < t ≤ 1:

|ϕh|Ht(∂Ωk) . hr−tk |ϕh|Hr(∂Ωk),(27)

|ϕh|Ht(ei) . hr−tk |ϕh|Hr(ei), ∀i ∈ Ek.(28)

Remark 3.1. Assumption (A5) is not at all restrictive. In a finite element framework
it reduces to asking that the extrema ai and bi of the segments ei into which the
skeleton is split be nodes of the finite element grid for Φh.

Remark 3.2. The parameter hk appearing in the inverse inequality (27) has here
the meaning of the smallest mesh size of the restriction to ∂Ωk of Φh.
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Under assumption (A5) it is easy to see that Φh can be split as

Φh = LH ⊕ Φ0
h, ϕh = ϕH + ϕ0

h,

with Φ0
h defined as

Φ0
h = {ϕh ∈ Φh, ϕh = 0 at the extrema ai and bi of each edge ei of Σ}.

The subspace Φ0
h verifies

Φ0
h =

M⊕
i=1

{ϕh ∈ Φ0
h : ϕh = 0 on Σ \ ei} ∼

M⊕
i=1

Φ0
h|ei ,

where the symbol ∼ means that the two spaces are isomorphic. Note that all ϕh ∈
Φ0
h verify ϕh|ei ∈ H

1/2
00 (ei) for all i, and in the following we will write ‖ϕh‖H1/2

00 (ei)

for ‖ϕh|ei‖H1/2
00 (ei)

(and analogously for other norms defined on portions of Σ).
For each i = 1, · · · ,M , we assume we are given a bilinear form ši : Φ0

h|ei ×
Φ0
h|ei → R, satisfying the following continuity and positivity bounds uniformly in

h: for all η, ξ ∈ Φ0
h|ei :

(B1) ši(ξ, η) . ‖ξ‖
H

1/2
00 (ei)

‖η‖
H

1/2
00 (ei)

, ši(ξ, ξ) & ‖ξ‖2H1/2
00 (ei)

.

Moreover we assume that we are given a bilinear form šH : LH × LH → R such
that for all ξH , ζH ∈ LH it holds that

(B2) šH(ξH , ηH) . ‖ξH‖Φ‖ζH‖Φ, šH(ξH , ξH) & ‖ξH‖2Φ.

It is beyond the goals of this paper to fully discuss the different ways in which
the bilinear forms ši and šH can be constructed. In the following section we will
briefly recall a possible solution and we refer to [9, 10, 16] for further discussions
on this topic.

Following [9], the preconditioner will be finally constructed with the aid of a
bilinear form š : Φh × Φh → R assembled by blocks: for ηh, ζh ∈ Φh, with ηh =
ηH + η0

h, ζh = ζH + ζ0
h, ηH , ζH ∈ LH and η0

h, ζ
0
h ∈ Φ0

h we set

(29) š(ηh, ζh) = šH(ηH , ζH) +
M∑
i=1

ši(η0
h|ei , ζ0

h|ei).

The main result of this paper is the following theorem.

Theorem 3.1. For all ϕh ∈ Φh it holds that

(30) s(ϕh, ϕh) . š(ϕh, ϕh) . max
k

(
1 + log

Hk

hk

)2

s(ϕh, ϕh).

By a well-known argument, Theorem 3.1 implies that we can derive the following
corollary, where we denote by S and Š, respectively, the matrices corresponding to
the Galerkin discretization of the bilinear forms s and š.

Corollary 3.1. It holds that

(31) cond(Š−1S) . max
k

(
1 + log

Hk

hk

)2

.
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We recall that by the definition of the bilinear form s, the matrix S is indeed
the Schur complement matrix defined by either (14) or (21).

In order to prove Theorem 3.1, we will basically follow the guidelines of the proof
of the analogous theorems of [9, 1]. The main difference is that here we consider a
general discretization space, not necessarily consisting in piecewise linear functions.
Moreover we will be working with functions and operators defined directly on the
interface.

In view of the definition of ši and šH on the one hand and of property (26) of
s on the other hand, proving (30) is equivalent to proving that ∀ϕh ∈ Φh with
ϕh = ϕH + ϕ0

h (ϕH ∈ LH and ϕ0
h in Φ0

h), it holds that

‖ϕh‖2Φ . ‖ϕH‖2Φ +
M∑
i=1

‖ϕ0
h‖2H1/2

00 (ei)
. max

k

(
1 + log

Hk

hk

)2

‖ϕh‖2Φ.

We start by observing that it holds that

‖ϕh‖2Φ . ‖ϕH‖2Φ + ‖ϕ0
h‖2Φ . ‖ϕH‖2Φ +

M∑
i=1

‖ϕ0
h‖2H1/2

00 (ei)
,

where the last bound descends by splitting ϕ0
h ∈ Φ0

h as ϕ0
h =

∑M
i=1 ϕ

0
h,i which

implies (since #(Ek) ≤ c4 and since each i belongs to Ek for at most two k’s)

‖ϕ0
h‖2Φ .

∑
k

|ϕ0
h|2H1/2(∂Ωk) .

∑
k

∑
i∈Ek

|ϕ0
h,i|2H1/2(∂Ωk) .

M∑
i=1

‖ϕ0
h‖2H1/2

00 (ei)
,

the last inequality deriving from the H1/2
00 (ei) to H1/2(∂Ωk) boundedness of the

trivial extension-by-zero operator.
Moreover, by direct computation, using the linearity of ϕH , one can see that it

holds that

(32) ‖ϕH‖2Φ .
K∑
k=1

|ϕH |2H1/2(∂Ωk) .
M∑
i=1

(ϕH(ai)− ϕH(bi))2,

ai and bi being the extrema of ei. Then, proving Theorem 3.1 reduces to proving
the following result:

Theorem 3.2. For all ϕh ∈ Φh with ϕh = ϕH + ϕ0
h (ϕH ∈ LH and ϕ0

h ∈ Φ0
h ), it

holds that

(33)
M∑
i=1

(ϕH(ai)− ϕH(bi))2 +
M∑
i=1

‖ϕ0
h‖2H1/2

00 (ei)
. max

k

(
1 + log

Hk

hk

)2

‖ϕh‖2Φ.

In order to prove Theorem 3.2, we will need several bounds. We start by proving
the following Lemma.

