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OPTIMAL RATE OF CONVERGENCE
OF A STOCHASTIC PARTICLE METHOD TO SOLUTIONS

OF 1D VISCOUS SCALAR CONSERVATION LAWS

MIREILLE BOSSY

Abstract. This article presents the analysis of the rate of convergence of
a stochastic particle method for 1D viscous scalar conservation laws. The
convergence rate result is O(∆t+1/

√
N), where N is the number of numerical

particles and ∆t is the time step of the first order Euler scheme applied to the
dynamic of the interacting particles.

1. Introduction

We consider the following one-dimensional viscous scalar conservation law: ∂V

∂t
(t, x) =

σ2

2
∂2V

∂x2
(t, x)− ∂

∂x
A (V (t, x)) , ∀ (t, x) ∈ (0, T ]× R,

V (0, x) = V0(x), ∀x ∈ R.
(1.1)

We assume that A : R→ R is a C3 function and σ > 0. In this article, we analyze
the rate of convergence of a stochastic particle method for the numerical solution
of (1.1), when the initial condition V0 is the cumulative distribution function of a
probability measure on R.

When A(v) = v2/2, the conservation law (1.1) is the viscous Burgers equation ∂V

∂t
(t, x) =

σ2

2
∂2V

∂x2
(t, x)− V (t, x)

∂V

∂x
(t, x), (t, x) ∈ (0, T ]× R,

V (0, x) = V0(x), ∀x ∈ R.
(1.2)

A previous work proposes a stochastic particle method for the numerical solution
of the Burgers equation (see Bossy and Talay [2, 3]). The method is based upon
the probabilistic interpretation of the Burgers equation as the evolution equation
of the cumulative distribution function of a stochastic nonlinear process (in the
sense of McKean). The algorithm is inspired by a propagation of chaos result for
the system of interacting particles associated with the nonlinear process. Under
suitable hypotheses on the initial data V0, we proved a convergence rate of order
O(1/

√
N+
√

∆t) for the L1(R×Ω) norm of the error. N is the number of simulated
interacting particles and ∆t is the time step of the discretization by the Euler scheme
of the stochastic differential system that governs the particles motion.
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For the Burgers case, numerical experiments confirm the order O(1/
√
N) for the

dependence on N , but suggest that the dependence in ∆t is of order O(∆t) rather
than O(

√
∆t) (see [3, 1]). In this previous work, we used estimates on the rate of

convergence in L2(Ω) for the Euler scheme whereas, in this sort of numerical com-
putation, the averaging effect due to the propagation of chaos phenomena suggests
that we should analyze the discretization error with estimates on the weak rate of
convergence for the Euler scheme.

In this article, we extend the stochastic particle method for the Burgers equation
in the general context of the viscous scalar conservation law (1.1) and we prove a
theoretical rate of convergence of order O(1/

√
N + ∆t).

To construct the algorithm, we follow Jourdain [6] who gives a probabilistic
interpretation of nonlinear parabolic PDEs such as the viscous scalar conserva-
tion law (1.1), when A is a C1 function and V0 is a nonconstant function with
bounded variation. In order to lighten the presentation of the algorithm and
the convergence analysis, we restrict ourselves to the case of an initial condition
V0(x) = m0((−∞, x]) = H ∗m0(x), where m0 is a probability measure on R and
H(x) = ll {x≥0} denotes the Heaviside function.

In [6], Jourdain provides a natural way to connect (1.1) with a nonlinear mar-
tingale problem and proves a propagation of chaos result for the suitable system of
weakly interacting particles. Here, we briefly present the main ideas of the prob-
abilistic interpretation of (1.1), when V0(x) = H ∗m0(x) and m0 is a probability
measure, as well as some results in [6] on which we base our numerical algorithm:
for a probability measure P on C([0,+∞),R), we define the flow (Pt)t≥0 of proba-
bility measures on R by Pt = P ◦X−1

t , where X denotes the canonical process on
C([0,+∞),R). Let C2

b (R) be the set of bounded functions with bounded first and
second order derivatives. We associate to (1.1) the following martingale problem:

Definition 1.1. The probability measure P ∈ P(C([0,+∞),R)) is a solution of
the nonlinear martingale problem M, starting at m0, if P0 = m0 and

φ(Xt)− φ(X0)−
∫ t

0

(
σ2

2 φ
′′(Xs) + A′(H ∗ Ps(Xs))φ′(Xs)

)
ds

is a P -martingale, for any φ ∈ C2
b (R).

(1.3)

We define a system of N particles in mean field interaction by the following
stochastic differential equation:

X i,N
t =X i,N

0 + σW i
t +

∫ t

0

A′

 1
N

N∑
j=1

H(X i,N
s −Xj,N

s )

 ds,

=X i,N
0 + σW i

t +
∫ t

0

A′
(
H ∗ µNs (X i,N

s )
)
ds, 1 ≤ i ≤ N,

where µN = 1
N

∑N
i=1 δXi,N is the empirical measure of the particles and (W 1, . . . ,

WN ) is an N -dimensional Brownian motion independent of the initial variables
(X1,N

0 , . . . , XN,N
0 ) which are i.i.d. with law m0.

Proposition 1.2 (Jourdain [6]). The martingale problemM starting at m0 admits
a unique solution P and the particle systems (X1,N , . . . , XN,N) are P -chaotic; that
is, for a fixed j ∈ N∗, the law of (X1,N , . . . , Xj,N) converges weakly to P

⊗
j as

N −→ +∞. Moreover, (1.1) has a unique bounded weak solution given by V (t, x) =
H ∗ Pt(x).
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The propagation of chaos result implies that the empirical cumulative distribu-
tion function H ∗ µNt (x) = 1

N

∑N
i=1H(x − X i,N

t ) of the particle system at time t
converges in L1(Ω) to the weak solution V (t, x) of (1.1) (see [6]). In practice, the
X i,N
t cannot be computed exactly. The algorithm involves their approximation by

a discrete-time stochastic process (Y ik∆t, 1 ≤ i ≤ N), where ∆t is a discretization
step of the time interval [0, T ]. The function V (k∆t, x) is approximated thanks to
the empirical cumulative distribution function

V k∆t(x) =
1
N

N∑
i=1

H(x− Y ik∆t)

of the numerical particle system.
Under smoothness hypotheses on V0 and A, we prove that

E‖V (T, ·)− V T (·)‖L1(R) + sup
x∈R

(
E
∣∣V (T, x)− V T (x)

∣∣) = O
(

1√
N

+ ∆t
)
.

The first work on the optimal rate of convergence of the Euler scheme for inter-
acting particle systems is due to Kohatsu-Higa and Ogawa [7]. They analyze the
convergence of the weak approximation of a general nonlinear diffusion process of
the form:  dXt = a(Xt, F ∗ ut(Xt))dt+ b(Xt, G ∗ ut(Xt))dWt,

where ut is the law of Xt,
Xt=0 = X0 with law m0.

(1.4)

Assuming that the functions a, b, F and G are smooth with bounded derivatives,
they use Malliavin calculus to show that, for any C∞ function f whose derivatives
have polynomial growth at infinity,

E

∣∣∣∣∣ 1
N

N∑
i=1

f(X̄ i
k∆t)− Ef(Xtk)

∣∣∣∣∣ ≤ C(
1√
N

+ ∆t),

where C is independent of ∆t and N but depends on f and (X̄ i
k∆t)i=1,...,N is the

corresponding discrete time system of interacting particles.
In the context of the present paper, a is A′, the diffusion coefficient b is a constant

and F is the bounded but discontinuous Heaviside function H . Furthermore, we
approximate the cumulative distribution function of Xt. The main difficulty in our
analysis of the rate of convergence is the discontinuity of the kernel H . We do not
use Malliavin calculus, but we take advantage of the constant diffusion coefficient
to adapt some techniques developed by Talay and Tubaro [9] in their study of the
global error of the Euler scheme for stochastic differential equations that are linear
in the sense of McKean.

We should mention that the algorithm and its rate of convergence result could
be extended to a larger class of initial data by considering V0 as the distribution
function of a signed and finite measure. Instead of identical weights equal to 1/N ,
the particles should have signed weights, fixed at time 0 and chosen according to
the signed initial measure m0. See [6] for the probabilistic interpretation of (1.1) in
this particular case and [3] for a description of the algorithm using signed weights
for the Burgers equation (1.2).

In Section 2, we describe the algorithm and state our main result. Section 3 is
devoted to the proof of the rate of convergence. In Section 4, we conclude by giving
some numerical experiments using a Romberg extrapolation procedure between
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approximation values produced by the Euler scheme to speed up the convergence
with respect to the time step. Our analysis of the convergence, based on the weak
convergence of the Euler scheme, lets us expect that an expansion of the error up
to the order two in term of ∆t may be proved, which will justify the Romberg
extrapolation.

2. Algorithm and convergence rate

Let us state our hypotheses.

(H1) The function A is of class C3 and σ > 0.
(H2) There exists a probability measure m0 on R such that the initial condition

of (1.1) is given by

V0(x) = H ∗m0(x).

(H3) (i) The measure m0 is absolutely continuous with respect to the Lebesgue
measure. Its density U0 is a bounded function with a bounded first order
derivative.
(ii) Moreover, there exist constants M > 0, η ≥ 0 and α > 0 such that
|U0|(x) ≤ η exp(−αx2/2), when |x| > M .

Hypotheses (H2) and (H3) both concern the initial data V0. (H2) restricts the
framework of the algorithm presented below to a particle method with identical
weights 1/N . It could be extend to V0(x) = β + H ∗ m0(x), where m0 6= 0 is
a signed and bounded measure and β is a constant, using signed and weighted
particles. (H3)(i) states that V0(x) is in C2

b (R) and implies, combined with (H1),
that the weak solution V (t, x) of (1.1) given in Proposition 1.2 is the classical one.
More precisely, V (t, x) is a bounded function in C1,2([0, T ] × R) (C1 in the time
variable t and C2 in the space variable x), with bounded first order derivatives in
t and x and a bounded second order derivative in x (see Remark 3.7). (H3)(ii),
which controls the decay at infinity of the first order derivative of V0, allows us
to upper-bound the L1(R)-norm of the error at time 0. The exponential decay
assumed with (H3)(ii) permits us to conclude easily (see Lemma 2.1).

