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OPTIMAL RATE OF CONVERGENCE
OF A STOCHASTIC PARTICLE METHOD TO SOLUTIONS
OF 1D VISCOUS SCALAR CONSERVATION LAWS

MIREILLE BOSSY

ABSTRACT. This article presents the analysis of the rate of convergence of
a stochastic particle method for 1D viscous scalar conservation laws. The
convergence rate result is O(At+1/y/N), where N is the number of numerical
particles and At is the time step of the first order Euler scheme applied to the
dynamic of the interacting particles.

1. INTRODUCTION

We consider the following one-dimensional viscous scalar conservation law:
ov % 0%V 0
(]_]_) E(twﬁ) = 7@@733) - %A (V(ta J))) ) v (ta J)) € (Oa T] X Ra
V(0,2) = Vo(x), Vo € R.

We assume that A : R — R is a C® function and o > 0. In this article, we analyze
the rate of convergence of a stochastic particle method for the numerical solution
of (LI), when the initial condition V5 is the cumulative distribution function of a
probability measure on R.
When A(v) = v?/2, the conservation law ([[T]) is the viscous Burgers equation
o2 02
(1.2) aa_‘;(ta (E) = 7({;7‘;@; (E) - V(tvx)({;_‘;(tvx)v (t,i[:) € (OvT] xR,
V(0,z) = Vo(zx), Vz € R.

A previous work proposes a stochastic particle method for the numerical solution
of the Burgers equation (see Bossy and Talay [2, B]). The method is based upon
the probabilistic interpretation of the Burgers equation as the evolution equation
of the cumulative distribution function of a stochastic nonlinear process (in the
sense of McKean). The algorithm is inspired by a propagation of chaos result for
the system of interacting particles associated with the nonlinear process. Under
suitable hypotheses on the initial data Vj, we proved a convergence rate of order
O(1/V'N +V/At) for the L' (R x Q) norm of the error. N is the number of simulated
interacting particles and At is the time step of the discretization by the Euler scheme
of the stochastic differential system that governs the particles motion.
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For the Burgers case, numerical experiments confirm the order O(1/v/N) for the
dependence on N, but suggest that the dependence in At is of order O(At) rather
than O(v/At) (see [3,[1]). In this previous work, we used estimates on the rate of
convergence in L?(2) for the Euler scheme whereas, in this sort of numerical com-
putation, the averaging effect due to the propagation of chaos phenomena suggests
that we should analyze the discretization error with estimates on the weak rate of
convergence for the Fuler scheme.

In this article, we extend the stochastic particle method for the Burgers equation
in the general context of the viscous scalar conservation law (I1l) and we prove a
theoretical rate of convergence of order O(1/v/N + At).

To construct the algorithm, we follow Jourdain [6] who gives a probabilistic
interpretation of nonlinear parabolic PDEs such as the viscous scalar conserva-
tion law (L)), when A is a C' function and Vp is a nonconstant function with
bounded variation. In order to lighten the presentation of the algorithm and
the convergence analysis, we restrict ourselves to the case of an initial condition
Vo(x) = mo((—o0,x]) = H * mg(z), where mq is a probability measure on R and
H(x) =1 {,>0; denotes the Heaviside function.

In [6], Jourdain provides a natural way to connect ([LLI]) with a nonlinear mar-
tingale problem and proves a propagation of chaos result for the suitable system of
weakly interacting particles. Here, we briefly present the main ideas of the prob-
abilistic interpretation of (I1l), when Vo(z) = H x mo(x) and myg is a probability
measure, as well as some results in [6] on which we base our numerical algorithm:
for a probability measure P on C([0,400),R), we define the flow (P;);>¢ of proba-
bility measures on R by P, = Po X, ! where X denotes the canonical process on
C([0,+00),R). Let CZ(R) be the set of bounded functions with bounded first and
second order derivatives. We associate to (II]) the following martingale problem:

Definition 1.1. The probability measure P € P(C(]0,+oc),R)) is a solution of
the nonlinear martingale problem M, starting at myg, if Py = mg and

1) X —6(X0) = [ (6" (X0) + A(H  Pu(X.)6/ (X)) ds
is a P—martlngale, for any ¢ € C(R).

We define a system of N particles in mean field interaction by the following
stochastic differential equation:

=

t
) . ) 1 ) )
XN =XPN 4 oW +/ Al =Y HXEN = XIN) | ds,
0

t
:XS’N—I—UWZ—F/ A (H o+ p (X0N))ds, 1<i<N,
0

where N = % Zf\il dxin is the empirical measure of the particles and (W1,...,
WH) is an N-dimensional Brownian motion independent of the initial variables
(X ™, ..., x"N) which are i.i.d. with law m.

Proposition 1.2 (Jourdain [6]). The martingale problem M starting at mq admits
a unique solution P and the particle systems (XN, ..., XN are P-chaotic; that
is, for a fived j € N*, the law of (X"N,..., X3N) converges weakly to P®7I as
N — 400. Moreover, (LI) has a unique bounded weak solution given by V (t,z) =
H % Py(x).
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The propagation of chaos result implies that the empirical cumulative distribu-
tion function H * pl¥ (z) = & Ef\il H(z — X}V of the particle system at time ¢
converges in L'(Q) to the weak solution V (t,z) of (II)) (see [6]). In practice, the
th‘ N cannot be computed exactly. The algorithm involves their approximation by
a discrete-time stochastic process (YkiAt, 1 <i < N), where At is a discretization
step of the time interval [0, T]. The function V (kAt,x) is approximated thanks to

the empirical cumulative distribution function

N

— 1 ;

Viat(z) = N ZH(QT = Yiias)
i=1

of the numerical particle system.
Under smoothness hypotheses on V; and A, we prove that

— — 1

BIV(T,) = Vel +sup (E|V(T.0) = Vr(o)]) =0 (= + at)

The first work on the optimal rate of convergence of the Euler scheme for inter-
acting particle systems is due to Kohatsu-Higa and Ogawa [7]. They analyze the
convergence of the weak approximation of a general nonlinear diffusion process of
the form:

dX: = a(Xy, F xug(Xy))dt + b( Xy, G * ug(Xy))dWr,
(1.4) where u, is the law of X,
Xi—o = Xy with law mg.

Assuming that the functions a, b, F' and G are smooth with bounded derivatives,
they use Malliavin calculus to show that, for any C'*° function f whose derivatives
have polynomial growth at infinity,

1K, 1
E|< D f(Xead) —Ef(Xy,)| < C(—= + At),
P v
where C is independent of At and N but depends on f and (XliAt)i:Lm,N is the
corresponding discrete time system of interacting particles.

In the context of the present paper, a is A’, the diffusion coefficient b is a constant
and F is the bounded but discontinuous Heaviside function H. Furthermore, we
approximate the cumulative distribution function of X;. The main difficulty in our
analysis of the rate of convergence is the discontinuity of the kernel H. We do not
use Malliavin calculus, but we take advantage of the constant diffusion coefficient
to adapt some techniques developed by Talay and Tubaro [9] in their study of the
global error of the Euler scheme for stochastic differential equations that are linear
in the sense of McKean.

We should mention that the algorithm and its rate of convergence result could
be extended to a larger class of initial data by considering Vj as the distribution
function of a signed and finite measure. Instead of identical weights equal to 1/N,
the particles should have signed weights, fixed at time 0 and chosen according to
the signed initial measure mg. See [6] for the probabilistic interpretation of (LTI in
this particular case and [3] for a description of the algorithm using signed weights
for the Burgers equation (I[C2).

In Section 2, we describe the algorithm and state our main result. Section 3 is
devoted to the proof of the rate of convergence. In Section 4, we conclude by giving
some numerical experiments using a Romberg extrapolation procedure between
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approximation values produced by the Euler scheme to speed up the convergence
with respect to the time step. Our analysis of the convergence, based on the weak
convergence of the Euler scheme, lets us expect that an expansion of the error up
to the order two in term of At may be proved, which will justify the Romberg
extrapolation.

2. ALGORITHM AND CONVERGENCE RATE

Let us state our hypotheses.

(H1) The function A is of class C3 and o > 0.
(H2) There exists a probability measure mgy on R such that the initial condition

of [J) is given by
Vo(z) = H * mg(x).

(H3) (i) The measure mg is absolutely continuous with respect to the Lebesgue
measure. Its density Uy is a bounded function with a bounded first order
derivative.