Lemma 3.1. Assume that Φh satisfies assumptions (A5) and (A6). Then the
following bounds hold:

(i) for all ϕh ∈ Φh such that ϕh(p) = 0 for some p ∈ ēi with i ∈ Ek, we have

(34) ‖ϕh‖2L∞(ei)
.
(

1 + log
Hk

hk

)
|ϕh|2H1/2(ei)

;
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(ii) for all ϕh ∈ Φh it holds that

(35) (ϕh(ai)− ϕh(bi))2 .
(

1 + log
Hk

hk

)
|ϕh|2H1/2(ei)

,

ai and bi being the extrema of ei, i ∈ Ek;
(iii) for all ϕ0

h ∈ Φ0
h it holds that

(36)
∑
i∈Ek

‖ϕ0
h‖2H1/2

00 (ei)
.
(

1 + log
Hk

hk

)2

|ϕ0
h|2H1/2(∂Ωk).

Proof. Let i ∈ Ek. By assumptions (A1)(a) and (A4) we have that |ei| ' Hk. We
start by observing that for any ζ ∈ H1/2+ε(ei) it holds that

(37) ‖ζ‖2L∞(ei)
. H−1

k ‖ζ‖
2
L2(ei)

+
H2ε
k

ε
|ζ|2H1/2+ε(ei)

.

This is easily seen by observing that on the reference segment ê = ]0, 1[ the con-
tinuity bound of the injection H1/2+ε(ê) ⊂ L∞(ê) depends on ε as follows (see
Appendix A, Lemma A.1): for all ζ ∈ H1/2+ε(ê)

‖ζ‖2L∞(ê) . ‖ζ‖2L2(ê) +
1
ε
|ζ|2H1/2+ε(ê).

A change of variable then yields (37). Let now ϕh ∈ Φh and α ∈ R. By assumption
(A6) it holds that

(38)
H2ε
k

ε
|ϕh − α|2H1/2+ε(ei)

=
H2ε
k

ε
|ϕh|2H1/2+ε(ei)

. H2ε
k h
−2ε
k

ε
|ϕh|2H1/2(ei)

.

After choosing ε = 1/ log(Hk/hk), inequality (37) for ζ = ϕh − α combined with
(38) yields:

(39) ‖ϕh − α‖2L∞(ei)
. H−1

k ‖ϕh − α‖2L2(ei)
+ log

Hk

hk
|ϕh|2H1/2(ei)

.

In view of (39), (34) can then be proven by applying exactly the arguments of
[9], which we repeat here for completeness: let us choose α to be the average of ϕh
on ei. Applying Poincaré inequality gives

(40) H
−1/2
k ‖ϕh − α‖L2(ei) . |ϕh|H1/2(ei)

which yields

(41) ‖ϕh − α‖2L∞(ei)
.
(

1 + log
Hk

hk

)
|ϕh|2H1/2(ei)

.

Now we remark that ϕh(p) = 0 for some p ∈ ēi implies

(42) |α| . ‖ϕh − α‖L∞(ei)

and we get (34) by triangular inequality.
(ii) then follows by applying (i) to the function ϕ(x) − ϕ(ai) (which vanishes in

p = ai).
As far as (iii) is concerned, we start by remarking that for ϕ0

h ∈ Φ0
h and for

i ∈ Ek, denoting by ϕ0
h,i the function coinciding with ϕ0

h on ei and identically
vanishing on ∂Ωk \ ei and using (3) and the inverse inequality (27), we obtain the
following bounds

(43) ‖ϕ0
h‖H1/2

00 (ei)
. |ϕ0

h,i|H1/2(∂Ωk) . h−εk |ϕ0
h,i|H1/2−ε(∂Ωk) . |ϕ0

h|H1/2−ε
0 (ei)

,
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where the second inequality descends from (27) by applying a standard functional
spaces interpolation argument, since the spaces Hr

0 (ei), 0 < r < 1/2, can be ob-
tained as the interpolants of order 2r between L2(ei) and H1/2

00 (ei). Again we bound
the H1/2−ε

0 (ei) seminorm of ϕ0
h by a change of variable, using the corresponding

bound on the reference segment ê = ]0, 1[ . We recall once more that H1/2−ε
0 (ê)

and H1/2−ε(ê) coincide, with equivalent norms, the constant in the equivalence de-
pending on ε. In particular it is possible to prove (see Appendix A, Corollary A.1)
that the following bound holds for all ζ ∈ H1/2(ê) and for all α ∈ R:

(44) |ζ|
H

1/2−ε
0 (ê)

. 1
ε
‖ζ − α‖H1/2(ê) +

1√
ε
|α|,

which rescales as

|ζ|
H

1/2−ε
0 (ei)

. Hε
k

ε

(
H
−1/2
k ‖ζ − α‖L2(ei) + |ζ − α|H1/2(ei)

)
+
Hε
k√
ε
|α|.

Again, taking ζ = ϕ0
h and α as its average on ei, we can apply on the one hand

Poincaré inequality (40) and on the other hand the bound (42), which holds since
ϕ0
h(ai) = 0, and we get

‖ϕ0
h‖H1/2

00 (ei)
. Hεh−εk

ε
|ϕ0
h|H1/2(ei) +

Hεh−εk√
ε
‖ϕ0

h − α‖L∞(ei).

We then take once again ε = 1/ log(Hk/hk), and, thanks to bound (41), we obtain

‖ϕ0
h‖H1/2

00 (ei)
.
(

1 + log
Hk

hk

)
|ϕ0
h|H1/2(ei).

Since
∑
i∈Ek | · |

2
H1/2(ei)

. | · |2
H1/2(∂Ωk)

, by squaring and then taking the sum over
i ∈ Ek, we obtain (36). �
Remark 3.3. Since for s < 1/2 the two spaces Hs(ei) and Hs

0(ei) coincide, the
seminorm | · |Hs0 (ei) in equation (43) could be replaced by the standard Hs(ei)
seminorm. In that case, however, the implicit constant in the bound would depend
on ε.

Analogously to what happens in [9], the main ingredient of the proof of Theorem
3.2 is then the following lemma.

Lemma 3.2. Let ϕ0
h ∈ Φ0

h and ζH ∈ LH . Then for all k it holds that

(45)
∑
i∈Ek

‖ϕ0
h‖2H1/2

00 (ei)
.
(

1 + log
Hk

hk

)2

|ϕ0
h + ζH |2H1/2(∂Ωk).