We construct a family (yi0)1≤i≤N of initial positions such that the piecewise
constant function

V 0(x) =
1
N

N∑
i=1

H(x− yi0)

approximates V0(x) = H ∗ U0(x). For example, we can choose deterministic posi-
tions by inverting the function V0(x):

yi0 =


inf{y;

∫ y

−∞
U0(x)dx =

i

N
}, i = 1, . . . , N − 1,

inf{y;
∫ y

−∞
U0(x)dx = 1− 1

2N
}, i = N.

By construction,

‖V0 − V 0‖L∞(R) ≤ 1/N,(2.1)

and the convergence for the L1(R)-norm is described by
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Lemma 2.1. (Bossy and Talay [3]). Assume (H3). Then, there exists a constant
C depending on U0 such that

‖V0 − V 0‖L1(R) ≤ C
√

log(N)/N.

If the density U0 has a compact support, the bound is C/N .

Let m0 denote the associated empirical measure

m0 =
1
N

N∑
i=1

δyi0 .(2.2)

With N fixed, on a filtered probability space (Ω,F ,P, (Ft)t≥0), we consider an
N -dimensional (Ft)-Brownian motion (W 1, . . . ,WN ). As suggested by the propa-
gation of chaos result (Proposition 1.2), to construct an approximation of V (t, x),
we have to move the N particles according to the following system of stochastic
differential equations dX i

t = σdW i
t +A′

 1
N

N∑
j=1

H(X i
t −X

j
t )

 dt,

X i
0 = yi0, i = 1, . . . , N.

The piecewise constant function

V̂ (t, x) =
1
N

N∑
i=1

H(x−X i
t)

approximates V (t, x) with an error depending on N only. To get a simulation
procedure for a trajectory of each (X i), we discretize in time. We choose ∆t and
K ∈ N such that T = ∆tK and denote by tk = k∆t the discrete times, with
1 ≤ k ≤ K. The Euler scheme leads to the following discrete-time system Y itk+1

= Y itk + σ
(
W i
tk+1
−W i

tk

)
+ ∆tA′

 1
N

N∑
j=1

H(Y itk − Y
j
tk)

 ,

Y i0 = yi0, i = 1, . . . , N.

(2.3)

We approximate V (tk, x), the solution of (1.1), by the piecewise constant function

V tk(x) =
1
N

N∑
i=1

H(x− Y itk).(2.4)

The estimate on the convergence rate is

Theorem 2.2. Assume (H1), (H2) and (H3). For T > 0 fixed, let ∆t > 0 be such
that T = ∆tK, K ∈ N. Let V (tk, x) be the solution at time tk = k∆t of (1.1) with
initial condition V0. Let V tk(x) be defined as in (2.4) with N particles. Then there
exists a positive constant C, depending only on V0, A, σ and T , such that for all k
in {1, . . . ,K},

sup
x∈R

E
∣∣V (tk, x)− V tk(x)

∣∣ ≤ C (‖V0 − V 0‖L∞(R) +
1√
N

+ ∆t
)

and

E
∥∥V (tk, ·)− V tk(·)

∥∥
L1(R)

≤ C
(
‖V0 − V 0‖L1(R) +

1√
N

+ ∆t
)
.
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3. Proof of Theorem 2.2

In the sequel, we will use the continuous version of the discrete time processes
(Y i), which consists in freezing the drift coefficient on each interval [tk, tk+1]:

Y it = yi0 +
∫ t

0

A′
(
V η(s)(Y iη(s))

)
ds+ σW i

t ,(3.1)

where η(s) = supk∈[0,...,K]{tk; tk ≤ s}. Also C denotes any positive constant de-
pending only on T , σ, A and V0; for any strictly positive constant α, gα denotes
the Gaussian density function

gα(x) =
1√
2πα

exp
(
− x

2

2α

)
.

According to the probabilistic interpretation given in Section 1, the solution of
(1.1) is given by

V (t, x) = H ∗ Pt(x) = EP (H(x−Xt)),

where P is the solution of the martingale problem (1.3) and X denotes the canonical
process on C([0,+∞),R). We define the real valued function B(t, x) by

B(t, x) = A′(V (t, x)), (t, x) ∈ [0, T ]× R(3.2)

and consider the Markov process (Z) solution of Zt = Z0 +
∫ t

0

B(s, Zs)ds+ σWt, t ∈ [0, T ],

Z0 with law m0,
(3.3)

where (W ) is a one-dimensional Brownian motion independent of (W 1, . . . ,WN ).
By Proposition 1.2, the law of (Z) solves the martingale problem (1.3) and thus
V (t, x) = EH(x− Zt).

Let (Z0,y) be the solution of the stochastic differential equation (3.3) with the
deterministic initial condition y at time 0 (i.e., Z0 = y). More generally, for any
0 ≤ s ≤ T , (Zs,yt , t ∈ [s, T ]) denotes the solution of

Zs,yt = y +
∫ t

s

B(θ, Zs,yθ )dθ + σ(Wt −Ws), t ∈ [s, T ].(3.4)

We will prove below that the drift function B(t, x) is smooth, so that the strong
existence and uniqueness of this solution are ensured.

Let k be in {1, . . . ,K}. To prove Theorem 2.2, we start from

V (tk, x)− V tk(x) = EH(x− Ztk)− 1
N

N∑
i=1

H(x− Y itk).

First, we introduce an artificial smoothing of the Heaviside function. For an arbi-
trary constant ε > 0, we define the function Hε(x) = gε ∗H(x) and we decompose
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the expression above into four parts:

V (tk, x)− V tk(x) = EH(x − Ztk)− EHε(x − Ztk)

+
∫
R
EHε(x− Z0,y

tk )m0(dy)−
∫
R
EHε(x− Z0,y

tk )m0(dy)

+
1
N

N∑
i=1

[
EHε(x− Z0,yi0

tk
)−Hε(x − Y itk)

]
+

1
N

N∑
i=1

[
Hε(x− Y itk)−H(x− Y itk)

]
.

(3.5)

The first and last terms are smoothing errors and will tend to zero with ε. The
second term corresponds to the propagation at time tk of the initialization error
|V0(x) − V 0(x)|.

To let the reader understand the third term, we transform it: for any time tk
and any x ∈ R, we consider the partial differential equation

∂vtk,x
∂s

(s, y) +
1
2
σ2 ∂

2vtk,x
∂y2

(s, y) +B(s, y)
∂vtk,x
∂y

(s, y) = 0,

∀(s, y) ∈ [0, tk)× R,
vtk,x(tk, y) = Hε(x− y), ∀y ∈ R.

(3.6)

From Lemma 3.9 below, (3.6) has a unique bounded classical solution vtk,x(s, y)
that is a bounded function in C1,2([0, tk)×R). Hence, by the Feynman-Kac repre-
sentation of a Cauchy problem, vtk,x(s, y) = EHε(x− Zs,ytk ) and

EHε(x− Z0,yi0
tk

)−Hε(x− Y itk) = vtk,x(0, yi0)− vtk,x(tk, Y itk)

=
k−1∑
l=0

(
vtk,x(tl, Y itl)− vtk,x(tl+1, Y

i
tl+1

)
)
.

As vtk,x is solution of (3.6), the Itô formula gives

1
N

N∑
i=1

(
EHε(x− Z0,yi0

tk
)−Hε(x− Y itk)

)
=

1
N

N∑
i=1

k−1∑
l=0

∫ tl+1

tl

∂vtk,x
∂y

(s, Y is )
(
B(s, Y is )−A′

(
V tl(Y

i
tl

)
))
ds

− 1
N

N∑
i=1

∫ tk

0

σ
∂vtk,x
∂y

(s, Y is )dW i
s .

(3.7)

The second term of the right-hand side of (3.7) is a statistical error. We will bound
the expectation of its absolute value by C/

√
N . The first term in the right-hand

side of (3.7) is the discretization error where the most important difficulties of the
proof are concentrated.

In the next subsections, we give the proof of these four lemmas:

Lemma 3.1. Smoothing error. For any x in R,
∫
R
|H(x−z)−Hε(x−z)|dz ≤ C

√
ε.

Assume (H1), (H2) and (H3). Then,

sup
x∈R
|EH(x − Ztk)− EHε(x− Ztk)| ≤ C

√
ε(3.8)
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and for any i and j in {1, . . . , N}, with j 6= i, and any k in {1, . . . ,K},

sup
x∈R

E
∣∣Hε(x− Y itk)−H(x− Y itk)

∣∣ ≤ C√ε/√∆t,

E
∣∣∣Hε(Y

j
tk − Y

i
tk)−H(Y jtk − Y

i
tk)
∣∣∣ ≤ C√ε/√∆t.

(3.9)

The positive constant C depends on V0, A, σ and T only.

Lemma 3.2. Initialization error. Assume (H1), (H2) and (H3). For all k in
{1, . . . ,K},

sup
x∈R

∣∣∣∣∫
R
EHε(x − Z0,y

tk )m0(dy)−
∫
R
EHε(x− Z0,y

tk )m0(dy)
∣∣∣∣

≤ C‖V0 − V 0‖L∞(R)

and ∥∥∥∥∫
R
EHε(· − Z0,y

tk )m0(dy)−
∫
R
EHε(· − Z0,y

tk )m0(dy)
∥∥∥∥
L1(R)

≤ C‖V0 − V 0‖L1(R).

The positive constant C depends on V0, A, σ and T only.

Lemma 3.3. Statistical error. Assume (H1), (H2) and (H3). For all k in
{1, . . . ,K},

sup
x∈R

E

∣∣∣∣∣ 1
N

N∑
i=1

∫ tk

0

σ
∂vtk,x
∂y

(s, Y is )dW i
s

∣∣∣∣∣ ≤ C√
N

and

E

∥∥∥∥∥ 1
N

N∑
i=1

∫ tk

0

σ
∂vtk,·
∂y

(s, Y is )dW i
s

∥∥∥∥∥
L1(R)

≤ C√
N
.

The positive constant C depends on V0, A, σ and T only.

Lemma 3.4. Discretization error. Assume (H1), (H2) and (H3). For all k in
{1, . . . ,K},

sup
x∈R

E

∣∣∣∣∣ 1
N

N∑
i=1

k−1∑
l=0

∫ tl+1

tl

∂vtk,x
∂y

(s, Y is )
(
B(s, Y is )−A′

(
V tl(Y

i
tl

)
))
ds

∣∣∣∣∣
≤ C(

1√
N

+ ∆t)

and

E

∥∥∥∥∥ 1
N

N∑
i=1

k−1∑
l=0

∫ tl+1

tl

∂vtk,·
∂y

(s, Y is )
(
B(s, Y is )−A′

(
V tl(Y

i
tl

)
))
ds

∥∥∥∥∥
L1(R)

≤ C(
1√
N

+ ∆t).