(ii) Moreover, there exist constants M > 0, n > 0 and o > 0 such that

|Uo|(z) < n exp(—ax?/2), when |z| > M.
Hypotheses (H2) and (H3) both concern the initial data Vp. (H2) restricts the
framework of the algorithm presented below to a particle method with identical
weights 1/N. It could be extend to Vop(x) = 8+ H x mo(z), where my # 0 is
a signed and bounded measure and [ is a constant, using signed and weighted
particles. (H3)(i) states that Vp(x) is in CZ(R) and implies, combined with (H1),
that the weak solution V (¢, z) of (II) given in Proposition [2 is the classical one.
More precisely, V (¢, z) is a bounded function in C12([0,7] x R) (C* in the time
variable t and C? in the space variable x), with bounded first order derivatives in
t and x and a bounded second order derivative in = (see Remark B7). (H3)(ii),
which controls the decay at infinity of the first order derivative of Vj, allows us
to upper-bound the L!(R)-norm of the error at time 0. The exponential decay
assumed with (H3)(ii) permits us to conclude easily (see Lemma [2T]).

We construct a family (y{)i1<;<n of initial positions such that the piecewise

constant function

_ 1 Y ,
Vo(z) = NZH(J?—?JS)

approximates Vp(z) = H * Up(z). For example, we can choose deterministic posi-
tions by inverting the function Vo (z):

Y :
inf{y;/ Uo(x)dxzi}, i=1,...,N -1,
i o N
Yo = Y 1
inf{y;/_ooUo(x)dle—ﬁ}, i=N.
By construction,
(2.1) Vo = Voll Loy < 1/N,

and the convergence for the L!(R)-norm is described by
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Lemma 2.1. (Bossy and Talay [3]). Assume (H3). Then, there exists a constant
C depending on Uy such that

Vo = VollLim) < C\/log(N)/N.
If the density Uy has a compact support, the bound is C/N.

Let Mo denote the associated empirical measure

1 N
(2.2) Mo =~ > 6y
i=1

With N fixed, on a filtered probability space (Q,F,P, (Ft)t>0), we consider an
N-dimensional (F;)-Brownian motion (W1, ..., W¥). As suggested by the propa-
gation of chaos result (Proposition [CZ), to construct an approximation of V (¢, z),
we have to move the N particles according to the following system of stochastic
differential equations

H(X] - X7) | dt.

M=

AX} = odWi + A" | 5 ]

X = vs, i=1,...,
The piecewise constant function
N

1

approximates V(¢,z) with an error depending on N only. To get a simulation
procedure for a trajectory of each (X*), we discretize in time. We choose At and
K € N such that T = AtK and denote by ¢, = kAt the discrete times, with
1 <k < K. The Euler scheme leads to the following discrete-time system

(2.3) Vi =

teta k !

N
Vi+o (Wi, = Wi )+ At | &3 HY - vi)
j=1
Y = yi, i=1,...,N

We approximate V (¢, z), the solution of (I]), by the piecewise constant function

(2.4) Vi (x ZH T —

The estimate on the convergence rate is

Theorem 2.2. Assume (H1), (H2) and (H3). For T > 0 fized, let At > 0 be such
that T'= AtK, K € N. Let V(t,z) be the solution at time ty, = kAt of (LI) with
ingtial condition Vy. Let V1, (x) be defined as in with N particles. Then there

exists a positive constant C, depending only on Vo, A, o and T, such that for all k
n{l,...,K},

— — 1
E|V(th,2) — Vi (@) < C Vo = Voll poorm) + ——= + At
B[V (t.2) = Vo (0)] < € (176~ Vollumge) + o + )

and

_ — 1
E[V(te) = VOl g <€ (||V0 —Vollniw) + Vil At> :
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3. PROOF OF THEOREM

In the sequel, we will use the continuous version of the discrete time processes
(Y"), which consists in freezing the drift coefficient on each interval [tg, txq1]:

t
(3.1) Yy =yy+ / A (Vn<s> (er<s>)> ds + oW,
0

where 7(s) = supyepo,... k{tkitk < s}. Also C denotes any positive constant de-
pending only on T, o, A and Vp; for any strictly positive constant «, g, denotes
the Gaussian density function

)= —g— e (-5
x) = exp|——].
Yo Sror p %
According to the probabilistic interpretation given in Section 1, the solution of
(L)) is given by

V(t,z) = H % Pi(z) = Ep(H(z — X)),

where P is the solution of the martingale problem ([L3]) and X denotes the canonical
process on C([0,4+00),R). We define the real valued function B(t, z) by

(3.2) B(t,z) = A'(V(t,x)), (t,z) € [0,T] xR

and consider the Markov process (Z) solution of

t

Zy = Zo+/B(s,Zs)ds+aWt, te 0,7,

(3.3) 0
Z() with law mo,
where (W) is a one-dimensional Brownian motion independent of (W1,... W),

By Proposition [[L.2], the law of (Z) solves the martingale problem (L3) and thus

Let (Z%¥) be the solution of the stochastic differential equation (B3] with the
deterministic initial condition y at time 0 (i.e., Zyp = y). More generally, for any
0<s<T,(ZY te[s,T]) denotes the solution of

t
(3.4) z:vy=y+/ B0, Z57)d0 + o(Wy — W),  t€[s.T).

We will prove below that the drift function B(t, z) is smooth, so that the strong
existence and uniqueness of this solution are ensured.
Let k be in {1,...,K}. To prove Theorem 22, we start from

N
V(tg,z) — Vi (z) =EH(x — Z;,) — Z (z = Y}).

First, we introduce an artificial smoothing of the Heaviside function. For an arbi-
trary constant € > 0, we define the function H.(z) = g. * H(x) and we decompose
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the expression above into four parts:
V(t, ) — Vi, (v) = EH(x — Z;,) —EH.(x — Z4,)
+ [ BH.(o - 20 moldy) - [ BH.(x - Z0")mo(dy)
R R

N A
(3.5) +i 3 [EH ©— Zy") — Ho(x — YZ;)}
i=1

N
1 .
e 2 [He(a = V) — H@ = Y,)].
’L:1

The first and last terms are smoothing errors and will tend to zero with €. The
second term corresponds to the propagation at time ¢; of the initialization error
[Vo(z) = Vo()]-

To let the reader understand the third term, we transform it: for any time ¢
and any = € R, we consider the partial differential equation

o z 1 82 x % i
s (S,y)—’——O'Q&(S,y)-FB(S,y) e (87y) :0’
(3.6) ds

2 0y? Oy
Utkﬁl’(tkay) = Hﬁ(x - y)a Vy eR.

V(s,y) € [0,tx) X R,
From Lemma below, (B:6) has a unique bounded classical solution vy, »(s,y)
that is a bounded function in C12([0,#;) x R). Hence, by the Feynman-Kac repre-
sentation of a Cauchy problem, vy, .(s,y) = EH.(z — Z;?Y) and

07 i . . .
EH(z — Ztkyo) — H.(x — Ytz,c) = Utkax(()?yé) - Utk,x(tka }/tzk)
k—1
= 3 (vt Vi) = v, Vi) ) -
=0

As vy, 5 is solution of (B8], the It formula gives

i _ 0,54 i
> (EH.(z — 2,) - Ho(z - ¥;)))
1 N k-1 ti+1 8’Uth . . ) .
(3.7) — A [ T v (B YD) - A (Vi ())) ds
i=11=0 V1 y
N ot
1 £ vy i i
_N;/o 08—y(S,Ys)dWs~

The second term of the right-hand side of (B is a statistical error. We will bound
the expectation of its absolute value by C/v/N. The first term in the right-hand
side of (3.7) is the discretization error where the most important difficulties of the
proof are concentrated.

In the next subsections, we give the proof of these four lemmas:

Lemma 3.1. Smoothing error. For any z in R, / |H(x—2)—H.(x—2z)|dz < Cy/e.
R

Assume (H1), (H2) and (H3). Then,

(3.8) sup |EH (z — Z;,)) —EH.(x — Z;,)| < Cv/e
z€R
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and for any i and j in {1,...,N}, with j # i, and any k in {1,...,K},
supE [H.(z —Y})) — H(z = Y}})| < CVe/VAL,

(3.9) r€R . , , ,
E|H.(Y], = Yi) - H(Y], - V)| < CVE/VAL

The positive constant C' depends on Vy, A, 0 and T only.
Lemma 3.2. Initialization error. Assume (H1), (H2) and (H3). For all k in
{1,...,K},

sup
zeR

/ EH. (v — Z;" ymo(dy) — / EH. (x — Z?,;y)mowy)‘
R R
< C|Vo = Vol L=

and

The positive constant C depends on Vy, A, o and T only.