Provided such lemma holds, (33) is obtained, thanks to (ii) of Lemma 3.1, by
applying (45) for ζH = ϕH . In fact, for ϕh = ϕH +ϕ0

h, ϕH ∈ LH , ϕ0
h ∈ Φ0

h, we can
write

M∑
i=1

‖ϕ0
h‖2H1/2

00 (ei)
=

1
2

K∑
k=1

∑
i∈Ek

‖ϕ0
h‖2H1/2

00 (ei)

.
∑
k

(
1 + log

Hk

hk

)2

|ϕh|2H1/2(∂Ωk)

. max
k

(
1 + log

Hk

hk

)2

‖ϕh‖2Φ,
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which, combined with (35), yields (33). The only thing that we need to do then is
to prove Lemma 3.2.

Proof of Lemma 3.2. Let k, 1 ≤ k ≤ K. We start by introducing a function ζ0 ∈
Φk,0h ,

(46) Φk,0h = {ϕh ∈ Φh|∂Ωk : ϕh = 0 at the cross points of ∂Ωk} = Φ0
h|∂Ωk,

ζ0 depending on ζH , defined as the unique element of Φk,0h satisfying

(ζ0, ξ)H1/2(∂Ωk) = (ζH , ξ)H1/2(∂Ωk), ∀ξ ∈ Φk,0h ,

where (·, ·)H1/2(∂Ωk) is the bilinear form

(ζ, ξ)H1/2(∂Ωk) =
∫
∂Ωk

∫
∂Ωk

(ζ(x) − ζ(y))(ξ(x) − ξ(y))
|x− y|2 dx dy

inducing the H1/2(∂Ωk) seminorm. It is easy to check that | · |H1/2(∂Ωk) is a norm
on Φk,0h and then we can conclude by standard arguments that

(47) |ζ0|H1/2(∂Ωk) . |ζH |H1/2(∂Ωk).

Now, adding and subtracting ζ0 at the left-hand side of (45), we can write:

(48)
∑
i∈Ek

‖ϕ0
h‖2H1/2

00 (ei)
.
∑
i∈Ek

‖ϕ0
h + ζ0‖2

H
1/2
00 (ei)

+
∑
i∈Ek

‖ζ0‖2
H

1/2
00 (ei)

.

Since ϕ0
h + ζ0 ∈ Φk,0h , by the definition of ζ0 we have that

(49) (ζH − ζ0, ϕ0
h + ζ0)H1/2(∂Ωk) = 0,

which yields

|ϕ0
h + ζH |2H1/2(∂Ωk) ≥ |ϕ

0
h + ζ0|2H1/2(∂Ωk).

The first sum on the right-hand side of (48) can then be bound thanks to Lemma
3.1(iii); we have

∑
i∈Ek

‖ϕ0
h + ζ0‖2

H
1/2
00 (ei)

.
(

1 + log
Hk

hk

)2

|ϕ0
h + ζ0|2H1/2(∂Ωk)(50)

.
(

1 + log
Hk

hk

)2

|ϕ0
h + ζH |2H1/2(∂Ωk).(51)

Let us bound the second sum on the right-hand side of (48). We recall that we
have

(52) ‖ζ0‖2
H

1/2
00 (ei)

= |ζ0|2H1/2(ei)
+ I1(ζ0) + I2(ζ0),

with

(53) I1(ζ0) =
∫ bi

ai

|ζ0(x)|2
|x − ai|

dx, I2(ζ0) =
∫ bi

ai

|ζ0(x)|2
|x− bi|

dx,
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(we recall that ai and bi denote the two vertices of the edge ei). Now, using
equations (47), (32) and (35), since ϕ0

h vanishes at ai and bi, we can write∑
i∈Ek

|ζ0|2H1/2(ei)
. |ζ0|2H1/2(∂Ωk) . |ζH |

2
H1/2(∂Ωk)(54)

.
∑
i∈Ek

(ζH(ai)− ζH(bi))2(55)

=
∑
i∈Ek

([ϕ0
h + ζH ](ai)− [ϕ0

h + ζH ](bi))2(56)

.
(

1 + log
Hk

hk

)
|ϕ0
h + ζH |2H1/2(∂Ωk).(57)

Let us now bound I1(ζ0). For notational simplicity let us identify ei = ]0, T [
with ai = 0 and bi = T . We have

I1(ζ0) =
∫ T

0

|ζ0(x)|2
|x| dx(58)

=
∫ T

0

|ζ0(x) + ζH(x)− ζH(x) + ζH(0)− ζH(0)|2
|x| dx(59)

.
∫ T

0

|ζ0(x) − ζH(x) + ζH(0)|2
|x| dx(60)

+
∫ T

0

|ζH(x) − ζH(0)|2
|x| dx.(61)

Let us set ζ⊥ = ζ0 − ζH . Remarking that ζ⊥(0) = −ζH(0), we have∫ T

0

|ζ0(x)− ζH(x) + ζH(0)|2
|x| dx =

∫ T

0

|ζ⊥(x)− ζ⊥(0)|2
|x| dx

=
∫ hk

0

|ζ⊥(x)− ζ⊥(0)|2
|x| dx

+
∫ T

hk

|ζ⊥(x) − ζ⊥(0)|2
|x| dx.

The first term is bound, using Cauchy-Schwarz’s inequality and inequality (28), by∫ hk

0

|ζ⊥(x)− ζ⊥(0)|2
|x| dx =

∫ hk

0

1
|x|

∣∣∣∣∫ x

0

ζ⊥x (τ) dτ
∣∣∣∣2 dx

.
∫ hk

0

∫ x

0

|ζ⊥x (τ)|2 dτ dx

. hk|ζ⊥|2H1(ei)
. |ζ⊥|2H1/2(ei)

,

while, using (34), we bound the second by∫ T

hk

|ζ⊥(x) − ζ⊥(0)|2
|x| dx . ‖ζ⊥ − ζ⊥(0)‖2L∞(ei)

∫ T

hk

1
x
dx

.
(

1 + log
Hk

hk

)2

|ζ⊥|2H1/2(ei)
,
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where we used T ' Hk. The second integral in (60) can be bound directly using
the linearity of ζH .∫ T

0

|ζH(x) − ζH(0)|2
|x| dx . (ζH(bi)− ζH(ai))2 .