The positive constant C depends on V0, A, σ and T only.
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We choose ε = ∆t3. Estimates of the four above lemmas combined with equalities
(3.7) and (3.5) prove Theorem 2.2.

The section is organized as follows. In Subsection 3.1, we prove some preliminary
estimates and regularity results on the drift function B and on the solution vtk,x of
equation (3.6). Then, we successively prove Lemmas 3.1, 3.2 and 3.3. We finish by
the proof of the main Lemma 3.4.

3.1. Preliminary lemmas. Consider the process (Z) solution of (3.3). The drift
function B defined in (3.2) is bounded by sup[0,1] |A′(v)|. Hence, by the Girsanov
theorem, for any t > 0, Zt has a density denoted by U(t, ·). Furthermore,

Remark 3.5. The transition probability P(t, dz; s, Zs = y) has a density that we
denote by Γ(t, z; s, y), which is in L2(R). Moreover, for all y ∈ R,

‖Γ(t, ·; s, y)‖L2(R) ≤
C

(t− s)1/4
,

where the positive constant C depends on σ, T and A only and, therefore, is
uniform in y. This can be proven by using the Girsanov theorem (see the proof of
Proposition 1.1 in [8]). In particular, U(t, ·) is in L2(R) for all t > 0 and, without
any hypothesis on m0,

‖U(t, ·)‖L2(R) ≤
C

t1/4
.

Lemma 3.6. Assume (H1), (H2) and (H3). The density U(t, x) of Zt is bounded
uniformly in t ∈ [0, T ] and has a first partial derivative in x which is bounded
uniformly in t ∈ [0, T ]. The function B(t, x) is in C1,2([0, T ]×R) and its derivatives
∂B
∂t (t, x), ∂B∂x (t, x) and ∂2B

∂x2 (t, x) are bounded uniformly in t ∈ [0, T ].

Remark 3.7. Even if this is not explicitly stated in Lemma 3.6, one can easily deduce
from the following proof that V is in C1,2([0, T ] × R) with bounded first order
derivatives in the time and space variables and bounded second order derivative
in the space variable. Thus, V is the bounded classical solution of the scalar
conservation law (1.1).

Proof. For all t > 0, gσ2t(x) denotes the density of the Gaussian random variable
σWt. Let St be the corresponding semi-group defined by Stf = gσ2t ∗ f . Let us
show that U is the unique weak solution in L1(R) of the following integral linear
Fokker Planck equation

pt = StU0 −
∫ t

0

∂

∂x
St−s (B(s, ·)ps) ds, ∀ t ∈ ]0, T ], p0 = U0,(3.10)

where U0 is the density of m0. We will deduce from (3.10) the regularity results
of the lemma. For a fixed t in (0, T ] and a function f in C∞(R) with compact
support, we set G(s, x) = St−sf(x), for all s ∈ [0, t). Then, G is the solution of the
backward heat equation ∂G

∂s
+

1
2
σ2 ∂

2G

∂x2
= 0, 0 ≤ s < t,

G(t, x) = f(x).

By applying Itô’s formula to G(t, Zt) and taking the expectation, we obtain that∫
R
f(x)U(t, x)dx =

∫
R
G(0, x)U0(x)dx +

∫ t

0

∫
R

∂G

∂x
(s, x)B(s, x)U(s, x)dx
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and the definition of G(s, x) leads to∫
R
f(x)U(t, x)dx =

∫
R
Stf(x)U0(x)dx

+
∫ t

0

∫
R

(∫
R
g′σ2(t−s)(x− y)f(y)dy

)
B(s, x)U(s, x)dxds.

Moreover,∫ t

0

∫
R

(∫
R
g′σ2(t−s)(x− y)f(y)dy

)
B(s, x)U(s, x)dxds

= −
∫ t

0

∫
R
f(y)

∂

∂y

(∫
R
gσ2(t−s)(x− y)B(s, x)U(s, x)dx

)
dyds

= −
∫ t

0

∫
R
f(y)

∂

∂y
St−s (B(s, ·)U(s, ·)) (y)dyds.

Hence, ∫
R
f(x)U(t, x)dx =

∫
R
f(x)StU0(x)dx

−
∫ t

0

∫
R
f(x)

∂

∂x
St−s (B(s, ·)U(s, ·)) (x)dxds

which means that U satisfies (3.10) in the weak sense. Now, consider two solutions
p1 and p2 in L1(R) of (3.10). For all t ∈ (0, T ],

‖p1
t − p2

t‖L1(R) =
∥∥∥∥∫ t

0

∂

∂x
St−s

(
B(s, ·)(p1

s − p2
s)
)
ds

∥∥∥∥
L1(R)

≤ sup
u∈[0,1]

|A′(u)|
∫ t

0

∥∥∥g′σ2(t−s)

∥∥∥
L1(R)

∥∥p1
s − p2

s

∥∥
L1(R)

ds

≤
∫ t

0

C√
t− s

∥∥p1
s − p2

s

∥∥
L1(R)

ds.

We conclude on the uniqueness of the solution of (3.10) by applying Gronwall’s
lemma. We have now that for all t ∈ (0, T ] and x ∈ R,

U(t, x) = gσ2t ∗ U0(x)−
∫ t

0

g′σ2(t−s) ∗ (B(s, ·)U(s, ·)) (x)ds.(3.11)

Let us prove that U is bounded uniformly in t ∈ [0, T ].

U(t, x) ≤‖U0‖L∞(R) + sup
[0,1]

|A′|
∫ t

0

∫
R
|g′σ2(t−s)|(x− y)U(s, y)dyds

≤‖U0‖L∞(R) +
∫ t

0

C√
(t− s)

√∫
R
g2σ2(t−s)(x − y)U2(s, y)dyds

≤‖U0‖L∞(R) +
∫ t

0

C

(t− s)3/4s1/4
ds.

The last upper bound above is obtained by Remark 3.5. Thus, ‖U‖L∞([0,T ]×R) ≤ C,
where the constant C depends on σ, T , A and U0 only. Now we remark that
∂B
∂x (t, ·) = A′′ (EH(x− Zt))U(t, x), and hence,

∥∥∂B
∂x

∥∥
L∞([0,T ]×R)

≤ C.



STOCHASTIC PARTICLE METHOD 787

If we formally derive (3.11), we obtain that ∂U
∂x must satisfy the equation

∂U
∂x (t, x) = gσ2t ∗ U ′0(x)

−
∫ t

0 g
′
σ2(t−s) ∗

(
∂B
∂x (s, ·)U(s, ·) +B(s.·)∂U∂x (s, ·)

)
(x)ds.

(3.12)

Let us prove that ∂U
∂x satisfies (3.12) and more precisely that ∂U

∂x is in C([0, T ],
L1(R) ∩ Cb(R)), where Cb(R) denotes the set of bounded continuous functions on
R. Let E[0,T ] be the space

E[0,T ] =

{
u ∈ C([0, T ], L1(R) ∩ Cb(R)), ‖u‖E[0,T ] = sup

t∈[0,T ]

‖u(t)‖E < +∞
}
,

with ‖f‖E = ‖f‖L1(R) + sup
x∈R
|f(x)|+ ‖

∫ ·
−∞

f(y)dy‖L1(R). Let Υ : E[0,T ] −→ E[0,T ]

be defined by

Υ(u)(t, x) =gσ2t ∗ U ′0(x)

−
∫ t

0

g′σ2(t−s) ∗
(
∂B

∂x
(s, ·)

(∫ ·
−∞

u(s, y)dy
)

+B(s, ·)u(s, ·)
)

(x)ds.

We will show that ∂U
∂x is the fixed point in E[0,T ] of the application Υ. For u1 and

u2 in E[0,T ],(
Υ(u1)−Υ(u2)

)
(t, x)

=
∫ t

0

g′σ2(t−s) ∗
(
∂B

∂x
(s, ·)

(∫ ·
−∞

(u1 − u2)(s, y)dy
)

+B(s, ·)(u1 − u2)(s, ·)
)

(x)ds.

An easy computation shows that∥∥(Υ(u1)−Υ(u2))(t)
∥∥
E

≤
∫ t

0

‖g′σ2(t−s)‖L1(R)

∥∥∥∥|B|+ |∂B∂x |
∥∥∥∥
L∞([0,T ]×R)

‖(u1 − u2)(s)‖Eds.

Let t0 such that
∫ t0

0
2D√

2πσ2(t−s)
ds = 1

2 , where D =
∥∥|B|+ |∂B∂x |∥∥L∞([0,T ]×R)

. We

deduce from the previous inequality that Υ is a contraction on E[0,t0] and we denote
ν its fixed point. For any u ∈ E[0,T ] and t ∈ (t0, T ], we remark that

Υ(u)(t, x) =gσ2(t−t0) ∗Υ(u(t0))(x)

−
∫ t

t0

g′σ2(t−s) ∗
(
∂B

∂x
(s, ·)

(∫ ·
−∞

u(s, y)dy
)

+B(s, ·)u(s, ·)
)

(x)ds.

If ν1 and ν2 in E[0,2t0] are such that ν1(t) = ν2(t) = ν(t) for t ∈ [0, t0], from the
expression above we easily get that∥∥(Υ(ν1)−Υ(ν2))(t)

∥∥
E

≤
∫ 2t0

t0

‖g′σ2(t−s)‖L1(R)

∥∥∥∥|B(s, ·)|+ |∂B
∂x

(s, ·)|
∥∥∥∥
L∞(R)

‖(ν1 − ν2)(s)‖Eds

and then
∥∥(Υ(ν1)−Υ(ν2))(t)

∥∥
E[t0,2t0]

≤ 1
2‖(ν1 − ν2)‖E[t0,2t0] . Repeating this pro-

cedure, we construct the fixed point ν of Υ on E[0,T ]. Now, we remark that the
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function (t, x) −→
∫ x
−∞ ν(t, y)dy is the solution in L1(R) of (3.10). By the unique-

ness of the solution of (3.10), U(t, x) =
∫ x
−∞ ν(t, y)dy and ∂U

∂x (t, x) = ν(t, x). From
(3.12),

‖∂U
∂x

(t, ·)‖L∞(R)

≤ ‖U ′0‖L∞(R) +
√
TD√

2πσ2
‖U‖L∞([0,T ]×R) +

∫ t

0

2D√
2πσ2(t− s)

‖∂U
∂x

(s, ·)‖L∞(R)ds.