/ EHL(- — Z%)mo(dy) - / EH.(- — Z0)mo(dy)
R R

< CVo = Vollorm).-

L' (R)

Lemma 3.3. Statistical error. Assume (H1), (H2) and (H3). For all k in
{1,...,K},

supE _i/t" 0 b (g YI)AW!| < C
ek (N TTay IS UR
and
N t
1 k 8vt . ; ; C
Blv > [ o ani| <
Ni:l 0 dy LI(R) VN

The positive constant C depends on Vy, A, o and T only.

Lemma 3.4. Discretization error. Assume (H1), (H2) and (H3). For all k in
{1,...,K},

k—1

1 N tig avth ; ; L — .
supE | %D 5y (YD) (B, YY) = A (Vu (¥:)) ds
i=11=0 "l
1
< C(—= + At)
N
and
1 N k—1 ti41 8'Ut ) 4 ) . )
By o> [ T s ) (Bl YD) = A (T () ds
; t Y
== LA(R)
1
<C(—= + At

The positive constant C depends on Vy, A, o and T only.
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We choose € = At3. Estimates of the four above lemmas combined with equalities
(B and (BH) prove Theorem 2.2

The section is organized as follows. In Subsection B.I] we prove some preliminary
estimates and regularity results on the drift function B and on the solution v, , of
equation (B.6). Then, we successively prove Lemmas B.1] [3.2] and B.3. We finish by
the proof of the main Lemma [B-4]

3.1. Preliminary lemmas. Consider the process (Z) solution of (B3). The drift
function B defined in (B.2) is bounded by supjq ;) |A’(v)|. Hence, by the Girsanov

theorem, for any ¢ > 0, Z; has a density denoted by U(t, ). Furthermore,
Remark 3.5. The transition probability P(¢,dz; s, Zs = y) has a density that we
denote by TI'(t, z; s,y), which is in L?(R). Moreover, for all y € R,

C
where the positive constant C' depends on o, T and A only and, therefore, is
uniform in y. This can be proven by using the Girsanov theorem (see the proof of
Proposition 1.1 in [§]). In particular, U(¢,) is in L?(R) for all ¢ > 0 and, without
any hypothesis on my,

||F(f,, 5 S, y)||L2(]R) <

C
MU, 2@ < PV

Lemma 3.6. Assume (H1), (H2) and (H3). The density U(t,x) of Z; is bounded
uniformly in t € [0,T] and has a first partial derivative in x which is bounded
uniformly int € [0,T]. The function B(t,z) is in C*2([0, T]| xR) and its derivatives
95 (t,z), 28 (t,z) and %1]23 (t,z) are bounded uniformly in t € [0,T).

Remark 3.7. Even if this is not explicitly stated in Lemmal[3.8], one can easily deduce
from the following proof that V is in C12([0,7] x R) with bounded first order
derivatives in the time and space variables and bounded second order derivative
in the space variable. Thus, V is the bounded classical solution of the scalar
conservation law (L.).

Proof. For all t > 0, g,2;(z) denotes the density of the Gaussian random variable
oW;. Let Sy be the corresponding semi-group defined by S;f = ¢,2: * f. Let us
show that U is the unique weak solution in L!(R) of the following integral linear
Fokker Planck equation

t
0
(310) bt = StUO - / afESt_s (B(57)ps)d87 Vi E]O7T]a Po = UO)
0

where Up is the density of mg. We will deduce from (BI0) the regularity results
of the lemma. For a fixed ¢ in (0,7] and a function f in C*°(R) with compact
support, we set G(s,z) = S;_s f(x), for all s € [0,t). Then, G is the solution of the
backward heat equation

oG |1 , 0°G

—0°——= =0 0< t
8s+20 0x2 ’ =s<t

G(t,x) = f(x).
By applying Itd’s formula to G(t, Z;) and taking the expectation, we obtain that

(@)U, x)dr = | G(0,z)U(z)dx + t 8—G(s,x)B(s,x)U(s, x)dz
J J | L5
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and the definition of G(s, ) leads to

/f(x)U(t,x)dx:/Stf(:c)Uo(x)dx
R

//(/ Jo21-s) (& = )f(y)dy> B(s,z)U (s, x)dxds.
Moreover,

//(/ o2 (1—s) (@ — )f(y)dy> B(s,z)U(s, z)dxds
/ /f ay (/ Jo2(i—s) (x—y)B(sw)U(s,x)da:) dyds

//f St s (B(s,)U(s, ) (y)dyds.

Hence,

/Rf(x)U(t,x)dx:/f(x)StUo(x)dx
[0S (Bl ) s

which means that U satisfies (B.10) in the weak sense. Now, consider two solutions
p! and p? in L1(R) of (B10). For all ¢ € (0,77,

t
0
It = ey = | [ e (B0 = ) s
0 xr
t
< swp 4] [
u€0,1] 0

¢
C o1 2
= /0 Vi—s Hps _pSHLl(R) ds
We conclude on the uniqueness of the solution of EI0) by applying Gronwall’s
lemma. We have now that for all ¢ € (0,7] and = € R,

L1(R)

o2 (t—s) Hpi - pi”Ll(R) ds

LY (R)

(3.11)  U(t,x) = go2s x Up(x) — /0 gf,z(t_s) *x (B(s,)U(s,)) (x)ds.

Let us prove that U is bounded uniformly in ¢ € [0, T7.

t
Ul(t,x) §||U0||L°°(R)+[SOHE|AI|/ /}RIgfﬂ(tfs)I(w—y)U(s,y)dyds
s 0

t C
<||Uo|| = +/7/ o2(t—s) (T — Y)U?(s,y)dyds
|| 0||L (R) . m\/ Rgz (t )( Y) ( ?J) Y

¢ C
<NUoll oo my +/0 md&

The last upper bound above is obtained by Remark[3.35l Thus, ||U|| Lo (jo,71xr) < C,
Where the constant C' depends on o, T, A and Uo only. Now we remark that
‘g—f(t, )=A"(EH(x — Z,))U(t, ), and hence, H 5 <C.

HL‘X’([O T)xR) —
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If we formally derive (B.I1)), we obtain that %—g must satisfy the equation
) T = g Uia)
- fo gg?(tfs) * (%—f(s, JU(s,-) + B(S")%—Z(Sa )) (x)ds.

Let us prove that %—g satisfies (B:12) and more precisely that %—g is in C([0,T],
LY(R) N Cy(R)), where Cp(R) denotes the set of bounded continuous functions on
R. Let Ej 7] be the space

E[O,T] = {U' € C([OvT]aLl(R) N Cb(R))v HU'HE[O,T] = sup : Hu(t)HE < +OO} )
t

with [|[flle = I fllz:@®) + sup | f(z)| + ||/ f@W)dyllLw)- Let T : Ejor) — Ejo1
x — 00
be defined by
T(u)(t, ©) =go2¢ * Up(x)

i (G2 ([ atsity) + Blosuts ) s

We will show that %—g is the fixed point in Fjg 1) of the application T. For u! and
U2 in E[O,T]v

(T(ul) — T(uQ)) (t,z)

t OB .
[ (Gote ([ = did) + Bt )5, ) (s
An easy computation shows that

10ty =Y @)(0)]
S/O ||g;2(tfs)||L1(]R)

¢ 2D _1 _ 0B
Let to such that f;° \/des =1 where D = |||B| + |W|HL°°([0,T]><R)' We

deduce from the previous inequality that T is a contraction on Ejg 4, and we denote
v its fixed point. For any u € Ej 1) and ¢ € (to, 7], we remark that

T ) (t,2) =g 1y * V(1)) )
- / o= (526 ([ wtscondn) + s utsn ) s

If ! and v? in E o, are such that v'(t) = v2(t) = v(t) for ¢ € [0,o], from the
expression above we easily get that

[(reh) =T,
2to
< /t ||g<,72(t—s)||L1(]R)

and then |(Y(v!) — T(V2))(t)||E[t0,2t0] < 2@t =v?)