(
1 + log

Hk

hk

)
|ζH + ϕ0

h|2H1/2(ei)

where again we used (35) and the fact that ϕ0
h vanishes at ai and bi. Then, adding

up the different contributions, we conclude that

(62) I1(ζ0) .
(

1 + log
Hk

hk

)2

|ζ0 − ζH |2H1/2(ei)
+
(

1 + log
Hk

hk

)
|ζH + ϕ0

h|2H1/2(ei)
.

By using the same arguments we get a similar bound for I2:

(63) I2(ζ0) .
(

1 + log
Hk

hk

)2

|ζ0 − ζH |2H1/2(ei)
+
(

1 + log
Hk

hk

)
|ζH + ϕ0

h|2H1/2(ei)
.

We can now insert bounds (54), (62) and (63) back into (52) and sum over i ∈
Ek. By observing that for any w ∈ H1/2(∂Ωk) it holds that

∑
i∈Ek |w|

2
H1/2(ei)

.
|w|2

H1/2(∂Ωk)
, we obtain the bound∑
i∈Ek

‖ζ0‖2
H

1/2
00 (ei)

.
(

1 + log
Hk

hk

)
|ϕ0
h + ζH |2H1/2(∂Ωk)(64)

+
(

1 + log
Hk

hk

)2

|ζ0 − ζH |2H1/2(∂Ωk).(65)

We now observe once again that equation (49) implies that |ζH − ζ0|2
H1/2(∂Ωk)

.
|ζH + ϕ0

h|2H1/2(∂Ωk)
and we get the thesis. �

4. Numerical Tests

We will test the preconditioner we propose on the following problem: find u such
that

(66)

{
−∆u = f, in Ω = ]0, 1[ × ]0, 1[ ,

u = 0, on Γ = ∂Ω.

We consider a uniform, geometrically conforming, decomposition of Ω = ]0, 1[ ×
]0, 1[ in K = N ×N equal square subdomains of size H ×H , H = 1/N .

In each subdomain Ωk we take a uniform mesh T k composed of nk × nk equal
square elements of size δk × δk, δk = H/nk = 1/(Nnk). We then define V kh to be
the space of Q1 finite elements on the mesh T k,

V kh = {uh ∈ C0(Ω) : uh|τ ∈ Q1(τ), ∀τ ∈ T k},
where Q1(τ) denotes the space of polynomials of degree less than or equal to one
in each variable. The multiplier space Λkh is then defined as the trace on ∂Ωk of
V kh . With such a choice it is possible to prove that (A3) holds (see [4]).

The skeleton Σ \ ∂Ω is split as Σ \ ∂Ω =
⋃2(N−1)N
i=1 ei with ei = Γk ∩Γ` for some

k = k(i) and ` = `(i). We remark that |ei| = H for all i. We consider a grid G on
Σ obtained by uniformly splitting each ei into Li elements of size hi and we define
Φh to be the space of P1 finite elements on such a grid:

Φh = {ϕh ∈ C0(Σ) : ϕh|κ ∈ P1(κ), ∀κ ∈ G, ϕh|∂Ω = 0}.
With this choice, assumption (A6) holds for hk = mini∈Ek hi.
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Letting ϕ0
h,i

(resp. ψ0

h,i
) denote the vector of the values of ϕ0

h (resp ψ0
h) ∈ Φ0

h at
the interior nodes of the grid G|ei , we define the bilinear form ši : Φ0

h,i|ei × Φ0
h,i|ei

as

ši(ϕ0
h|ei , ψ0

h|ei) = (ψ0

h,i
)T (Ri)1/2ϕ0

h,i
,

where Ri is the stiffness matrix associated to the discretization of the operator
−d2/dx2 by P1 finite element on ei with homogeneous Dirichlet boundary conditions
at the extrema ai and bi. With Ri being positive definite, its square root is well
defined and it is computed and stored at the start.

As far as the coarse preconditioner šH is concerned, we considered two choices:

• (BPS) Following [9], we set

(67) šH(ηH , ζH) := 2
M∑
i=1

(ηH(ai)− ηH(bi))(ζH(ai)− ζH(bi)).

• (Laplace) Denoting by η̃H and ζ̃H the H1
0 (Ω) functions obtained by lifting

ηH and ζH harmonically in each subdomain, we set

(68) šH(ηH , ζH) :=
∫

Ω

∇η̃H∇ζ̃H dx;

note that the set {η̃H , ηH ∈ LH} coincides with the set of Q1 finite elements
on the coarse grid corresponding to the decomposition Ω =

⋃
Ωk, and

then applying the coarse preconditioner reduces to numerically solving the
Laplace equation on such space.

For all tests we set f = 1. We solved the linear system by a preconditioned
conjugate gradient method, using ϕh = 0 as initial guess. We report the number
of iterations needed to reduce the residual of a factor 10−5.

4.1. Plain formulation.

4.1.1. Conforming decomposition. We start by considering the case of a conforming
domain decomposition, that is, in the framework described above we set nk = n
for all k and Li = n for all i. In this case δk = hi = h = H/n. With such a choice,
it is not difficult to check that the inf-sup condition (12) is satisfied uniformly in h
and then we are in the range of Lemma 2.1. It is easy to realize that the discrete
solution verifies ukh = ϕh on ∂Ωk, and then the function uh, defined by uh|Ωk = ukh,
verifies uh ∈ H1

0 (Ω). In such a case we obtain the same solution that we would
get using a conforming finite element method on a regular grid of Nn×Nn square
elements of dimension h × h. The use of a nonconforming method is therefore, in
this case, only a device to implement a solver for the discrete problem in an easily
parallelizable way.

In order to study both the dependence on H (size of the subdomains) and on h
we tested the preconditioner for different values of n in the range [5, 40] and N in
the range [4, 32]. We tested both coarse preconditioners for all combinations of N
and n. The results are summarized in Tables 1 and 2. As one can see, they are in
close agreement with the theory (note that in this case maxk hk/Hk = h/H = n).
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Table 1. Number of conjugate gradient iterations needed for re-
ducing the residual of a factor 10−5, with coarse preconditioner
given by (68) for different combinations of the number K = N2 of
subdomains and n of elements per edge (n2 elements per subdo-
main).

n = 5 n = 10 n = 20 n = 40
K = N2 # Iter. # Iter. # Iter. # Iter.

16 10 12 14 15
64 14 17 20 23
144 15 18 22 26
256 15 19 23 27
400 16 20 23 27
576 16 20 24 27
784 16 20 24 27
1024 16 20 24 27

Table 2. Number of conjugate gradient iterations needed for re-
ducing the residual of a factor 10−5, with coarse preconditioner
given by (67) for different combinations of the number K = N2 of
subdomains and n of elements per edge (n2 elements per subdo-
main).

n = 5 n = 10 n = 20 n = 40
K = N2 # Iter. # Iter. # Iter. # Iter.