We conclude that ∂U
∂x is bounded uniformly in t ∈ [0, T ] by Gronwall’s lemma.

Moreover, for all (t, x) ∈ [0, T ]× R,

∂2B

∂x2
(t, x) = A′′′ (EH(x− zt))U2(t, x) +A′′ (EH(x− zt))

∂U

∂x
(t, x)

and ‖∂
2B

∂x2
‖L∞([0,T ]×R) ≤ C. To finish the proof, we have to bound the derivative

in time of the function B. We have

∂

∂t
B(t, x) = A′′(EH(x− Zt))

∂

∂t
EH(x− Zt)

where, by (3.11),

∂

∂t
EH(x− Zt)

=
∂

∂t

∫ x

−∞
U(t, y)dy

=
σ2

2
∂2

∂x2

∫ x

−∞
gσ2t ∗ U0(y)dy − ∂

∂t

∫ t

0

gσ2(t−s) ∗ (B(s, ·)U(s, ·)) (x)ds

=
σ2

2
gσ2t ∗ U ′0 −B(t, x)U(t, x) −

∫ t

0

σ2

2
g′σ2(t−s) ∗

∂

∂x
(B(s, ·)U(s, ·)) (x)ds

≤ ‖U ′0‖L∞(R) + ‖B‖L∞([0,T ]×R)‖U‖L∞([0,T ]×R) +
∫ t

0

C√
t− s

ds,

which gives that
∥∥ ∂
∂tB

∥∥
L∞([0,T ]×R)

≤ C. �

The following lemma is directly adapted from Theorem 11 in [4, Chapter 1] for
our particular one-dimensional case with constant diffusion coefficient and gives
exponential bound for the transition density of Zs,xt .

Lemma 3.8 (Friedman [4]). If the drift function B(t, x) is a bounded continuous
function on [0, T ]×R, Hölder continuous (with exponent α < 1) on R uniformly in
t, then the transition probability of the process (Zs,xt ) has a smooth density, denoted
by Γ(t, z; s, x), and there exists a positive constant C0 depending on T , B and σ,
such that for all 0 ≤ s < t ≤ T and (x, z) in R2,

Γ(t, z; s, x) ≤ C0√
t− s

exp
(
− (x− z)2

2σ̄2(t− s)

)
, ∀ σ̄ > σ.

In the sequel, we will choose σ̄ = 2σ.
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Lemma 3.9. Assume (H1), (H2) and (H3). The Cauchy problem (3.6) has a
unique bounded solution in C1,2([0, tk) × R) and there exists a positive constant C
depending only on A, σ, T and V0, such that for all (s, z) in [0, tk)× R,∣∣∣∣∂vtk,x∂z

(s, z)
∣∣∣∣ ≤ Cgε+2σ2(tk−s)(x− z).(3.13)

Moreover, for all s in [0, tk)

sup
z∈R

∥∥∥∥∂2vtk,·
∂z2

(s, z)
∥∥∥∥
L1(R)

≤ C√
tk − s

(3.14)

and

sup
x∈R

∥∥∥∥∥
∣∣∣∣∂2vtk,x
∂y2

∣∣∣∣5/4 (s, ·)
∥∥∥∥∥
L1(R)

≤ C

(tk − s)3/4
.(3.15)

Proof. Existence and uniqueness of a bounded classical solution of (3.6) can be
found in Friedman [5].

By the Feynman-Kac representation, vtk,x(s, y) = EHε(x−Zs,ytk ) and ∂vtk,x
∂y (s, y)

= −E
[
gε(x− Zs,ytk )

dZs,ytk
dy

]
, with

dZs,ytk
dy = exp

(∫ tk
s

∂B
∂x (θ, Zs,yθ )dθ

)
. As the function

∂B
∂x (t, x) is bounded in [0, T ]× R, we get∣∣∣∣∂vtk,x∂y

(s, y)
∣∣∣∣ ≤ C (gε ∗ Γ(tk, ·; s, y)) (x)

from which, by Lemma 3.8, we deduce immediately (3.13). For the second order
derivative, we have that

∂2vtk,x
∂y2

(s, y) = E

[
g′ε(x− Z

s,y
tk

)
(
dZs,ytk
dy

)2

− gε(x− Zs,ytk )
d2Zs,ytk
dy2

]
,

with
d2Zs,ytk
dy2 = exp

(∫ tk
s

∂B
∂x (θ, Zs,yθ )dθ

) ∫ tk
s

∂2B
∂x2 (u, Zs,yu ) exp

(∫ u
s
∂B
∂x (θ, Zs,yθ )dθ

)
du.

As the function ∂2B
∂x2 (t, x) is also bounded in [0, T ]× R, we get∣∣∣∣∂2vtk,x
∂y2

(s, y)
∣∣∣∣ ≤ C ((|g′ε|+ gε) ∗ Γ(tk, ·; s, y)) (x),(3.16)

from which we can only upper-bound quantities like supz∈R ‖
∂2vtk,·
∂z2

(s, z)‖L1(R) by

C/εα with α > 0. To prove (3.14) and (3.15), we proceed as follows: for all
(s, y) ∈ [0, tk) × R, we define the function utk,x(s, y) = vtk,x(tk − s, y) so that
utk,x(s, y) is the unique bounded classical solution of the Cauchy problem

∂utk,x
∂s

(s, y) =
1
2
σ2 ∂

2utk,x
∂y2

(s, y) +B(tk − s, y)
∂utk,x
∂y

(s, y),

∀(s, y) ∈ [0, tk)× R,
utk,x(0, y) = Hε(x− y), ∀y ∈ R.
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We easily deduce from this equation that for all (s, y) ∈ [0, tk)× R,

utk,x(s, y)

= Ssutk,x(0, ·)(y) +
∫ s

0

Ss−θ

(
B(tk − θ, ·)

∂utk,x
∂y

(θ, ·)
)

(y)dθ

=
∫ +∞

y

gσ2s+ε(z − x)dz +
∫ s

0

∫
R
gσ2(s−θ)(y − z)B(tk − θ, z)

∂utk,x
∂y

(θ, z)dz dθ.

Deriving the expression above two times, we get

∂2utk,x
∂y2

(s, y)

= −g′σ2s+ε(y − x)

+
∫ s

0

∫
R
g′σ2(s−θ)(y − z)

∂

∂z

(
B(tk − θ, z)

∂utk,x
∂y

(θ, z)
)
dz dθ.

With |B| and |∂B∂x | uniformly bounded, we have∣∣∣∣∂2utk,x
∂y2

∣∣∣∣ (s, y) ≤ |g′σ2s+ε|(y − x)

+ C

∫ s

0

∫
R
|g′σ2(s−θ)|(y − z)gε+2σ2θ(x− z)dz dθ

+ C

∫ s

0

∫
R
|g′σ2(s−θ)|(y − z)|∂

2utk,x
∂y2

|(θ, z)dz dθ

≤ |g′σ2s+ε|(y − x) + Cg2σ2s+ε(y − x)(3.17)

+ C

∫ s

0

∫
R
|g′σ2(s−θ)|(y − z)|∂

2utk,x
∂y2

|(θ, z)dz dθ.

In view of (3.16), x −→ ∂2utk,x
∂y2 (s, y) is in L1(R), uniformly in y and s and hence,

sup
y∈R

∫
R

∣∣∣∣∂2utk,x
∂y2

∣∣∣∣ (s, y)dx

≤ C√
ε+ σ2s

+
∫ s

0

C√
s− θ

(
sup
z∈R

∫
R

∣∣∣∣∂2utk,x
∂y2

∣∣∣∣ (θ, z)dx
)
dθ.

We apply Gronwall’s lemma to get (3.14). To prove (3.15), we start from (3.17):∣∣∣∣∂2utk,x
∂y2

∣∣∣∣5/4 (s, y) ≤ C|g′σ2s+ε|5/4(y − x) + Cg
5/4
2σ2s+ε(y − x)

+
(
C

∫ s

0

∫
R
|g′σ2(s−θ)|(y − z)|∂

2utk,x
∂y2

|(θ, z)dzdθ
)5/4

≤ C

(σ2s+ ε)3/4
g2σ2s+2ε(y − x)

+
∫ s

0

∫
R

C

(s− θ)5/8

∣∣∣∣∂2utk,x
∂y2

∣∣∣∣5/4 (θ, z)g2σ2(s−θ)(y − z)dz dθ.
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Hence, ∫
R

∣∣∣∣∂2utk,x
∂y2

∣∣∣∣5/4 (s, y)dy

≤ C

(σ2s+ ε)3/4
+
∫ s

0

C

(s− θ)5/8

∫
R

∣∣∣∣∂2utk,x
∂y2

∣∣∣∣5/4 (θ, z)dzdθ,

from which we conclude by Gronwall’s lemma. �

3.2. Estimates on the smoothing error.

Proof of Lemma 3.1. First, we observe that ∀z ∈ R, Hε(z) = EH(z −Wε). Then,
for any x in R,∫

R
|H(x− z)−Hε(x − z)|dz ≤ E

∫
R
|H(x− z)−H(x− z −Wε)|dz

= E|Wε| =
2
√
ε√

2π
.

With the density U(t, z) of Zt bounded in z ∈ R, uniformly in t,

|EH(x− Ztk)− EHε(x− Ztk)| ≤
∫
R
|H(x− z)−Hε(x− z)|U(tk, z)dz ≤ C

√
ε,

which gives (3.8). Now, for any x ∈ R and k ≥ 1,

E|H(x− Y itk)−Hε(x− Y itk)|

= E
(
EFtk−1 |H(x− Y itk−1

−∆tA′(V tk−1(Y itk−1
))− σW∆t)

−Hε(x− Y itk−1
−∆tA′(V tk−1(Y itk−1

))− σW∆t)|
)

=
∫
R
gσ2∆t(z)E

∣∣∣H(x− Y itk−1
−∆tA′(V tk−1(Y itk−1

))− z)

−Hε(x− Y itk−1
−∆tA′(V tk−1(Y itk−1

))− z)
∣∣∣ dz

≤ C
√
ε√

∆t
.

Similarly, for i 6= j, with the Brownian motions (W i) and (W j) independent,

E|H(Y jtk − Y
i
tk)−Hε(Y

j
tk − Y

i
tk)|

=
∫
R
g2σ2∆t(z)E

∣∣∣H(Y jtk−1
+ ∆tA′(V tk−1(Y jtk−1

))

−Y itk−1
−∆tA′(V tk−1(Y itk−1

))− z)

−Hε(Y
j
tk−1

+ ∆tA′(V tk−1(Y jtk−1
))

− Y itk−1
−∆tA′(V tk−1(Y itk−1

))− z)
∣∣∣ dz

≤ C
√
ε√

∆t

from which we deduce (3.9). �
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3.3. Estimates on the initialization error.