cedure, we construct the fixed point v of T on Ejp 7. Now, we remark that the

I(u" = u?)(s) ]| pds.
L*([0,T]xR)

0B
B -
514152

1" = v*)(s) || s
Lo (R)

155+ 5 52)

Repeating this pro-

||E[t0,2t0]'
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function (t, ) — [*__ v(t,y)dy is the solution in L'(R) of (BI0). By the unique-
ness of the solution of (I0), U(t,z) = [*__ v(t,y)dy and L (¢, z) = v(t,z). From
B12),

ou
—(t. )| 7 oo
155 & M=

VTD 2D U
< ||U6||Loo(R) + —||U||L°°([O,T]><R) +/ 7”%(8, ')HLoo(R)dS-

t
V2mo? 0 \/2ma?(t —s)

We conclude that %—g is bounded uniformly in ¢ € [0,7] by Gronwall’s lemma.
Moreover, for all (¢,z) € [0,T] x R,

0%B
Ox2

2
and ||WHL°°([O,T]><R) < C. To finish the proof, we have to bound the derivative

(t,x) = A" (EH(x — 2)) U*(t,z) + A" (EH (z — 2)) g—g(t, x)

in time of the function B. We have
0

" a

where, by (3110,

)

EEH(J? —7)
_o [

ot ) o

o2 92 [° o [t
= 5 92 9o2e * Uo(y)dy — a/o 9o2(t—s) * (B(s,)U(s,)) (z)ds

Ul(t,y)dy

0_2 , t 0_2 , a
= 790% * UO - B(tvx)U(tvx) - o 7902@—3) * % (B(S, )U(Sv )) (x)ds
t
< W0z + VBl oriem U oty + | s
= Yo (R) ([0,T]xR) ([0,T]xR) o Vios
which gives that ||%B||Lw([0 T)xR) <C. O

The following lemma is directly adapted from Theorem 11 in [4, Chapter 1] for
our particular one-dimensional case with constant diffusion coefficient and gives
exponential bound for the transition density of Z;"".

Lemma 3.8 (Friedman []). If the drift function B(t,z) is a bounded continuous
function on [0,T] x R, Hélder continuous (with exponent o < 1) on R uniformly in
t, then the transition probability of the process (Z;) has a smooth density, denoted
by (L, z; s,x), and there exists a positive constant Cy depending on T, B and o,
such that for all 0 < s <t <T and (z,2) in R?,

exp (_%) Voo

F(t,Z;S,J)) S
t—s

In the sequel, we will choose & = 20.
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Lemma 3.9. Assume (H1), (H2) and (H3). The Cauchy problem (B3.6]) has a
unique bounded solution in C12([0,tx) x R) and there exists a positive constant C
depending only on A, o, T and Vy, such that for all (s, z) in [0,t) X R,

(3.13) Wz(s,z)

Ov
‘ ik, S Cg6+202(tk_s)(l'—2).

Moreover, for all s in [0,ty)

(92’Ut . C
3.14 sup b (s, 2 <
(344 L e e Vik—s
and
82’Ut T 5/4 C
(3.15) sup ||| —==|  (s,-) < ——
ver||l Iy* na (97

Proof. Existence and uniqueness of a bounded classical solution of (B.) can be
found in Friedman [5].

By the Feynman-Kac representation, vy, . (s,y) = EH: (z— Z;¥) and %gy’—x(s, Y)
= —E |g.(z — Zf};y)di—”y’;}, diy" = ex p( " 989, zy y)d9> As the function
%—f(t, x) is bounded in [0,T] X R, we get

3vtk,m

dy

<s,y)‘ < C(ge #T(ths s 5,1)) ()

from which, by Lemma 3.8 we deduce immediately (3.13)). For the second order
derivative, we have that

82'Ut,,;c ’ 8,y dZtS’y 2 5,y dQZtS’y
8y; (s,9) =E |gc(z — Z;,") d—; —9:(x = Z,)") dy; ;
a2 o

with

s Ox2

As the function %27]23(75, x) is also bounded in [0,T] x R, we get

= exp ([1* 920, Z5)d0) [ GE (u, Zgv)exp ([ 220, Z5)d6) du

2
(3.16) ‘a Yt

s (5.0 | < O]+ 90) T 25,0) ().

920
from which we can only upper-bound quantities like sup,cp ||8—(8 2)||L1w) by
22

C/e* with o > 0. To prove (BI4) and BIH), we proceed as follows: for all
(s,y) € [0,tr) x R, we define the function wu, +(s,y) = ve, otk — $,y) so that
Ut,, (8, y) is the unique bounded classical solution of the Cauchy problem

Oug, o 82utk z Oy 2
OUty,x ) Bt — /L

a ( ) 20' ayz (S)y) + (tk 57y) ay (S’y)7

V(S, ) [Oatk) X ]Ra

y)

Uty,,x ( = 6( _y)v VyéR
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We easily deduce from this equation that for all (s,y) € [0,¢x) X R,
utk,l’ (87 y)

8’U,tk,

= S 0900+ [ oo (Bl - 0025520, ) (ao

—+00 s
= / Jo2sie(z —x)dz + / / 9o2(s—0)(y — 2)B(tr, — 0, 2) Oty (0,2)dz db.
y o Jr dy

Deriving the expression above two times, we get

2
8 Uty ,x

ayg (s,9)

g(r s+6 )

/ / 902(5 9 )88 (B(tk - 97 Z) 81;;,% (67 Z)) dz df.

With |B| and |%—f| uniformly bounded, we have

aQUtk’I
Oy>?

(Svy) S |g/0'28+6|(y_x)
[ gty |<y—z>ge+2029(x—z>dz o
+C/ /|gaz<g ol — 21 L0 g 2 dg

|ga s+6 ) + Cg2028+6(y LE)

0?u
+C/ /|go'2(8 0) Z)| 8t12€1 |(07,z)dz de.

(3.17)

IN

2
In view of (BI0), z — 2 gyt’g’t (s,y) is in L'(R), uniformly in 3 and s and hence,

82uth
sup — | (s,y)dx
yEJR/]R dy? ( )
C C 82“1& x )
< + B0, z)dx | dO.
T Ve+o2s /0 \/8-9(?2%/}1{{ oy? (6,2)de

We apply Gronwall’s lemma to get (3.14). To prove (BI%]), we start from (3.17):

5/4
(5,9) < Clghesic? (y — 2) + 09§§35+€<y — )

< / /|902(s 9)| )| tk, |(9;Z)dzd9>5/4

> mg% 2542¢ (Y — @)

=

82utk,x
Oy?

({92utk’x
Oy?

4
(0, 2)9202(s—0) (y — 2)dz db.
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Hence,
82utk T 5/4
: d
/R 317 (s,9)dy
C s C 0%uy, o |
< 7(025 ey +/0 (s 0y /R By? (0, 2)dzdb,
from which we conclude by Gronwall’s lemma. O

3.2. Estimates on the smoothing error.

Proof of LemmalZ1l First, we observe that Vz € R, H.(z) = EH(z — W,). Then,
for any z in R,

/|H(x—z)—H€(:c—z)|dz§E/ |H(x —2z) — H(x — z — W¢)|d=
R R

2./
—E|WE|—\/%.

With the density U(¢, z) of Z; bounded in z € R, uniformly in ¢,
[EH (z — Z;,) —EH.(x — Zy,)| < / |H(x — 2) — He(z — 2)|U (tg, 2)dz < Cv/z,
R

which gives (B.8). Now, for any x € R and k > 1,
E|H(z —Yy,) = He(z — Yy,
—E (B v |H@ - Yy, = A (Vi (V) = oWar)

k—1

~How = Vi, = A (Vi (V) = oWar)l)

te—1
— [ goad B [H@ - Vi, - A (Vo (V) - 2)
R
~Ho(x =Y, = MA (Ve (V) = 2)| dz

\/E
SC\/E.

Similarly, for i # j, with the Brownian motions (W?) and (W7) independent,
E|H (Y], = ¥5) = (Y5, = Y5,
= [ s QB[ HOZ, + AT (V)
=Y = At (Ve (Y ) = 2)
—H(Y] |+ AtA V(Y )

-Y: - AtAI(Vtk,l(Y?k_l)) —2)|dz

tr—1
<C Ve
VAL

from which we deduce (B9). O
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3.3. Estimates on the initialization error.