16 8 9 11 13
64 10 13 17 22
144 11 15 20 26
256 13 16 22 30
400 13 17 23 32
576 13 17 24 33
784 14 18 25 33
1024 14 18 25 33

4.1.2. Nonconforming decomposition. We consider then the case of a truly noncon-
forming decomposition, without stabilization (formulation (10)). In our test for
ei = ∂Ωk ∩ ∂Ω`, we set Li = min{nk, n`}. This discretization does not in general
satisfy the assumptions required for the uniform stability of the discrete problem.
Nevertheless, using a standard technique, it is not difficult to prove that (12) holds
provided that for all `, k such that |∂Ω` ∩ ∂Ωk| > 0 it either holds that n` = nk or
max{n`, nk}/min{n`, nk} ≥ C for some constant C > 1.

We considered two test configurations, both on a decomposition of Ω into 5× 5
subdomains. In the first case (see Figure 1, top), for all subdomains except two,
we set nk = 10, while on the remaining two subdomains (subdomains 13 and 14,
if we number all subdomains row-wise) we set nk = n, where n varies in the set
[10, . . . , 52]. With the above criterion used to fix Li, we have that Li = 10 for all
edges ei, except the common edge Γ13 ∩ Γ14 (the two subdomains are adjacent),
where Li = max{n13, n14} = n varies.
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Figure 1. The two configurations on which the preconditioner is
tested for the plain formulation (8) in the nonconforming case.

In the second configuration (see Figure 1, bottom) for all subdomains we again
set nk = 10, this time except that on a three-by-three block of subdomains where
nk = n, with n varying again between 10 and 52. Here, for 12 out of 40 edges of Σ,
we have that Li = n. For both configurations we tested both coarse preconditioners.
The results are provided in Table 3.
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Table 3. Number of conjugate gradient iterations needed for re-
ducing the residual of a factor 10−5 for Configurations 1 and 2
(corresponding, respectively, to the top and to the bottom decom-
positions illustrated in Figure 1). Both coarse preconditioners (67)
(BPS) and (68) (Laplace) are tested for different values of the
number n of elements per edge in the refined part of the skeleton
(one edge for Configuration 1 and twelve edges for Configuration
2). The number of elements per edge in the remaining part of the
skeleton is set to 10.

Laplace BPS
# It. # It.

n = 10 12 8
n = 17 18 11
n = 24 18 13
n = 31 18 13
n = 38 18 14
n = 45 19 14
n = 52 19 14

(a) Configuration 1.

Laplace BPS
# It. # It.

n = 10 12 8
n = 17 20 14
n = 24 23 16
n = 31 24 18
n = 38 25 19
n = 45 26 20
n = 52 27 20

(b) Configuration 2.

As one can easily see, though the theoretical estimate on the condition number
only depends on maxkHk/hk, which takes the same value for both configurations, in
the first case in which the overall discretization of the skeleton is sensibly coarser—
the mesh being fine only in a small portion (in our case one) of the edges composing
Σ—the influence of refining the mesh is weaker than in the second case, in which a
relevant portion of the skeleton is refined.

4.2. Stabilized formulation. We now consider the stabilized formulation (19).
Since the H1/2(∂Ωk) seminorm is invariant under changes of scale, we can describe
the stabilizing form for subdomains scaled in such a way that |∂Ωk| = 1 (that is,
H = 1/4). We can then identify ∂Ωk with the circle T of unitary length. Following
the proposal of [7], the bilinear forms [·, ·] 1

2 ,k
are designed by means of a wavelet

decomposition. More precisely, we restrict the number Li of elements of the i-th
edge ei to be a power of two,

Li = 2ji for some ji ≥ 1,

so that for all k, Φh|∂Ωk ⊂ Vjk+2 where for j > 0, Vj denotes the space of P1 finite
elements on the uniform grid Gj of T with mesh size 1/2j.

The sequence {Vj}j≥0 forms a so-called multiresolution analysis of L2(T ) and
it is well known (see for example [15]) that there exist several wavelet bases asso-
ciated with such a multiresolution analysis. More precisely there exist several P1

compactly supported functions ϑ ∈ C0(R) defined on the uniform grid of mesh size
1 and integer nodes, such that, setting

ϑm` =
+∞∑

n=−∞
2m/2ϑ(2m(x− n)− `),
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all functions ηj ∈ Vj can be written as

ηj = η0 +
j−1∑
m=0

2m∑
`=1

ηm`ϑm`, η0 constant,

and such that

|ηj |2H1/2(∂Ωk) '
j−1∑
m=0

2m∑
`=1

2m|ηm`|2.

Given the values of ηj at the nodes of the uniform grid, the coefficients (ηm`)m,l
can be retrieved by a fast (O(2j)) wavelet transform (FWT).

If we denote by Pk : L2(T )→ Vjk+2 the L2(T ) orthogonal projection, for ζ, ξ ∈
L2(T ) we can define corresponding wavelet coefficients ζ̌m` and ξ̌m` such that

Pk(ζ) = ζ0 +
jk∑
m=0

2m∑
`=1

ζ̌m`ϑm`, Pk(ξ) = ξ0 +
jk∑
m=0

2m∑
`=1

ξ̌m`ϑm`.

Then we define the bilinear form [·, ·] 1
2 ,k

as

[ζ, ξ] 1
2 ,k

=
jk∑
m=0

2m∑
`=1

2mζ̌m`ξ̌m`.

It is possible to prove ([7, 14]) that the bilinear forms thus defined satisfy assump-
tions (A4) and (18).

Remark 4.1. Note that the coefficients ζ̌m` and ξ̌m` are not the classical wavelet
coefficients of the functions ζ and ξ. These would in fact be defined as the scalar
product of, respectively, ζ and ξ with suitable dual functions ϑ̃m` ∈ L2(T ). The
coefficients ζ̌m` and ξ̌m` are rather the scalar products of the dual functions ϑ̃m`
with the projections of ζ and ξ onto Vjk+2, respectively. Naturally, such coefficients
coincide with the classical ones, provided f ∈ Vjk+2.