Proof of Lemma 3.2. For all t > 0, the function y −→ EHε(x − Z0,y
t ) is

differentiable and ∂
∂yEHε(x − Z0,y

t ) = −E(gε(x − Z0,y
t )dZ

0,y
t

dy ), where dZ0,y
t

dy =

exp(
∫ t

0
∂B
∂x (s, Z0,y

s )ds) ≤ C. By integration by parts,∫
R
EHε(x− Z0,y

t )m0(dy) = EHε(x− Z0,0
t )−

∫ 0

−∞

∂

∂y
EHε(x− Z0,y

t )V0(y)dy

+
∫ +∞

0

∂

∂y
EHε(x− Z0,y

t )(1 − V0(y))dy.

Similarly,∫
R
EHε(x− Z0,y

t )m0(dy)

=
∫ 0

−∞
EHε(x− Z0,y

t ) dV 0(y) −
∫ +∞

0

EHε(x− Z0,y
t ) d(1− V 0(y))

and the integration by parts formula for a Stieltjes integral gives∫
R
EHε(x− Z0,y

t )m0(dy) =EHε(x− Z0,0
t )−

∫ 0

−∞

∂

∂y
EHε(x− Z0,y

t )V 0(y)dy

+
∫ +∞

0

∂

∂y
EHε(x− Z0,y

t )(1 − V 0(y))dy.

Thus, we obtain the following expression for the initialization error∫
R
EHε(x− Z0,y

t )m0(dy)−
∫
R
EHε(x− Z0,y

t )m0(dy)

=
∫
R

∂

∂y
EHε(x− Z0,y

t )(V 0(y)− V0(y))dy,

from which we deduce that

sup
x∈R

∣∣∣∣∫
R
EHε(x− Z0,y

tk
)m0(dy)−

∫
R
EHε(x− Z0,y

tk
)m0(dy)

∣∣∣∣
≤ C‖V0 − V 0‖L∞(R) sup

x∈R

∫
R
Egε(x− Z0,y

tk
)dy

and ∥∥∥∥∫
R
EHε(x− Z0,y

tk
)m0(dy)−

∫
R
EHε(x− Z0,y

tk
)m0(dy)

∥∥∥∥
L1(R)

≤ C‖V0 − V 0‖L1(R) sup
y∈R

∫
R
Egε(x − Z0,y

tk
)dx.

In view of Lemma 3.8, the exponential bound for the density of Z0,y
t gives

Egε(x− Z0,y
tk ) ≤ Cgε+2σ2tk(x− y),

from which we easily conclude. �
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3.4. Estimates on the statistical error.

Proof of Lemma 3.3. We consider the statistical error

E

∣∣∣∣∣ 1
N

N∑
i=1

∫ tk

0

σ
∂vtk,x
∂y

(s, Y is )dW i
s

∣∣∣∣∣ .
From (3.13), ∂vtk,x

∂y (s, y) is uniformly bounded on [0, tk] × R by C/
√
ε. Then, by

the Cauchy-Schwarz inequality, for all x ∈ R,

E

∣∣∣∣∣ 1
N

N∑
i=1

∫ tk

0

σ
∂vtk,x
∂y

(s, Y is )dW i
s

∣∣∣∣∣ ≤
√√√√E( 1

N

N∑
i=1

∫ tk

0

σ
∂vtk,x
∂y

(s, Y is )dW i
s

)2

≤

√√√√ 1
N2

N∑
i=1

∫ tk

0

σ2E
(
∂vtk,x
∂y

(s, Y is )
)2

ds.

For each i in {1, . . . , N}, let (Zit )0≤t≤T be defined by

Zit = exp

(∫ t

0

A′(V η(s)(Y iη(s)))

σ2
dY is −

1
2

∫ t

0

(A′(V η(s)(Y iη(s))))
2

σ2
ds

)
.(3.18)

By the Girsanov theorem, under the probability Qi such that (dQi/dP)|Ft = 1/Zit ,
(Y it /σ)0≤t≤T is a one-dimensional Brownian motion on (Ω,FT ,Qi), starting at yi0/σ
and

E
(
∂vtk,x
∂y

(s, Y is )
)2

= EQ
i

[(
∂vtk,x
∂y

(s, Y is )
)2

Zis

]
,

where EQi denotes the expectation under Qi. Moreover,

EQ
i

(Zi 2
s ) ≤ exp

(
s

σ2
sup
v∈[0,1]

|A′(v)|2
)
≤ C.

Using the Cauchy-Schwarz inequality and Lemma 3.9,

E
(
∂vtk,x
∂y

(s, Y is )
)2

≤ C

√
E
(
∂vtk,x
∂y

(s, yi0 + σWs)
)4

≤ C
√(

g4
ε+2σ2(tk−s) ∗ gσ2s

)
(x− yi0).

An easy computation shows that for any z ∈ R,√
g4
ε+2σ2(tk−s) ∗ gσ2s(z) ≤ C

t
1/4
k (tk − s)3/4

φ(z),
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where the function φ is defined on R by φ(z) = exp(−z2/(ε+ 4σ2tk)). Finally, for
all x ∈ R,

E

∣∣∣∣∣ 1
N

N∑
i=1

∫ tk

0

σ
∂vtk,x
∂y

(s, Y is )dW i
s

∣∣∣∣∣ ≤ C√
N

√√√√ 1
N

N∑
i=1

φ(x − yi0)
1

tk
1/4

∫ tk

0

1
(tk − s)3/4

≤ C√
N

√√√√ 1
N

N∑
i=1

φ(x − yi0) =
C√
N

√
φ ∗m0(x).

Thus,

sup
x∈R

E

∣∣∣∣∣ 1
N

N∑
i=1

∫ tk

0

σ
∂vtk,x
∂y

(s, Y is )dW i
s

∣∣∣∣∣ ≤ C/√N
and

E

∥∥∥∥∥ 1
N

N∑
i=1

∫ tk

0

σ
∂vtk,·
∂y

(s, Y is )dW i
s

∥∥∥∥∥
L1(R)

≤ C√
N

∫
R

√
φ ∗m0(x) dx.

To end the proof, we decompose the integral above into three parts:∫
R

√
φ ∗m0(x)dx

=
∫ y

0

−∞

√
φ ∗m0(x)dx+

∫ y0

y
0

√
φ ∗m0(x)dx+

∫ +∞

y0

√
φ ∗m0(x)dx,

where y
0

= min{1≤i≤N} yi0 and y0 = max{1≤i≤N} yi0, so that∫ y
0

−∞

√
φ ∗m0(x)dx+

∫ +∞

y0

√
φ ∗m0(x) ≤

∫
R

√
φ(x)dx ≤ C.

Now, we note that φ ∗m0(x) = φ ∗m0(x) + φ′ ∗ (V0 − V 0)(x) and∫ y0

y
0

√
φ ∗m0(x)dx ≤

∫
R

√
φ ∗m0(x)dx+

∫ y0

y
0

√∣∣φ′ ∗ (V0 − V 0)(x)
∣∣dx.

We upper-bound
∫
R
√
φ ∗m0(x)dx by using Hypothesis (H3)(ii): there exist con-

stants M > 0, η ≥ 0 and α > 0 such that

ll [−M,M ]cm0(dx) ≤ ll [−M,M ]cη exp(−αx2/2)dx.

Then, ∫
R

√
φ ∗m0(x)dx

≤
∫ −M
−∞

√
η
(
φ ∗ e−α (·)2

2

)
(x)dx+ 2M

√
‖φ‖L∞(R)

+
∫ +∞

M

√
η
(
φ ∗ e−α (·)2

2

)
(x)dx.

As (φ ∗ exp(−α(·)2/2))(x) ≤
√
πα exp(−αx2/(2 + 2α(ε+ 4σ2tk))), we have that∫ −M

−∞

√
ηφ ∗ e−α (·)2

2 (x)dx+
∫ +∞

M

√
ηφ ∗ e−α (·)2

2 (x)dx ≤ C
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and thus
∫ y0
y

0

√
φ ∗m0(x)dx ≤ C (the constantC depends on T but does not depend

on tk). Moreover, ‖φ′‖L1(R) ≤ C (independent of tk) and ‖V0 − V 0‖L∞(R) ≤ 1/N .
Then ∫ y0

y
0

√∣∣φ′ ∗ (V0 − V 0)(x)
∣∣dx ≤ C(|y

0
|+ |y0|)

√
1/N.

By construction of the (yi0) and thanks to Hypothesis (H3)(ii), one can see easily
that (|y

0
| + |y0|) ≤ C

√
ln(N), which concludes the proof. �

3.5. Proof of Lemma 3.4: Estimates for the time discretization error. We
consider now the main part of the error in the decomposition (3.7). We split it
into two parts, making apparent the difference between the drift functions B at the
discrete times tl and its approximation A′(V tl(x)):

E

∣∣∣∣∣ 1
N

N∑
i=1

k−1∑
l=0

∫ tl+1

tl

∂vtk,x
∂y

(s, Y is )
(
B(s, Y is )−A′

(
V tl(Y

i
tl)
))
ds

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1
N

N∑
i=1

k−1∑
l=0

∫ tl+1

tl

∂vtk,x
∂y

(s, Y is )
(
B(s, Y is )−B(tl, Y itl)

)
ds

∣∣∣∣∣
+ E

∣∣∣∣∣ 1
N

N∑
i=1

k−1∑
l=0

∫ tl+1

tl

∂vtk,x
∂y

(s, Y is )
(
B(tl, Y itl)−A

′ (V tl(Y itl))) ds
∣∣∣∣∣

:= T1(x) + T2(x).

We treat T1(x) and T2(x) separately.
Upper bound for T1(x): this first term is a time discretization error. To obtain

an error bound of order O(∆t), we need to introduce an expectation inside the
absolute value in the expression of T1(x). For all l in {0, . . . ,K}, we set Ftl =
σ(W i

s ; 0 ≤ s ≤ tl, i = 1, . . . , N). For all s ∈ [tl, tl+1), the variables (Ritl,s :=
∂vtk,x
∂y (s, Y is )(B(s, Y is )−B(tl, Y itl)), i = 1, . . . , N) are Ftl-conditionally independent.