Proof of Lemmal3Z For all t > 0, the function y — EH.(z — ZY) is
0,y

0,y £
differentiable and %EHE(J) — Z}Y) = —E(ge(x — Z?’y)di‘y ), where di‘y =
exp( (f 98 (s,2%v)ds) < C. By integration by parts,

0
/ EH. (z — 20%)mo(dy) = EH.(z — Z0°) — / a%EHe(x 2 Vo (y)dy
R —00

+oo 8
n / I EH.(z — Z°)(1 - Vi(y))dy.
0 dy

Similarly,
| Bt - 20 ymoay)
R

0 o +oo .
— [ EHa- 2 Vo) - / EH.(z — Z0Y) d(1 - Vo(y))

—0o0

and the integration by parts formula for a Stieltjes integral gives
0 0,0 Ry 0,9\77
/EHE(J" — 2,V )ymo(dy) =EH:(x — Z,"") — / 8_yEHE(m — Z,")Voly)dy
R —00

“+oo
+/0 a%EH( — 7)) (1= Vo(y))dy.

Thus, we obtain the following expression for the initialization error
/}R EH. (z — Z")mo(dy) — / EH. (z — Z"¥ o (dy)
= [ o EHa = 22" (Talt) = Valu)ds
from which we deduce that

[ e~ 2 motay) - [ B - Z?f)wdy)\
R R

sup
z€R

< ClVo = Volre® Sup/ Ege( — Z,")dy
R

and

/ EH. (z — Z)mo(dy) — / EH. (z — Z,¥)To(dy)
R R

LY (R)

<C|Vo— VOHU(R) sup/ Ege(z — ka’y)dx.
yeER JR

In view of Lemma B8] the exponential bound for the density of Z? Y gives

Egg(l‘ - Zto,:y) < Cgs+20'2tk (l‘ - y)a

from which we easily conclude. O
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3.4. Estimates on the statistical error.
Proof of Lemma[3.3] We consider the statistical error
N t
1 FoOvy i i
E N;/o Ua—y(S,YQ)dWs

From (3.13)), 8”{;2“” (s,y) is uniformly bounded on [0,t;] x R by C/y/e. Then, by

the Cauchy-Schwarz inequality, for all z € R,

E|~ ENj/tk Qe (o yiyaws| < \|E [ - ENj/tk Qrie (o yiyaw; 2
-~ O—(—\$ -~ S
Ni=1 0 gy 0 5T Ni_1 0 e 3
N ¢ 2
1 Y oom (Ve i
< migl/o o E(a—;(s,Yg)> ds.

For each i in {1,..., N}, let (Z{)o<i<7 be defined by

t A’ ( t (A i 2
(318)  Zi = exp ( /0 AW g)) e 1 /O (A (Vi) (Vi) ds)

o2 2

By the Girsanov theorem, under the probability Q! such that (dQ!/dP)|z, = 1/Z},
(Y}i/o)o<i<r is a one-dimensional Brownian motion on (2, Fr, Q?), starting at yi /o

and
81),5 ; 2 i 81),5 ; 2 ;
E( =22 Y)) =EY || =222, YY) 2°
(P () [( (s, v)) 2

where EQ' denotes the expectation under Q. Moreover,

)

EY (Zi2) < exp <% sup |A'(v)|2> <C.

0% vel0,1]

Using the Cauchy-Schwarz inequality and Lemma [3.9]

ov 2 ov 4
E t,x Y’L' < E t,x i i
(%ez) <oy (Zpe g+ o)

< C\/(girgoa(tkg) * gazs) (z — yé)

An easy computation shows that for any z € R,

C

4
\/ge+202(tk—s) * go2s(2) < W o(2),
k
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where the function ¢ is defined on R by ¢(z) = exp(—22/(¢ + 40%t},)). Finally, for
all x € R,

N tr al "
E %2/0 ang—f(s,iﬁ)dwﬁ 3\/—% %;d)(x_yé)tk}/zl/o (t _15)3/4
c |1 - ¢
<\ § e 1) = /6.

Thus,

| LS [ 0% s vy < oV

zER Ni=1 0 9y
and

E < e V¢ xo(x) de.
VN R

N t
1 k a’l)tk’. i i
N;/() Ja—y(87Y9)dW9
To end the proof, we decompose the integral above into three parts:

/R\/¢*mo(a:)dx
Yo Yo +o0
=/ \/qb*mo(x)da:—i—/ \/¢*m0(m)dx+/ V¢ * o (z)dz,

Yo

where Yy = ming;<;<ny yb and 7, = maxi<i<n} yl, so that
/EO V¢ * o (x)dr + /+<><> Vo xmo(z) < /]R Vo(z)de < C.
—o0 Yo
Now, we note that ¢ x mo(z) = ¢ * mo(z) + ¢’ * (Vo — Vo)(z) and
:O V¢ xmg(z)dr < /R\/qb * mo(x)dr + /jo \/|q5’ * (Vo — Vo) () |da.
20 <0

We upper-bound [, \/¢ * mo(z)dx by using Hypothesis (H3)(ii): there exist con-
stants M > 0, n > 0 and a > 0 such that

L _aramgemo(dz) <1 apanen exp(—az®/2)dz.
Then,

/R Vo wmo(@)de

= /OOM \/77 (d) * e_a%) (z)dz +2M /|9l Lo~ (w)

+ /J\:OO \/n (¢ * e‘a%) (z)dz.

As (¢ * exp(—a(-)?/2))(z) < /maexp(—az?/(2 + 2a(e + 40%ty))), we have that

M 02 oo 02
/ ngxe 2 (x)dr + / ne*xe 2z (x)de < C
—0o0 M
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and thus fy% V¢ * mo(z)dz < C (the constant C' depends on T but does not depend

on t;). Moreover, ||¢/||r1(r) < C (independent of ¢;) and ||V — V|| pee@) < 1/N.
Then

|19 (= Va)@lde < Clly, |+ 1) VIT.

By construction of the (y§) and thanks to Hypothesis (H3)(ii), one can see easily
that (ly,| + [Yol) < Cy/In(IV), which concludes the proof. O

3.5. Proof of Lemma [3.4: Estimates for the time discretization error. We
consider now the main part of the error in the decomposition B.7). We split it
into two parts, making apparent the difference between the drift functions B at the
discrete times ¢, and its approximation A’(Vy, (x)):

1 N k-1 ti41 8vtk.x i i ) — ;
E NZZ/ 5 (5, Y (B(s, YO = A (Vi (y))) ds
i=1 1=0 't y
N k—1 .t
1 1 Qv . )
<E|= L2 (5, YD) (B(s, YY) — B(t, Yy))) ds
SElg2 ) By ) (B(s,Y]) = B(ti, Y})))
N k—1 .t
1 vy i i . (v
VBl N [ e (s (B V) - A (Vi (1)) ds
NS 9y

=Ti(x) + To(x).

We treat Ti(z) and Ta(x) separately.

Upper bound for Ty(x): this first term is a time discretization error. To obtain
an error bound of order O(At), we need to introduce an expectation inside the
absolute value in the expression of Tj(z). For all [ in {0,..., K}, we set Fy, =

o(Wh0 < s < t,i = 1,...,N). For all s € [t;,t;4+1), the variables (R} , :=

t1,s

avdty —t (5 YI)(B(s, YY) — B(tl, Y})),i=1,...,N) are F-conditionally independent.

Hence,

N
ZRMS—E% (Rl )| < Z (Ri,.)"

2 |

IA

%\Q 2=

Thus, we isolate a statistical error in T3 (z):

N k-1

NZ /:+1 { tk”(s,y;') (B(S7Y;i)—B(tL7YZ))}dS

=1 [=0

ol vz (grem) o

) <E
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By Ito’s formula,

E.’Ftl {1:9;;(5,}/8) (B(S,Y;) _B(thY;l))}

’ 8 8 0’2 82 81}
— wFy ’ 9 o 0% b
- /tz [89 4 (th( )) dy + 2 ayz} ( Ay (B - B(t,Y; ))) (0,Y4)do

S Tov OB o2 9°B 0B

_ ‘Ftl, tr,T et s ! 7 i

=E /t [—ay (89 T + (A (Vi (Y))) + B(t1,Yy,) — B) ay)
(92’Utk’

o[ ,0B , Z.
8—y2( o - (BBl YD) (B4 (7, ))))](9,1@)619.