With this definition, the computation of [ukh−ϕh, vkh−ψh] 1
2 ,k

essentially reduces
to first computing the nodal values of Pk(ukh), Pk(vkh), Pk(ϕh) and Pk(ψh), respec-
tively, and then applying a FWT. As far as ϕh and ψh are concerned, the choice
of jk implies that ϕh, ψh ∈ Vjk+2 and then their nodal values are simply computed
by interpolation. As far as ukh and vkh are concerned, we need to compute their
L2 projection on Vjk+2. Observing that the mass matrix in Vjk+2 has a circulant
structure with bandwidth equal to three, this can also be done in O(2jk ) operations
by a modification of the Croute reduction algorithm for solving linear systems with
tridiagonal matrices. For further details on the implementation of the stabilized
formulation we refer to [8].

We tested the preconditioner (with both form (67) and (68) of the coarse bilinear
form) on four different splittings of Ω into, respectively, 4 × 4, 8 × 8, 12 × 12 and
16 × 16 subdomains. In each case we randomly assigned the values of nk in such
a way that for ∼ 1/3 of the subdomains nk = 5, for about another third nk = 10,
and for the remaining subdomains nk = 15. The four configurations considered are
shown in Figure 2. For approximating the interface function ϕ, we used a uniform
discretization of the interface (Li = n for all i). For each configuration, we tested
the preconditioner for different values of n and of the stabilization parameter γ.
The function ϑ appearing in the definition of the stabilizing bilinear form is chosen
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Figure 2. The four configurations on which the preconditioner is
tested for the stabilized formulation (10). (Continues)

to be the piecewise linear wavelet corresponding to the 2.2 B-spline biorthogonal
setting ([15]). Note (see Table 4) that for γ = 0 (no stabilization!) if n is big, the
CG algorithm does not converge within the maximum number of iterations (which
was set equals to 100), confirming the need for using some kind of stabilization.
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Figure 2. (continued)

As one can see from the results, the value of the parameter γ has an influence on
the conditioning of the matrix Š−1S. If γ is too small (see Table 5), the action of the
stabilization term is not sufficient to compensate for the lack of validity of the inf-
sup condition, and therefore the system behaves almost like the one obtained using
the plain formulation. By increasing γ (see Tables 6 and 7), the situation improves
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dramatically and one can see that, for instance, for γ = .05 in the case of 16× 16
subdomains with n = 32 (which corresponds to 15360 degrees of freedom for ϕh)
the residual is reduced of a factor 10−5 in about 35 iterations, which is only slightly
worse than the result obtained for the analogous values in the conforming case.
However, when γ is further increased (see Table 8), the performances deteriorate.
This (as well as the difference with respect to the conforming case) is probably
due to the fact that the constants in the estimates (26)—which have an influence
on the bound on the condition number—depend on the ratio B/b (B and b being
the constants in (18) and in assumption (A3)(c′), respectively) amplified by the
factor γ. If such a ratio (which is always greater than or equal to one) in not close
enough to 1, the choice of the right balance between the original bilinear form and
the stabilizing term can become important from the point of view of the spectral
properties of the operator, which are essential for preconditioning.

Table 4. Number of conjugate gradient iterations needed to re-
duce the residual of a factor 10−5 on the four configurations de-
picted in Figure 2 with the plain formulation (10). Both coarse pre-
conditioners are tested for different values of the number n of ele-
ments per edge. As one can see for n ≥ 16, the CG method does not
converge within the maximum number of iteration (= 100), con-
firming the instability of the plain formulation for the discretization
considered.

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 14 17 18 19
8 47 57 60 69
16 — — — —
32 — — — —

Laplace

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 11 13 14 15
8 40 52 54 64
16 — — — —
32 — — — —

BPS

Table 5. Number of conjugate gradient iterations needed to re-
duce the residual of a factor 10−5 on the four configurations de-
picted in Figure 2 with the stabilized formulation (19) for γ =
.00125. Both coarse preconditioners are tested for different values
of the number n of elements per edge. One can clearly see that
the method converges very badly or does not converge. This is due
to the fact that, since the stabilization parameter is very small,
the action of the stabilization term is not sufficient to compensate
for the lack of validity of the inf-sup condition, and therefore the
system behaves like the one obtained using the plain formulation.

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 14 17 18 19
8 52 60 64 83
16 86 — — —
32 96 — — —

Laplace

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 11 13 14 15
8 39 51 57 77
16 69 92 — —
32 85 — — —

BPS
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Table 6. Number of conjugate gradient iterations needed to re-
duce the residual of a factor 10−5 on the four configurations de-
picted in Figure 2 with the stabilized formulation (19) for γ = 1.
Both coarse preconditioners are tested for different values of the
number n of elements per edge.

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 14 17 18 19
8 22 26 27 29
16 28 34 36 38
32 34 42 44 45

Laplace

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 11 13 14 15
8 18 21 24 27
16 23 31 35 38
32 30 41 46 51

BPS

Table 7. Number of conjugate gradient iterations needed to re-
duce the residual of a factor 10−5 on the four configurations de-
picted in Figure 2 with the stabilized formulation (19) for γ = 5.
Both coarse preconditioners are tested for different values of the
number n of elements per edge.

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 14 17 18 19
8 19 22 23 25
16 22 28 29 31
32 24 31 32 34

Laplace

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 11 13 14 15
8 15 17 19 22
16 16 23 26 29
32 19 27 30 35

BPS

Table 8. Number of conjugate gradient iterations needed to re-
duce the residual of a factor 10−5 on the four configurations de-
picted in Figure 2 with the stabilized formulation (19) for γ = 20.
Both coarse preconditioners are tested for different values of the
number n of elements per edge.

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 14 17 18 19
8 25 26 27 30
16 31 37 38 41
32 35 41 43 48

Laplace

(a) (b) (c) (d)
n # It. # It. # It. # It.
4 12 13 14 15
8 23 24 24 27
16 28 35 35 37
32 34 40 39 41

BPS

Appendix A: Some Sobolev space injection bounds

The aim of this section is to recall some known bounds for which we provide a
new proof based on the use of equivalent norms expressed through wavelet coeffi-
cients (see for instance [15]). Such proof will easily reveal the dependence of the
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constants in the bounds on the smoothness of the spaces considered and the way
these constants explode as the smoothness index approaches the limit of validity of
the bounds.