Hence,

E

∣∣∣∣∣ 1
N

N∑
i=1

Ritl,s − E
Ftl
(
Ritl,s

)∣∣∣∣∣ ≤ 1√
N

√√√√ 1
N

N∑
i=1

E
(
Ritl,s

)2
≤ C√

N

√√√√ 1
N

N∑
i=1

E
(
∂vtk,x
∂y

(s, Y is )
)2

.

Thus, we isolate a statistical error in T1(x):

T1(x) ≤E
∣∣∣∣∣ 1
N

N∑
i=1

k−1∑
l=0

∫ tl+1

tl

EFtl
{
∂vtk,x
∂y

(s, Y is )
(
B(s, Y is )− B(tl, Y itl)

)}
ds

∣∣∣∣∣
+

C√
N

∫ tk

0

√√√√ 1
N

N∑
i=1

E
(
∂vtk,x
∂y

(s, Y is )
)2

ds.
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By Itô’s formula,

EFtl
{
∂vtk,x
∂y

(s, Y is )
(
B(s, Y is )−B(tl, Y itl)

)}
= EFtl

∫ s

tl

[
∂

∂θ
+A′

(
V tl(Y

i
tl

)
) ∂

∂y
+
σ2

2
∂2

∂y2

](
∂vtk,x
∂y

(B −B(tl, Y itl))
)

(θ, Y iθ )dθ

= EFtl
∫ s

tl

[
∂vtk,x
∂y

(
∂B

∂θ
+
σ2

2
∂2B

∂y2
+
(
A′
(
V tl(Y

i
tl)
)

+B(tl, Y itl)−B
) ∂B
∂y

)
+
∂2vtk,x
∂y2

(
σ2 ∂B

∂y
−
(
B −B(tl, Y itl)

) (
B −A′

(
V tl(Y

i
tl

)
)))]

(θ, Y iθ )dθ.

The last identity is obtained by using (3.6). As B(s, y) has uniformly bounded
derivatives, we obtain that

E
∫ tl+1

tl

∣∣∣∣EFtl {∂vtk,x∂y
(s, Y is )

(
B(s, Y is )−B(tl, Y itl)

)}∣∣∣∣ ds
≤ C

∫ tl+1

tl

∫ s

tl

E
[∣∣∣∣∂vtk,x∂y

∣∣∣∣ (θ, Y iθ ) +
∣∣∣∣∂2vtk,x
∂y2

∣∣∣∣ (θ, Y iθ )
]
dθds

≤ C∆t
∫ tl+1

tl

E
[∣∣∣∣∂vtk,x∂y

∣∣∣∣ (s, Y is ) +
∣∣∣∣∂2vtk,x
∂y2

∣∣∣∣ (s, Y is )
]
ds,

and

T1(x) ≤C∆t
∫ tk

0

1
N

N∑
i=1

E
[(∣∣∣∣∂vtk,x∂y

∣∣∣∣+
∣∣∣∣∂2vtk,x
∂y2

∣∣∣∣) (s, Y is )
]
ds

+
C√
N

∫ tk

0

√√√√ 1
N

N∑
i=1

E
(
∂vtk,x
∂y

(s, Y is )
)2

ds.

We want to upper-bound ‖T1(·)‖L1(R) and supx∈R T1(x). From the proof of Lemma
3.3, we easily deduce that

sup
x∈R

∫ tk

0

√√√√ 1
N

N∑
i=1

E
(
∂vtk,x
∂y

(s, Y is )
)2

ds


+
∫
R

∫ tk

0

√√√√ 1
N

N∑
i=1

E
(
∂vtk,x
∂y

(s, Y is )
)2

ds dx

is bounded by a positive constant C depending only in σ, T , A and V0. Moreover,
by Lemma 3.9∫

R

[∣∣∣∣∂vtk,x∂y

∣∣∣∣ (s, Y is ) +
∣∣∣∣∂2vtk,x
∂y2

∣∣∣∣ (s, Y is )
]
dx ≤ C√

tk − s
.

Hence, we obtain that

‖T1(·)‖L1(R) ≤ C
(

∆t+
1√
N

)
.(3.19)
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Still by Lemma 3.9, we observe that supx∈R
∣∣∣∂vtk,x∂y

∣∣∣ (s, Y is ) ≤ C/
√
tk − s. It remains

to bound supx∈R E
(∣∣∣∂2vtk,x

∂y2

∣∣∣ (s, Y is )
)

: let (Zi) be the exponential martingale de-

fined in (3.18), under the probability Qi such that dQi
dP |Ft = 1

Zit
. By the Girsanov

theorem and the Cauchy-Schwarz inequality,

E
(∣∣∣∂2vtk,x

∂y2

∣∣∣ (s, Y is )
)

= EQi
(
Zis
∣∣∣∣∂2vtk,x
∂y2

∣∣∣∣ (s, Y is )
)

≤ C

(
E
∣∣∣∣∂2vtk,x
∂y2

∣∣∣∣5/4 (s, yi0 + σWs)

)4/5

≤ C

s4/10

∥∥∥∥∥
∣∣∣∣∂2vtk,x
∂y2

∣∣∣∣5/4 (s, ·)
∥∥∥∥∥

4/5

L1(R)

.

(3.20)

Using (3.15), we obtain that supx∈R E
(∣∣∣∂2vtk,x

∂y2

∣∣∣ (s, Y is )
)
≤ C/(s4/10(tk − s)3/5) and

hence,

sup
x∈R

T1(x) ≤ C
(

∆t+
1√
N

)
.(3.21)

Upper bound for T2(x): for all (t, x), B(t, x) = A′(V (t, x)). Hence,

T2(x) ≤ sup
v∈[0,1]

|A′′(v)| 1
N

N∑
i=1

k−1∑
l=0

E
∫ tl+1

tl

∣∣∣∣∂vtk,x∂y
(s, Y is )

∣∣∣∣ ∣∣V (tl, Y itl)− V tl(Y
i
tl)
∣∣ ds.

By Lemma 3.9, supx∈R ‖
∂vtk,x
∂z (s, ·)‖L∞(R) + supz∈R ‖

∂vtk,·
∂z (s, z)‖L1(R) is bounded

by C/
√
tk − s. Then,

sup
x∈R

ET2(x) + E‖T2(·)‖L1(R)

≤
k−1∑
l=0

C∆t√
tk − tl

1
N

N∑
i=1

E
∣∣V (tl, Y itl)− V tl(Y

i
tl)
∣∣ .(3.22)

Now, the estimation of T2 is based on the upper bound of terms of the sequence(
1
N

N∑
i=1

E
∣∣V (tl, Y itl)− V tl(Y

i
tl

)
∣∣)

l=1,...,k−1

.

To obtain an induction formula on this sequence we introduce a new family of
discrete time processes. For each i in {1, . . . , N}, we denote by (Z

i

tk , k = 0, . . . ,K)
the discrete-time process solution of{

Z
i

tk+1
= Z

i

tk
+ ∆tB(tk, Z

i

tk
) + σ(W i

tk+1
−W i

tk
),

Z
i

0 = yi0.
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With the function V uniformly Lipschitz, we remark that

∣∣∣V (tl, Y itl)− V (tl, Z
i

tl
)
∣∣∣ ≤ C ∣∣∣Y itl − Zitl ∣∣∣
≤ C

∣∣∣∣∣∆t
l−1∑
m=0

A′(V tm(Y itm))−A′(V (tm, Z
i

tm))

∣∣∣∣∣
≤ C∆t

l−1∑
m=0

∣∣∣V (tm, Z
i

tm)− V tm(Y itm)
∣∣∣ .

Then,

1
N

N∑
i=1

E
∣∣V (tl, Y itl)− V tl(Y

i
tl)
∣∣ ≤ 1

N

N∑
i=1

E
∣∣∣V (tl, Z

i

tl)− V tl(Y
i
tl)
∣∣∣

+ C∆t
l−1∑
m=0

1
N

N∑
i=1

E
∣∣∣V (tm, Z

i

tm)− V tm(Y itm)
∣∣∣ .

For all l in {1, . . . ,K}, we define

Etl :=
1
N

N∑
i=1

E
∣∣∣V (tl, Z

i

tl
)− V tl(Y itl)

∣∣∣ .
Thus, we have

1
N

N∑
i=1

E
∣∣V (tl, Y itl)− V tl(Y

i
tl

)
∣∣ ≤ Etl + C∆t

l−1∑
m=0

Etm .(3.23)

An induction relation for (Etl , l = 0, . . . ,K) is given in the following

Lemma 3.10. Assume (H1), (H2) and (H3). For l = 0, . . . ,K, one has

Etl ≤
l−1∑
n=0

C∆t√
tl − tn

Etn + C

(
∆t+ ‖V0 − V 0‖L∞(R) +

1√
N

)

and by Gronwall’s lemma,

Etl ≤ C
(

∆t+ ‖V0 − V 0‖L∞(R) +
1√
N

)
.
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In view of (3.22), (3.23) and this previous estimate, we obtain that

sup
x∈R

ET2(x) + E‖T2(·)‖L1(R) ≤
k−1∑
l=0

C∆t√
tk − tl

(
∆t+ ‖V0 − V 0‖L∞(R) +

1√
N

)
≤ C

(
‖V0 − V 0‖L∞(R) + ∆t+

1√
N

)
.

With the estimates (3.19) and (3.21) on T1, this ends the proof of Lemma 3.4.

Proof of Lemma 3.10. First, we note that E0 ≤ ‖V0 − V 0‖L∞(R) and for l =
1, . . . ,K,

Etl =
1
N

N∑
i=1

E

∣∣∣∣∣∣EH(x− Ztl)
∣∣∣∣
x=Z

i
tl

− 1
N

N∑
j=1

H(Y itl − Y
j
tl

)

∣∣∣∣∣∣ .
To prove the induction formula, we decompose each term Etl into five parts. As in
the beginning of the proof of Theorem 2.2, we make apparent a smoothing error, an
initialization error, a discretization error and a statistical error. First, we introduce
the artificial smoothing of the Heaviside function:

Etl ≤
1
N

N∑
i=1

E

∣∣∣∣∣EH(x − Ztl)
∣∣∣∣
x=Z

i
tl

− EHε(x− Ztl)
∣∣∣∣
x=Z

i
tl

∣∣∣∣∣
+

1
N

N∑
i=1

E

∣∣∣∣∣∣EHε(x− Ztl)
∣∣∣∣
x=Z

i
tl

− 1
N

N∑
j=1

Hε(Y itl − Y
j
tl

)

∣∣∣∣∣∣
+

1
N

N∑
i=1

E

∣∣∣∣∣∣ 1
N

N∑
j=1

Hε(Y itl − Y
j
tl

)− 1
N

N∑
j=1

H(Y itl − Y
j
tl

)

∣∣∣∣∣∣
and by Lemma 3.1,

Etl ≤
1
N

N∑
i=1

E

∣∣∣∣∣∣EHε(x− Ztl)
∣∣∣∣
x=Z

i
tl

− 1
N

N∑
j=1

Hε(Y itl − Y
j
tl)

∣∣∣∣∣∣+ C

( √
ε√

∆t
+

1
N

)
.