The last identity is obtained by using (36). As B(s,y) has uniformly bounded
derivatives, we obtain that

ds

£ { 20 5,70 (B Y)) - Bl YY) |

ti41 s
[
ty 1

ti41 )
< C’At/ E [ (s,Y;)] ds,
t

<CAt/tk ! Z]E < e ) (s,y;‘)} ds

+ N 2
k 81],5,“;5 i
7w J (S ) o

2
8’(),5]“3; 0 Uty ,x

0y

81],5,“3;

<9,Y5>+\

0, Y;’)] dfds

2
81}th

(s,Yy) + ‘ ay;

and

a’l)tk’

(92’Utk’
oy?

M

We want to upper-bound ||T%(+)| 11 () and sup, g 71 (). From the proof of Lemma
B3, we easily deduce that

o [/Jﬁ
LA ) e

is bounded by a positive constant C' depending only in o, T, A and V. Moreover,
by Lemma [3.9]

2
7 N
e
S|
B}
w
o3
SN—
N~
()
IS
&
| I |

(%tk x : }82?)15 x ; :| C
3y ’YZ + k> ’Ygl d S .
L e+ [T o] ae < 2
Hence, we obtain that
1
3.19 Ty KClAt+ — ).
( ) 1T1()| R) = ( W)
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Still by Lemma B9, we observe that sup,cp (%éy 2| (s, V) < C//ty — s. It remains
2 .
to bound supxeRIE( (;};k =\ (s, y;z)); let (Z%) be the exponential martingale de-

fined in (ZIX), under the probability Q° such that ‘ﬁ—%” F, = ZL By the Girsanov
t
theorem and the Cauchy-Schwarz inequality,
(s, Y;))

2
0 Uty

Oy?

Bzvtk,w
B (|3

svh) = B (2

0%v 5/4 e
tr,x i
(3.20) < C <E‘8—y; (87y0+0WS)>
5/4 4/5
< C 'a2vtk@ (S )
= S0 ||| gy2 ’
L'(R)

Using (B18), we obtain that sup,cg E (’ e
hence,

(5,Y1)) < C/(sY 10 (tx — 5)*/°) and

1
(3.21) itelng(x) <C <At + ﬁ) .

Upper bound for Ty(z): for all (¢, ), B(t,z) = A'(V(t,z)). Hence,

N

1
1 o) ) — .
To(x) < sup |A”(v) NZZE/ tk’ Vi) = Vi (Y| ds.
v€E(0,1] i—1 1=0
By Lemma B3] sup,cp |5 Do L2 (8, ) oo () + SUD, R || 55 (s, 2)|| L1 (w) 18 bounded

by C/+/ti — s. Then,

suﬁETg(x) + ENT2() L )
fAS

(3.22) Flooar 1 XY

Now, the estimation of T3 is based on the upper bound of terms of the sequence

N
1 . — .
<N§ E‘V(tz,m)—vtl(YZﬂ) :
=1 =1 k—1

=1,...,k—

To obtain an induction formula on this sequence we introduce a new family of

discrete time processes. For each ¢ in {1,..., N}, we denote by (Ztk, k=0,...,K)
the discrete-time process solution of

- Wtik )7

tk+1 tr41

{ Z, . =7, +AtB(t, Z, ) + o(W;
Zo = yo
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With the function V' uniformly Lipschitz, we remark that

7

i -7,

-1 ‘

V(thYti,,)—V(tuZ )| <C

1

A ATV, (V) = A (Vitm, Zy,.)
m=0
-1

<CatY. [Vitm Zi,) = Vi, (V)]
m=0

<C

Then,

For all I in {1,..., K}, we define
1 : .
B, = NZE‘V(Q,Z“) ~V, ().
i=1

Thus, we have

N -1

(3.23) Z V(t,Y)) = Vi (V)| < By, +CAt Y Ey,.
i=1 m=0

An induction relation for (Ey,,l =0,..., K) is given in the following

Lemma 3.10. Assume (H1), (H2) and (H3). Forl=0,..., K, one has

-1
CAt — 1
Etl _Z Etn—FC(At—I—H/E)—VQHLoo +\/—N)

and by Gronwall’s lemma,

— 1
E,, <CAt+||Vo — Vollpe(r) + —) .
w < (Bt = Vallwge +
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In view of (822, (B23) and this previous estimate, we obtain that

k—1

CAt 1
sup ET: + E||T5( 1 (At—l— Vo — Vol —)
Sup 2(z) + E| T2 ()l o r) < ;\/F Vo = Vol ~

1
< C (Vo = Vollpoem + At + ——
Vo = VollL= ) W)

With the estimates (319) and ZI]) on 71, this ends the proof of Lemma 341

Proof of LemmalZIl First, we note that Eq < [[Vo — Vo|lr=(®) and for | =
1 K

geeey 5

N
_ NZH% Yi)
= Ztl j=1

N

— 1

Ei =+ > E|EH(z— Z,)
i=1

To prove the induction formula, we decompose each term Ej, into five parts. As in
the beginning of the proof of Theorem[22, we make apparent a smoothing error, an
initialization error, a discretization error and a statistical error. First, we introduce
the artificial smoothing of the Heaviside function:

N
E, g% ZE EH (z — Z,) . —EH.(z — Zy,) 7_
i=1 T=2y, T=24
1 & 1 &
+NZIE EH (v~ Zy)| _ —NZH(Y’ YY)
i=1 =2y, j=1
+i§N:1E iEN:H(yz Yﬂ)_iimw Y7
N i=1 N j=1 o " N j=1

and by Lemma [3.],

N
1
W < NZE EH.(x — Zy,)
i=1

w=Z, j=1

We choose € < At?. The next step consists in introducing the initialization error:

1 Y :
0,y?
- NZEHE(x — Z,")

=i
:c=Ztl

- HE(YZ - Yt]z)>
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Following the same technique as in the proof of Lemma [32] we have

i

x:Ztl

N N
1 1 0,47
N E E EHE(Z‘—Ztl) 77 — N E EHE(J,‘—ZtlyO)
i=1 z= j=1

=2y,

< sup

[ Bt = Z0moty) - [ B - Z?’y)mo(dy)‘
z€ER |JR R

< ClVo = VollLem)-

The third step consists in making apparent the error of the Euler scheme: for
0, . . .
all y € R, we denote by (Ztky7 k=0,...,K) the discrete-time process solution of

tht1

-0, -0, —0,
{ A Y = Ztky + AtB(tk, Ztky) + U(Wtk+1 - Wtk);

7871/ =uy.
Then,
1 & 0
0 Y
By <3z D |BHe(x=2,")| _ —EH.(x—Z,"™)|
ij=1 xZZtl x:Ztl
1 1 Y 0,93 ; j
+NZE ~ (EHe(x Z,") . — H.(Y}, _Ytjl)>
i=1 Jj=1 T=2y4,

1 —
+C (At + N + ||V0 — VO|L0¢(]R)) .

In the right-hand side of the expression above, the first term is a time discretization
error in the weak sense. It is described by the following lemma, the proof of which
is postponed until the end of this subsection.

Lemma 3.11. Assume (H1), (H2) and (H3). For all x and y in R and all discrete
time t, L in {1,..., K},

EH.(x — Z22Y) —EH.(z — Z,")| < CAL,

where the positive constant C' depends on o,Vy and T only and is uniform in x and
Y.

Thus,

i
sztl

1< 1 & 0,9}
Etl SN E N (EHE(J)—Ztl O)

+ Vo — VO|L°°(R)> .

- Hs(Ytz, - Y?z))
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=0y .
We observe that Ztlyo and Zil have the same law. In the last step, we introduce a
statistical error:

ZE z( Hoo—7)

7j=1

i
x—Z”

_H5(71] _7il)>
i,5=1

1 _
e (At e v0||Lm(R)) |

Let F} := o(W¢0 < s <t). For j # i and with 72 and 72 independent, we have

i
x=Z”

ET (IEHE (z —Z) - H.(Z, - 7§l)> =0,

which implies that

L3 (ome

1;

. - HE(7; - 7‘;))
x:Z;

Z E <IEH€(x -7

j=Lij#i

Finally, we have obtained that

_ 1 I o
Ev< 52 > E‘He(Ztl = Zy,) — H(Yy, = Yy)

(3.24) i jii#d B
+C (At + Vo = Volle@ + Fy ) -
It remains to analyze the term
N2 ZE‘H tz HE(YJZ _Ytjz)

i#]

in the right-hand side of (B:ZZI) We do so by making apparent the successive
transitions of the processes (Z'): for all y in R and all I in {0,..., K} we denote

by (7z:l’y, k=1,...,K) the discrete-time process solution of

ity
azm) | 2 =7
Z =1y.

i

0,61,y

+ AtB(ty, Z, ") + o (W

tet1

_’Méa%
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Then,
2 SE|H.(Z, 7))~ Ho(Y Vi)
i#]
—1 tl n Yy —dti—n, Y
a2 <L SOBLILA AR AN
n= 0 1#£]
it 1, Y —diti—n—1,Y}
— HE(Ztl Hlom—1 _ Ztl t—m— 1) .