The key ingredient of the following arguments is the possibility of constructing
two orthonormal bases

B = {ρk, k = 1, . . . , 2j0} ∪ {ϑj,k, j ≥ j0, k = 1, . . . , 2j},
B0 = {ρ0

k, k = 1, . . . , 2j0} ∪ {ϑ0
j,k, j ≥ j0, k = 1, . . . , 2j},

for L2(0, 1), tuned up to provide norm equivalences for Sobolev spaces, respectively,
without and with homogeneous boundary conditions. In particular, such bases can
be constructed in such a way that all u ∈ L2(0, 1) can be written both ways as

u =
2j0∑
k=1

〈u, ρk〉ρk +
∞∑
j=j0

2j∑
k=1

〈u, ϑj,k〉ϑj,k,

u =
2j0∑
k=1

〈u, ρ0
k〉ρ0

k +
∞∑
j=j0

2j∑
k=1

〈u, ϑ0
j,k〉ϑ0

j,k

and that the following norm equivalences hold for all s with 0 ≤ s ≤ 1:

‖u‖Hs(0,1) '

 2j0∑
k=1

|〈u, ρk〉|2 +
∞∑
j=j0

2j∑
k=1

22js|〈u, ϑj,k〉|2
1/2

,(69)

‖u‖Hs0(0,1) '

 2j0∑
k=1

|〈u, ρ0
k〉|2 +

∞∑
j=j0

2j∑
k=1

22js|〈u, ϑ0
j,k〉|2

1/2

, s 6= 1/2,(70)

‖u‖
H

1/2
00 (0,1)

'

 2j0∑
k=1

|〈u, ρ0
k〉|2 +

∞∑
j=j0

2j∑
k=1

2j |〈u, ϑ0
j,k〉|2

1/2

,(71)

with constants independent of s. Such bases are constructed in such a way that the
basis functions satisfy the following properties:

W.1. For all j ≥ j0 and k = 1, . . . , 2j the functions ϑj,k have a certain number
of vanishing moments; in particular ϑj,k has zero mean value.

W.2. The basis functions are well localized and the supports of the basis functions
are properly scaled with respect to j: for some N fixed, satisfying N ≤
2j0−2, we have

suppϑj,k ⊂ [(k −N)2−j, (k +N)2−j] ∩ ]0, 1[ ,

suppϑ0
j,k ⊂ [(k −N)2−j, (k +N)2−j] ∩ ]0, 1[ .

W.3. The interior functions of the two bases coincide: ϑj,k = ϑ0
j,k, ∀k =

N, . . . , 2j −N ; in other words the two bases differ only for those elements
that take into account boundary conditions.

W.4. The basis functions verify

(72) |ρk(x)| ≤ C, |ρ0
k(x)| ≤ C, |ϑj,k(x)| . 2j/2, |ϑ0

j,k(x)| . 2j/2.
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Remark A.1. Note that the constants N and j0 (and therefore 2j0) are fixed once
for all and depend only on the choice of the wavelet basis. We will therefore consider
them as an O(1) as far as the estimates that we are going to prove are concerned.

The normalization estimate (72), together with property W.2 on the size of the
support, trivially yields the following bound on the L1 norm of the basis functions

(73) ‖ϑj,k‖L1(0,1) . 2−j/2, ‖ϑ0
j,k‖L1(0,1) . 2−j/2.

In the following we will make use of a certain number of algebraic inequalities:
we start by recalling the following bound on the sum of a geometric series

(74)
∑
j≥1

2−aj . 1
a
,

as well as the well-known boundedness property of the discrete convolution operator

(75)
∑
j′

|
∑
j

aj′−jbj |2 .

∑
j

|aj |

2∑
j

|bj |2
 .

Moreover, since N is a fixed constant, we have

(76)

(
N∑
k=1

ak

)2

.
N∑
k=1

|ak|2.

The first bound that we consider regards the injection Hs(0, 1) ⊂ L∞(0, 1),
which is known to hold for all s > 1/2 [17]. As far as the dependence on s of the
constant in the bound is concerned, we have the following lemma.

Lemma A.1. The following bound holds for all u ∈ Hs(0, 1) with s ∈ ]1/2, 1]:

‖u‖L∞(0,1) . ‖u‖L2(0,1) +
1√

s− 1/2
|u|Hs(0,1).

Proof. Let u =
∑2j0

k=1〈u, ρk〉ρk +
∑∞
j=j0

∑2j

k=1〈u, ϑj,k〉ϑj,k. Using (72) and (69), as
well as properties W.1 and W.2 (which guarantees that for x and j fixed, ϑj,k(x) 6= 0
for at most 2N values of k), we have (with ǔ =

∫ 1

0
u ds)

sup
x
|u(x)| . sup

x
|

2j0∑
k=1

〈u, ρk〉ρk(x) +
∞∑
j=j0

2j∑
k=1

〈u, ϑj,k〉ϑj,k(x)|

. max
k
|〈u, ρk〉|+

∑
j≥j0

max
k
|〈u − ǔ, ϑj,k〉|2sj2(1/2−s)j

≤ ‖u‖L2(0,1) +

∑
j≥j0

4(1/2−s)j

1/2∑
j≥j0

2j∑
k=1

|〈u − ǔ, ϑj,k〉|222sj

1/2

. ‖u‖L2(0,1) +
1√

s− 1/2
‖u− ǔ‖Hs(0,1).

We conclude by applying Poincaré inequality which yields ‖u − ǔ‖Hs(0,1) .
|u− ǔ|Hs(0,1) = |u|Hs(0,1). �
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The second issue that we consider is the equivalence between the spaces Hs(0, 1)
and Hs

0 (0, 1). This is known to hold for all s ∈ [0, 1/2[ [17]. The dependence on s
of the constant in the bound is the object of the following lemma.

Lemma A.2. The following bound holds for all η ∈ Hs, 0 ≤ s < 1/2:

(77) ‖η‖Hs0(0,1) .
1

1/2− s‖η‖Hs(0,1).

Proof. Let η ∈ Hs(0, 1) be expanded in terms of the basis B:

η =
2j0∑
k=1

ζkρk +
∑
j≥j0

2j∑
k=1

ηj,kϑj,k,

so that

‖η‖2Hs(0,1) '
2j0∑
k=1

|ζk|2L2 +
∑
j≥j0

2j
2j∑
k=1

|ηj,k|2.