We choose ε ≤ ∆t3. The next step consists in introducing the initialization error:

Etl ≤
1
N

N∑
i=1

E

∣∣∣∣∣∣EHε(x− Ztl)
∣∣∣∣
x=Z

i
tl

− 1
N

N∑
j=1

EHε(x − Z0,yj0
tl

)
∣∣∣∣
x=Z

i
tl

∣∣∣∣∣∣
+

1
N

N∑
i=1

E

∣∣∣∣∣∣ 1
N

N∑
j=1

(
EHε(x− Z0,yj0

tl )
∣∣∣∣
x=Z

i
tl

−Hε(Y itl − Y
j
tl)

)∣∣∣∣∣∣
+ C

(
∆t+

1
N

)
.
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Following the same technique as in the proof of Lemma 3.2, we have

1
N

N∑
i=1

E

∣∣∣∣∣∣EHε(x − Ztl)
∣∣∣∣
x=Z

i
tl

− 1
N

N∑
j=1

EHε(x− Z0,yj0
tl

)
∣∣∣∣
x=Z

i
tl

∣∣∣∣∣∣
≤ sup
x∈R

∣∣∣∣∫
R
EHε(x− Z0,y

t )m0(dy)−
∫
R
EHε(x − Z0,y

t )m0(dy)
∣∣∣∣

≤ C‖V0 − V 0‖L∞(R).

The third step consists in making apparent the error of the Euler scheme: for
all y ∈ R, we denote by (Z

0,y

tk , k = 0, . . . ,K) the discrete-time process solution of{
Z

0,y

tk+1
= Z

0,y

tk
+ ∆tB(tk, Z

0,y

tk
) + σ(Wtk+1 −Wtk),

Z
0,y

0 = y.

Then,

Etl ≤
1
N2

N∑
i,j=1

∣∣∣∣∣EHε(x− Z0,yj0
tl )

∣∣∣∣
x=Z

i
tl

− EHε(x− Z
0,yj0
tl )

∣∣∣∣
x=Z

i
tl

∣∣∣∣∣
+

1
N

N∑
i=1

E

∣∣∣∣∣∣ 1
N

N∑
j=1

(
EHε(x− Z

0,yj0
tl

)
∣∣∣∣
x=Z

i
tl

−Hε(Y itl − Y
j
tl

)

)∣∣∣∣∣∣
+ C

(
∆t+

1
N

+ ‖V0 − V 0‖L∞(R)

)
.

In the right-hand side of the expression above, the first term is a time discretization
error in the weak sense. It is described by the following lemma, the proof of which
is postponed until the end of this subsection.

Lemma 3.11. Assume (H1), (H2) and (H3). For all x and y in R and all discrete
time tl, l in {1, . . . ,K},∣∣∣EHε(x − Z0,y

tl
)− EHε(x − Z

0,y

tl
)
∣∣∣ ≤ C∆t,

where the positive constant C depends on σ, V0 and T only and is uniform in x and
y.

Thus,

Etl ≤
1
N

N∑
i=1

E

∣∣∣∣∣∣ 1
N

N∑
j=1

(
EHε(x− Z

0,yj0
tl

)
∣∣∣∣
x=Z

i
tl

−Hε(Y itl − Y
j
tl

)

)∣∣∣∣∣∣
+ C

(
∆t+

1
N

+ ‖V0 − V 0‖L∞(R)

)
.
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We observe that Z
0,yj0
tl and Z

j

tl have the same law. In the last step, we introduce a
statistical error:

Etl ≤
1
N

N∑
i=1

E

∣∣∣∣∣∣ 1
N

N∑
j=1

(
EHε(x− Z

j

tl)
∣∣∣∣
x=Z

i
tl

−Hε(Z
i

tl − Z
j

tl)

)∣∣∣∣∣∣
+

1
N2

N∑
i,j=1

E
∣∣∣Hε(Z

i

tl − Z
j

tl)−Hε(Y itl − Y
j
tl)
∣∣∣

+ C

(
∆t+

1
N

+ ‖V0 − V 0‖L∞(R)

)
.

Let F it := σ(W i
s ; 0 ≤ s ≤ t). For j 6= i and with Z

j

tl
and Z

j

tl
independent, we have

EF
i
tl

(
EHε(x− Z

j

tl
)
∣∣∣∣
x=Z

i
tl

−Hε(Z
i

tl
− Zjtl)

)
= 0,

which implies that

E

 1
N

N∑
j=1;j 6=i

(
EHε(x− Z

j

tl
)
∣∣∣∣
x=Z

i
tl

−Hε(Z
i

tl
− Zjtl)

)2

=
1
N2

N∑
j=1;j 6=i

E

(
EHε(x− Z

j

tl
)
∣∣∣∣
x=Z

i
tl

−Hε(Z
i

tl
− Zjtl)

)2

≤ 2
N
.

Finally, we have obtained that

Etl ≤
1
N2

∑
i,j;i6=j

E
∣∣∣Hε(Z

i

tl
− Zjtl)−Hε(Y itl − Y

j
tl

)
∣∣∣

+ C
(

∆t+ ‖V0 − V 0‖L∞(R) + 1√
N

)
.

(3.24)

It remains to analyze the term

1
N2

∑
i6=j
E
∣∣∣Hε(Z

i

tl
− Zjtl)−Hε(Y itl − Y

j
tl

)
∣∣∣

in the right-hand side of (3.24). We do so by making apparent the successive
transitions of the processes (Z

i
): for all y in R and all l in {0, . . . ,K} we denote

by (Z
i,tl,y

tk
, k = l, . . . ,K) the discrete-time process solution of{

Z
i,tl,y

tk+1
= Z

i,tl,y

tk + ∆tB(tk, Z
i,tl,y

tk ) + σ(W i
tk+1
−W i

tk),

Z
i,tl,y

tl
= y.

(3.25)
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Then,

1
N2

∑
i6=j
E
∣∣∣Hε(Z

i

tl − Z
j

tl)−Hε(Y itl − Y
j
tl)
∣∣∣

≤
l−1∑
n=0

1
N2

∑
i6=j
E
∣∣∣∣Hε(Z

i,tl−n,Y
i
tl−n

tl − Z
j,tl−n,Y

j
tl−n

tl )

− Hε(Z
i,tl−n−1,Y

i
tl−n−1

tl − Z
j,tl−n−1,Y

j
tl−n−1

tl )
∣∣∣∣ .

(3.26)

For each term in the sum over n, we use the identity

Hε(a)−Hε(b) = (a− b)
∫ 1

0

gε(b+ u(a− b))du

to get

1
N2

∑
i6=j
E
∣∣∣∣Hε(Z

i,tl−n,Y
i
tl−n

tl
− Z

j,tl−n,Y
j
tl−n

tl
)

−Hε(Z
i,tl−n−1,Y

i
tl−n−1

tl − Z
j,tl−n−1,Y

j
tl−n−1

tl )
∣∣∣∣

=
1
N2

∑
i6=j
E
∣∣∣∣[(Zi,tl−n,Y itl−ntl

− Z
i,tl−n−1,Y

i
tl−n−1

tl

)

−
(
Z
j,tl−n,Y

j
tl−n

tl
− Z

j,tl−n−1,Y
j
tl−n−1

tl

)]
×
∫ 1

0

gε

(
R
i,tl−n−1
tl,u

−Rj,tl−n−1
tl,u

)
du

∣∣∣∣ ,
where, for any i in {1, . . . , N}, we define the random variables Ri,tl−n−1

tl,u by

R
i,tl−n−1
tl,u

:= Z
i,tl−n−1,Y

i
tl−n−1

tl
+ u(Z

i,tl−n,Y
i
tl−n

tl
− Z

i,tl−n−1,Y
i
tl−n−1

tl
).(3.27)

As the drift B(t, x) of (Z
i
) is a Lipschitz function, one can easily show that, for

any i in {0, . . . , N},∣∣∣∣Zi,tl−n,Y itl−ntl
− Z

i,tl−n−1,Y
i
tl−n−1

tl

∣∣∣∣ =

∣∣∣∣∣∣Zi,tl−n,Y
i
tl−n

tl
− Z

i,tl−n,Z
i,tl−n−1,Y

i
tl−n−1

tl−n
tl

∣∣∣∣∣∣
≤ C

∣∣∣∣Y itl−n − Zi,tl−n−1,Y
i
tl−n−1

tl−n

∣∣∣∣
and hence that ∣∣∣∣Zi,tl−n,Y itl−ntl

− Z
i,tl−n−1,Y

i
tl−n−1

tl

∣∣∣∣
≤ C∆t

∣∣∣V tl−n−1(Y itl−n−1
)− V (tl−n−1, Y

i
tl−n−1

)
∣∣∣ .(3.28)
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Then, we have

1
N2

∑
i6=j
E
∣∣∣∣Hε(Z

i,tl−n,Y
i
tl−n

tl
− Z

j,tl−n,Y
j
tl−n

tl
)

−Hε(Z
i,tl−n−1,Y

i
tl−n−1

tl − Z
j,tl−n−1,Y

j
tl−n−1

tl )
∣∣∣∣

≤ C∆t
1
N2

∑
i6=j
E
∣∣∣(|V tl−n−1(Y itl−n−1

)− V (tl−n−1, Y
i
tl−n−1

)|

+ |V tl−n−1(Y jtl−n−1
)− V (tl−n−1, Y

j
tl−n−1

)|
)

×
∫ 1

0

gε

(
R
i,tl−n−1
tl,u −Rj,tl−n−1

tl,u

)
du

∣∣∣∣ .
We introduce the conditional expectation with respect to Ftl−n−1 in the
right-hand side of the expression above. As, for any i ≥ 1, |V tl−n−1(Y itl−n−1

) −
V (tl−n−1, Y

i
tl−n−1

)| is an Ftl−n−1-measurable variable, we obtain that

E
∣∣∣∣Hε(Z

i,tl−n,Y
i
tl−n

tl
− Z

j,tl−n,Y
j
tl−n

tl
)

−Hε(Z
i,tl−n−1,Y

i
tl−n−1

tl − Z
j,tl−n−1,Y

j
tl−n−1

tl )
∣∣∣∣

≤ C∆tE
∣∣∣(|V tl−n−1(Y itl−n−1

)− V (tl−n−1, Y
i
tl−n−1

)|

+|V tl−n−1(Y jtl−n−1
)− V (tl−n−1, Y

j
tl−n−1

)|
)

×
∫ 1

0

EFtl−n−1

{
gε

(
R
i,tl−n−1
tl,u

−Rj,tl−n−1
tl,u

)}
du

∣∣∣∣ .