For each term in the sum over n, we use the identity

H.(a) — H.(b) = (a — b)/o ge(b+ u(a — b))du

to get
E —'L tl ny t, n 7j1tl7n1yt];_n
N2 Z ty )
i#]
—iti_n_1,Y] —gti—n—1,Y}
l—m—1 l—m—1
~H.(Z, -7, )
Z]E —'L tl n tl n _Ziatl—n—hytll_n_l
t
N2 1
i#]
Shtien s St YE
— (Zt, -7,
! it it
2l —n—1 Jsll—n—1
x / g (R = RIS ) dul,
0
.. it
where, for any i in {1,..., N}, we define the random variables R,". "' b
9 y 9 9 t1,u
. it 1, Y] it Y} it 1, Y]
iti—m—1 . Ll —n—1, 1 l—n>ty l—n—1,Y¢
(3.27) Rtl’u =7, +u(Z - 27, )

As the drift B(t,z) of (7i) is a Lipschitz function, one can easily show that, for
any ¢ in {0,...,N},

; Gty 1Y
. i ) - l—n—1
—htin,Yy,  =Sitin,Z

1 ty

hti-n,Yy,  Shtin-1,Y

i t

_ ti—n

. i1, Y]
yi B Zl,tl n—1,Yy
ti—n ti—n

<C

and hence that

— bt —n—1,Y;

Hen _ H—n-1

it Y]
t ty

(3.28)
gcm‘vt,_n_l(yg )= Vlteaon, Y )
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Then, we have

Elm —1 tl n 1l " Z‘jytl—nv}/{i7n
=3 -7, )
1#£]
it po1,Y] —giti—n—1,Y]
l—m—1 l—m—1
_HE(Ztl - Ztl )

<CAt—ZE‘<|th Y ) =Vt Y )
i#£]

Vs O, ) = Vit i)

1
Gli—n—1 Jstl—n—1
X / ge (Rt,,u Rt, " ) du| .
0

We introduce the conditional expectation with respect to Fy_, , in the
right-hand side of the expression above. As, for any i > 1, [Vy,_, (Y} ) —
V(ti—n—1,Y{ _)|is an F;,_,_ -measurable variable, we obtain that

(3.29)
itin Yy it Yi
E|H.(Z, "t =7, T
H (71751 n— 1’Ytz - _71751 n— 17Ytl . 1)
t

< CAtE‘(th NG

ti—mn—1

) - V(tl—n—h Y;&i_n_lﬂ

HV oo (Vi) = Viten1, Y )I)

1
F,_. Gyt —m—1 Jstl—n—1
x/ EFt-n-1 {ge (Rtl,u . )}du .
0

Now, we need to bound E7*-n-1 {gE (Rzltij Rl 1)} Coming back

t1,u
to the definition of R;t; "' in (327) and using the equation (B.20) satisfied by

i,y

(Zy, Yk=1,... , K), we remark that

. ty )
R =Y oW =i )+ [ i
ti—m—1
where, for all § € [t;—n—1,T],

w (0) _U'A,(th n— 1(}/tl n— 1))11 [tl—n—lytl—n[(e)
K

_z tl ns t n
+ Z uB tk, - )]1 [tk7tk+1[(9)
k=l—n

K

— - 1,Yt._,,_
+ Z (1 —u)B(tx, Zy, T 1 (6).-
k=l-n—1
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—iti—n—1,Y

For i # j, conditionally on F,_, ., for any k > 1 —n -1, Z,, ==l and

—Jti—n— laytl_ﬂ 1 it 7L7Ytl n ]tl ) tl n

t and Z;, . There-

i, t e
fore, R, """ and Ril 7! are independent condltlonally on ftl ._1- Moreover,

are independent, as well as Z

di—n—1

with v¢ (0) uniformly bounded, by the Girsanov theorem, the law of Rt con-
ditionally on F;,  _, has a density denoted by I‘(tl, ,tl,n,l,Y;l_n_l). Applying
Remark B35, T(t;, - t—p—1,Y{ ) is in L2(R) and

ti—mn—1

- . C
||F(tl7 ';tlfn—laY;:L,,L,I)HL?(R) < Ny
tn+1

Thus, for i # 7,

t ltl n—1 Jtl—n—l
lnl{g€< t1,u - tlu )}

/g( —)D(t, 23t LYY H)f(tlay;tlfnq,Yt{,n,l)dZdy

IN

Il
:\

(4, Sten—1,Y¢ MizemID(t, ';tzfnf17Y}j,:_n_1)||L2(R)
C
n+1

IN

akE

Combining this last upper bound with (329), we obtain that

_z tl WY Shtien Y
o LB 7
i#]
—iti_n_1,Y] —gti—n—1,Y{
_HE(Z;l Rl 7 _Z‘le LR TR 1)
CAt 1 .
< \/m ZE‘th—n—l(YZ "o 1)_V(tlfn71ay;fll_n_1)

and using (B23), that

ElH —1 tl ns ‘l " Zj,tl—mytjl_n
NQZ 7] )
i#]
it 1YY —dtin-1,Y{
—HE(Z ‘l—n—1 __ Z ’l—n—l)
t t

CAt . l—n 2_
< — (Etl”1 +CAL Y Etm>.

)

m=0
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As in (B26), we sum the term above over n in {0,...,l — 1} to finally obtain that

N2 ZE‘H tl tl HE(Y;; _YVI‘/‘Z)

i#]
[ cAt [— oL
<HZO<\/”_+1 <Et, L +CAt mzo Et>>
-1 -1
< Z + Y CALE,,.
n=0 m=0

This last bound, combined with ([B:24), gives the induction relation

-1
CAt — — 1
<Z Et +C(At+||Vo—Vo||L°°(R)+ﬁ>.

O

Proof of Lemmal3I1l To study this weak type error for the Euler scheme, we
follow a technique due to Talay and Tubaro [9]. The main idea consists in
using the Feynman-Kac representation of a Cauchy problem and noting that
EH.(x — Ztol’y) = vy, (0,y), where the function vy, 5(s,y) is the solution of the
partial differential equation

9 1 500 0
Pus (5, ) + 202200 (5 ) 4 B(s, y) L (s,y) = 0,
(3.30) s 2 3@/ dy
V(s,y) € [0,t) x R,
vy, (t,y) = He(ﬂc—y), Vy e R

The above Cauchy problem is similar to (3:6) and the results of Lemma [3:9] hold
for ([B:30), replacing 5 by t; in the setting. Thus

—0, —0,
EH.(z — Z,Y) —EH.(z — Z,)") = v1,,2(0,9) — Buvy, o (41, Z,,").

In the sequel, we will use the notation v rather than vy, ., except when we need
to make apparent the parameters x and ;. We decompose the expression above,
making apparent the discrete dates in [0, ¢;):

-1
—0, —0, -0,
vi(0,y) — Evy o (b, Z0") = = S E (v(tn+1, Z0" ) = o(t, Zt,f’)) .
n=0
We apply 1t6’s formula for the first time and use (330) to obtain
tnt1 a . . .
002(0,y) = Buy o1, Z ZE | G2 (B - B 2 s

n
tn

where 72,;; = 72:1 + sB(ty, 72:1) +0(Ws—W,,) when s € [t,, tnt1). Applying the
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It6 formula and (3.30) again,

E/"“ g“(s 70" (B(s.Z0") - Bt Z0)) ds

n41 a 282
E/ /L?NB w2y + 2a_y2]

< (G0.20) (B6.25") - 5, 72)) ) doas

tnt1 —0, 0B, —o,
[ e (B
0B

+2B(tn, 7,) ~ B0.Z5")) 5 (0.7 ")

2 82 —o,
202 0, Zy y))] dfds
tny1 S 920
+E/ / [ 20,7y
tn tn dy?
( 20, Zy") — (B0, Zy") — Bltn, Zy."))? )} dbds.