We start by decomposing η as the sum of four contributions:

η = η0 + ηleft + ηcenter + ηright

with

η0 =
2j0∑
k=1

ζkρk, ηcenter =
∑
j≥j0

2j−N∑
k=N

ηj,kϑj,k =
∑
j≥j0

2j−N∑
k=N

ηj,kϑ
0
j,k,(78)

ηleft =
∑
j≥j0

N−1∑
k=1

ηj,kϑj,k, ηright =
∑
j≥j0

2j∑
k=2j−N+1

ηj,kϑj,k(79)

and by triangular inequality we have

‖η‖Hs0(0,1) ≤ ‖η0‖Hs0(0,1) + ‖ηleft‖Hs0 (0,1) + ‖ηcenter‖Hs0 (0,1) + ‖ηright‖Hs0 (0,1).

In order to bound the Hs
0(0, 1) norm of the four contributions, we will use the

equivalent norm (70). We start by observing that for all (j, n) with n = N, . . . , 2j−
N we have 〈ρk, ϑ0

j,n〉 = 〈ρk, ϑj,n〉 = 0, while for the remaining couples (j, n) we
have

|〈ρk, ϑ0
j,n〉| ≤ ‖ρk‖L∞(0,1)‖ϑ0

j,n‖L1(0,1) . 2j0/22−j/2;

using (70) and observing that for all j’s the number of indexes n for which 〈ρk, ϑ0
j,n〉

6= 0 is bounded independently of j, we easily see that

‖ρk‖2Hs0 (0,1) . 2j0

‖ρk‖2L2 +
∑
j≥j0

22js2−j

 . 1
1− 2s

.

Using the fact that on R2j0 the `2 and the `1 norms are equivalent (the constant
in the equivalence depending on j0, which, we recall, is a fixed constant), we then
easily see that

‖η0‖2Hs0 .
1

1− 2s

 2j0∑
k=1

|ζk|

2

. 1
1− 2s

2j0∑
k=1

|ζk|2.

We now consider ηcenter . This term contains the contribution of all functions
which are interior; i.e., they do not see the boundary conditions. More precisely,
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we observe that for all j′, k′ such that ϑj′,k′ = ϑ0
j′,k′ it holds that 〈ηcenter , ϑ0

j′,k′〉 =
ηj′,k′ , while for all other j′, k′, 〈ηcenter , ϑ0

j′,k′〉 = 0 and this yields

‖ηcenter‖2Hs0(0,1) .
∑
j≥j0

22sj
2j−N∑
k=N

|ηj,k|2.

Let us now bound the Hs
0(0, 1) norm of ηleft, which is the contribution of those

basis functions which see the left boundary. Considering that for all N ≤ k′ ≤
2j − N , k ≤ N − 1, it holds that 〈ϑj,k, ϑ0

j′,k′〉 = 〈ϑj,k, ϑj′,k′〉 = 0 and that for
k ≤ N − 1 and k′ > 2j −N we have suppϑj,k ∩ suppϑ0

j′,k′ = ∅, using (70), we can
write

‖ηleft‖2Hs0(0,1) .
2j0∑
k′=1

|〈ηleft, ρ0
k′〉|2 +

∞∑
j′=j0

22sj
N−1∑
k′=1

|〈ηleft, ϑ0
j′,k′〉|2.

It is not difficult to realize that the first sum on the right-hand side can be bound
as follows:

2j0∑
k′=1

|〈ηleft, ρ0
k′〉|2 . ‖ηleft‖2L2(0,1) ≤ ‖η‖Hs(0,1).

In order to bound the second sum, let us now bound |〈ηleft, ϑ0
j′,k′ 〉|. We observe

that, thanks to (72) and (73), for all j, k, j′, k′ we can write

|〈ϑj,k, ϑ0
j′,k′〉| ≤ ‖ϑj,k‖L∞(0,1)‖ϑ0

j′,k′‖L1(0,1) . 2(j−j′)/2

as well as

|〈ϑj,k, ϑ0
j′,k′〉| ≤ ‖ϑj,k‖L1(0,1)‖ϑ0

j′,k′‖L∞(0,1) . 2(j′−j)/2,

which yield

|〈ϑj,k, ϑ0
j′,k′〉| . 2−|j−j

′|/2.

Then we have

|〈ηleft, ϑ0
j′,k′〉| ≤

∞∑
j=j0

N−1∑
k=1

|ηj,k| · |〈ϑj,k, ϑ0
j′,k′〉| .

∞∑
j=j0

2−|j−j
′|/2

N−1∑
k=1

|ηj,k|.

Since the right-hand side of the above estimate does not depend on k′, using in-
equalities (74), (75) and (76), we can write

∞∑
j′=j0

22j′s
N−1∑
k′=1

|〈ηleft, ϑ0
j′,k′〉|2 . (N − 1)

∞∑
j′=j0

22j′s

 ∞∑
j=j0

2−|j−j
′|/2

N−1∑
k=1

|ηj,k|

2

.
∞∑

j′=j0

 ∞∑
j=j0

2−(1/2−s)|j−j′|
N−1∑
k=1

2js|ηj,k|

2

.

 ∞∑
j=j0

2−(1/2−s)j

2 ∞∑
j=j0

22js
N−1∑
k=1

|ηj,k|2
 ,
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which yields

‖ηleft‖2Hs0(0,1) .
1

(1/2− s)2

 ∞∑
j=0

22js
N∑
k=1

|ηj,k|2
 .

Analogously, we can prove

‖ηright‖2Hs0(0,1) .
1

(1/2− s)2

 ∞∑
j=0

22js
2j∑

k=2j−N+1

|ηj,k|2
 .

Adding the bounds for ‖η0‖Hs0 (0,1), ‖ηleft‖Hs0 (0,1), ‖ηcenter‖Hs0(0,1) and
‖ηright‖Hs0(0,1), since for s in [0, 1/2[ it holds that 1 ≤ 1/(1/2 − s), in view of
the norm equivalence (69) we obtain the thesis. �

Corollary A.1. For all η ∈ H1/2(0, 1) and for all α ∈ R it holds, for all s ∈]0, 1/2[,
that

‖η‖Hs0(0,1) ≤
1

1/2− s‖η − α‖H1/2(0,1) +
|α|√

1/2− s
.

Proof. Trivially it holds that

‖η‖Hs0(0,1) ≤ ‖η − α‖Hs0 (0,1) + ‖α‖Hs0 (0,1).

In view of bound (77) the only thing that needs to be proven is a bound on
‖α‖Hs0(0,1), which can be done by direct computation, yielding the thesis. �
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