Using the bounds on B and its derivatives given in Lemma [B.6] we get
EH.(x — Z2Y) — EH. (z — Zf;y

)
(3.31) <CZ/%+1/ < >d9ds.

=5(0.2,")
Using the same technique as in the computation of (B.20), we obtain that

E 8Utl7x C
oy = 94/10(¢, — §)3/5”

ov

+B|5.(0.7,")

8 Ut ,x

82

0, Z9")| < 0, Zy")| <

C
TVt =0

where the constant C' is uniform in = and y. We integrate in time in (B31) to get

and E‘

‘EHE(x — Z0%) — EH.(x - 7%‘ <COAt. O

4. CONCLUSIONS

In this paper, we have analyzed the rate of convergence of a stochastic particle
method for one-dimensional viscous scalar conservation laws and showed that the
rate of convergence is of order O(At + 1/v/N). This result is optimal in the sense
that it is observed on numerical experiments when one applies the algorithm on the
test case of the Burgers equation (see [3]).

The analysis of the algorithm with respect to the time step At is based upon
the analysis of the weak convergence of the Euler scheme. The techniques applied
let us expect that it is possible to expand the discretization error in powers of the
discretization step size At at least up to the order two.

In the case of stochastic differential equations that are linear in the sense of
McKean, such an expansion was initially showed by Talay and Tubaro [9]. The
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expansion up to the order two permits us to justify the use of the Romberg ex-
trapolation which provides a second order accuracy with respect to the time step
At.

Here, we simulated a nonlinear stochastic differential equation to compute the
numerical solution of a nonlinear PDE. The nonlinearity of the SDE implies the
simulation of a particle system. Even in this nonlinear case, it must be possible to
adapt the Romberg extrapolation as a speed-up procedure.

Figures [[H present numerical experiments on the Burgers equation (.2). We
compare the numerical solution obtained with the present version of the particle
method (for a given time step At) and a solution obtained by extrapolation between
the solutions computed for the time steps At and At/2. More precisely, for a
given At, let (Ytik’m,i =1,...,N;k = 0,...,K) be the family of discrete time

processes involved in the algorithm and defined in (Z3). We denote by Vit(x) the

corresponding numerical solution defined in ([24). For final time T' = KAt, we
define the extrapolated solution V?t’At/Q(x) by

—At,AL/2 —At/2 —At
(4.1) Vet @) = 27 (2) - V' ().

If we are able to expand the error as

—At

(4.2) Vi (z) = V(T,x) = C(x)At + O(A?) + R(w),

where the constant C(z) does not depend on At and where the random variable R is
such that E|R|| < C’/V/N for an appropriate choice of the norm || ||, then we will be

in a position to conclude that EHV?t’At/Q(m) —V(T, )| is of order O(At?+1/v/N).
In the point of view of numerical tests, Figures [I] Bland Bl give encouraging results.
But we can observe strong local error when we increase the time step At (see
Figure B for At = 0.01 and Figure [ for At = 0.05). The sensibility on At varies
according to the choice of the initial condition and the viscosity parameter o. This
phenomenon can be easily explained. The constants in the expansion (£2) must
depend on the space variable x and also on the derivatives of the solution V. This
means that we need to choose At sufficiently small to have C(z)At large enough
compared to At? for all z and to benefit from the extrapolation procedure at all
points x.

Moreover, the direct extrapolation procedure does not conserve the nature of
the measure derivative of the corresponding numerical solution V?t’mm(x). For
example, if the solution V (T, z) is the distribution function of a probability measure,
the same is true for the numerical solutions V?t(x) and V?t/z(x) but not for
V?t’mm

function.

Thus we need to explore some variants of the direct extrapolation in order to
reduce these phenomena. A tentative move in this direction could be based on the
use of the extrapolation procedure during the computation, in order to correct the
drifts of the particles, and not just at the final time.

(z). This is why in Figure @l the extrapolated solution is a nonmonotonous
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Burgers Eq.: time step=0.2; N=1 000 000 particles; final time=1; sigma=1

1 T T T T T T
EXi ution
Approximation usiTg "time step"
09 Approximation #8ing “time step/2" ------- E

Approximatign using extrapolation

2 3 4
0.98 T T T T T T T —
Exact solution
Approximation using "time step" --
Approximation using “time step/2"
B Approximation using extrapolati i
0.96 g
0.84 1 1 1 1 1 1 1 1
1.8 19 2 2.1 2.2 2.3 2.4 25 2.6 2.7

FIGURE 1. Exact and numerical solutions of the Burgers equa-
tion with initial condition V' (0,z) = H(x). The second picture
shows a zoom for z € [1.8,2.7]. The corresponding approxima-

tions of the L'-norm of the error are ||V (1,z) — VlAt(l‘)HLl(R) =

0.0991, [[V(1,2) V1> (@) 11 @y = 0.0501, [V (1, 2)—2V+ " () +

Vi (@) iy = 0.00292.
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Burgers Eq. : time step = 0.02; N=1 000 000 particles; final time = 1; sigma= 1
0.4 T T T

T
Exact solution
“Approximation using "time step”
Approximation using "time step/2"
Approxitgation using extrapolation

R

0 | 1 . )
-2 -1 0 1 5 3
0-39 T T T T T T -
Exact solution
Approximation using "time step"
0.38 proximation using "time step/2" --------

imation using extrapolation

0.36
0.35
0.34
0.33

0.32

0.3 I I I I I I
0.2 0.4 0.6 0.8 1 1.2

FIGURE 2. Exact and numerical solutions of the Burgers equa-
tion with initial condition V' (0,z) = H(z) — H(x — 1). The sec-
ond picture shows a zoom for x € [0.11,1.5]. The correspond-
ing approximations of the L!'-norm of the error are ||V (1,z) —
—At —At/2

Vi (@)llp@ = 00183, [[V(1,2) = Vi " (2)llpir) = 0.0094,

V(1 2) = 2722 (2) + Vo' (2)] 11 r) = 0.0030.

809
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Burgers Eq.: time step = 0.01; N=1 000 000 patrticles; final time = 1; sigma= 0.1
11

T
Exact solution
Approximation using "time step"
Approximation using “time step/2" -------- -
Approximation using extrapolation -

10.8

10.6

104

10.2

9.8

9.6

94 -

i

10.04

11

T
Exact soluton ——
Approximation using "time step"
Approximation using “time step/2" -------- T
proximation using extrapolation -

109 |
108 |
107 | .
10.6 |
105 |
104 |
103 |
102 |
101 |

10

9.9 1 1 1 1 1
9.97 9.975 9.98 9.985 9.99 9.995

F1cURE 3. Exact and numerical solutions of the Burgers equation
with initial condition V'(0, ) = 10 — tanh(5). The second picture
shows a zoom for z € [9.97,10]. The corresponding approxima-

tions of the L'-norm of the error are ||V (1,z) — VlAt(l‘)HLl(R) =

0.0049, V(L 2)~ V" (@) | 11y = 0.0024, [V (1,2) 273" () +

V' (@) 11wy = 0.00062.
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Burgers Eq.: time step = 0.05; N=1 000 000 particles; final time = 1; sigma=0.1

115 T T T T T T T T —T
Exact solution
Approximation using "time step"
Approximation using “time step/2" --------
Approximation using extrapolation
11 - S 4
10.5 ,
10 + B
9.5 f
9 -
8.5 1 1 1 1 1 1 1 1 1
9.9 9.92 9.94 9.96 9.98 10 10.02 10.04 10.06 10.08
11.2 T T T T T T T
Exact solution
Approximation using "time step"
..... Approximation using "time step/2" -------
Approximation using extrapolation -
11 -
10.8
10.6
10.4
10.2
10 1 1 1 1 1 1 1
9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99

FIGURE 4. Exact and numerical solutions of the Burgers equation
with initial condition V'(0, ) = 10 — tanh(5). The second picture
shows a zoom for z € [9.92,10]. The corresponding approxima-

tions of the L'-norm of the error are ||V (1,z) — VlAt(l‘)HLl(R) =

0.024, [[V(1,2) = V2 (@) | 1y = 0,012, [V(1,2) — 275 P (@) +

—At
Vi (l‘)HLl(R) = 0.0081.
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