(3.29)

Now, we need to bound EFtl−n−1

{
gε

(
R
i,tl−n−1
tl,u −Rj,tl−n−1

tl,u

)}
. Coming back

to the definition of Ri,tl−n−1
tl,u in (3.27) and using the equation (3.25) satisfied by

(Z
i,tl,y

tk
, k = l, . . . ,K), we remark that

R
i,tl−n−1
tl,u

= Y itl−n−1
+ σ(W i

tl
−W i

tl−n−1
) +

∫ tl

tl−n−1

ψiu(θ)dθ

where, for all θ ∈ [tl−n−1, T ],

ψiu(θ) =uA′(V tl−n−1(Y itl−n−1
))ll [tl−n−1,tl−n[(θ)

+
K∑

k=l−n
uB(tk, Z

i,tl−n,Y
i
tl−n

tk )ll [tk,tk+1[(θ)

+
K∑

k=l−n−1

(1− u)B(tk, Z
i,tl−n−1,Y

i
tl−n−1

tk
)ll [tk,tk+1[(θ).
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For i 6= j, conditionally on Ftl−n−1 , for any k > l − n − 1, Z
i,tl−n−1,Y

i
tl−n−1

tk
and

Z
j,tl−n−1,Y

j
tl−n−1

tk are independent, as well as Z
i,tl−n,Y

i
tl−n

tk and Z
j,tl−n,Y

j
tl−n

tk . There-
fore, Ri,tl−n−1

tl,u and R
j,tl−n−1
tl,u are independent conditionally on Ftl−n−1 . Moreover,

with ψiu(θ) uniformly bounded, by the Girsanov theorem, the law of Ri,tl−n−1
tl,u con-

ditionally on Ftl−n−1 has a density denoted by Γ̃(tl, ·; tl−n−1, Y
i
tl−n−1

). Applying
Remark 3.5, Γ̃(tl, ·; tl−n−1, Y

i
tl−n−1

) is in L2(R) and

‖Γ̃(tl, ·; tl−n−1, Y
i
tl−n−1

)‖L2(R) ≤
C

t
1/4
n+1

.

Thus, for i 6= j,

EFtl−n−1

{
gε

(
R
i,tl−n−1
tl,u −Rj,tl−n−1

tl,u

)}
=
∫
R

∫
R
gε(z − y)Γ̃(tl, z; tl−n−1, Y

i
tl−n−1

)Γ̃(tl, y; tl−n−1, Y
j
tl−n−1

)dzdy

≤ ‖Γ̃(tl, ·; tl−n−1, Y
i
tl−n−1

)‖L2(R)‖Γ̃(tl, ·; tl−n−1, Y
j
tl−n−1

)‖L2(R)

≤ C√
tn+1

.

Combining this last upper bound with (3.29), we obtain that

1
N2

∑
i6=j
E
∣∣∣∣Hε(Z

i,tl−n,Y
i
tl−n

tl − Z
j,tl−n,Y

j
tl−n

tl )

−Hε(Z
i,tl−n−1,Y

i
tl−n−1

tl − Z
j,tl−n−1,Y

j
tl−n−1

tl )
∣∣∣∣

≤ C∆t√
tn+1

1
N

N∑
i=1

E
∣∣∣V tl−n−1(Y itl−n−1

)− V (tl−n−1, Y
i
tl−n−1

)
∣∣∣

and using (3.23), that

1
N2

∑
i6=j
E
∣∣∣∣Hε(Z

i,tl−n,Y
i
tl−n

tl − Z
j,tl−n,Y

j
tl−n

tl )

−Hε(Z
i,tl−n−1,Y

i
tl−n−1

tl − Z
j,tl−n−1,Y

j
tl−n−1

tl )
∣∣∣∣

≤ C∆t√
tn+1

(
Etl−n−1 + C∆t

l−n−2∑
m=0

Etm

)
.
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As in (3.26), we sum the term above over n in {0, . . . , l− 1} to finally obtain that

1
N2

∑
i6=j
E
∣∣∣Hε(Z

i

tl − Z
j

tl)−Hε(Y itl − Y
j
tl)
∣∣∣

≤
l−1∑
n=0

(
C∆t√
tn+1

(
Etl−n−1 + C∆t

l−n−2∑
m=0

Etm

))

≤
l−1∑
n=0

C∆t√
tn+1

Etl−n−1 +
l−1∑
m=0

C∆tEtm .

This last bound, combined with (3.24), gives the induction relation

Etl ≤
l−1∑
n=0

C∆t√
tl − tn

Etn + C

(
∆t+ ‖V0 − V 0‖L∞(R) +

1√
N

)
.

�

Proof of Lemma 3.11. To study this weak type error for the Euler scheme, we
follow a technique due to Talay and Tubaro [9]. The main idea consists in
using the Feynman-Kac representation of a Cauchy problem and noting that
EHε(x − Z0,y

tl ) = vtl,x(0, y), where the function vtl,x(s, y) is the solution of the
partial differential equation

∂vtl,x
∂s

(s, y) +
1
2
σ2 ∂

2vtl,x
∂y2

(s, y) +B(s, y)
∂vtl,x
∂y

(s, y) = 0,

∀(s, y) ∈ [0, tl)× R,
vtl,x(tl, y) = Hε(x− y), ∀y ∈ R.

(3.30)

The above Cauchy problem is similar to (3.6) and the results of Lemma 3.9 hold
for (3.30), replacing tk by tl in the setting. Thus

EHε(x− Z0,y
tl

)− EHε(x− Z
0,y

tl
) = vtl,x(0, y)− Evtl,x(tl, Z

0,y

tl
).

In the sequel, we will use the notation v rather than vtl,x, except when we need
to make apparent the parameters x and tl. We decompose the expression above,
making apparent the discrete dates in [0, tl):

vtl,x(0, y)− Evtl,x(tl, Z
0,y

tl ) = −
l−1∑
n=0

E
(
v(tn+1, Z

0,y

tn+1
)− v(tn, Z

0,y

tn )
)
.

We apply Itô’s formula for the first time and use (3.30) to obtain

vtl,x(0, y)− Evtl,x(tl, Z
0,y

tl ) =
l−1∑
n=0

E
∫ tn+1

tn

∂v

∂y
(s, Z

0,y

s )
(
B(s, Z

0,y

s )−B(tn, Z
0,y

tn )
)
ds,

where Z
0,y

s = Z
0,y

tn + sB(tn, Z
0,y

tn ) + σ(Ws−Wtn) when s ∈ [tn, tn+1). Applying the
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Itô formula and (3.30) again,

E
∫ tn+1

tn

∂v

∂y
(s, Z

0,y

s )
(
B(s, Z

0,y

s )−B(tn, Z
0,y

tn )
)
ds

= E
∫ tn+1

tn

∫ s

tn

[
∂

∂θ
+B(tn, Z

0,y

tn )
∂

∂y
+
σ2

2
∂2

∂y2

]
×
(
∂v

∂y
(θ, Z

0,y

θ )
(
B(θ, Z

0,y

θ )−B(tn, Z
0,y

tn )
))

dθds

= E
∫ tn+1

tn

∫ s

tn

[
∂v

∂y
(θ, Z

0,y

θ )
(
∂B

∂θ
(θ, Z

0,y

θ )

+(2B(tn, Z
0,y

tn )−B(θ, Z
0,y

θ ))
∂B

∂y
(θ, Z

0,y

θ )

+
σ2

2
∂2B

∂y2
(θ, Z

0,y

θ )
)]

dθds

+ E
∫ tn+1

tn

∫ s

tn

[
∂2v

∂y2
(θ, Z

0,y

θ )

×
(
σ2 ∂B

∂y
(θ, Z

0,y

θ )− (B(θ, Z
0,y

θ )−B(tn, Z
0,y

tn ))2

)]
dθds.

Using the bounds on B and its derivatives given in Lemma 3.6, we get

EHε(x− Z0,y
tl )− EHε(x− Z

0,y

tl )

≤ C
l−1∑
n=0

∫ tn+1

tn

∫ s

tn

(
E
∣∣∣∣∂2v

∂y2
(θ, Z

0,y

θ )
∣∣∣∣+ E

∣∣∣∣∂v∂y (θ, Z
0,y

θ )
∣∣∣∣) dθds.(3.31)

Using the same technique as in the computation of (3.20), we obtain that

E
∣∣∣∣∂vtl,x∂y

(θ, Z
0,y

θ )
∣∣∣∣ ≤ C√

tl − θ
and E

∣∣∣∣∂2vtl,x
∂y2

(θ, Z
0,y

θ )
∣∣∣∣ ≤ C

θ4/10(tl − θ)3/5
,

where the constant C is uniform in x and y. We integrate in time in (3.31) to get∣∣∣EHε(x− Z0,y
tl )− EHε(x− Z

0,y

tl
)
∣∣∣ ≤ C∆t. �

4. Conclusions

In this paper, we have analyzed the rate of convergence of a stochastic particle
method for one-dimensional viscous scalar conservation laws and showed that the
rate of convergence is of order O(∆t + 1/

√
N). This result is optimal in the sense

that it is observed on numerical experiments when one applies the algorithm on the
test case of the Burgers equation (see [3]).

The analysis of the algorithm with respect to the time step ∆t is based upon
the analysis of the weak convergence of the Euler scheme. The techniques applied
let us expect that it is possible to expand the discretization error in powers of the
discretization step size ∆t at least up to the order two.

In the case of stochastic differential equations that are linear in the sense of
McKean, such an expansion was initially showed by Talay and Tubaro [9]. The
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expansion up to the order two permits us to justify the use of the Romberg ex-
trapolation which provides a second order accuracy with respect to the time step
∆t.

Here, we simulated a nonlinear stochastic differential equation to compute the
numerical solution of a nonlinear PDE. The nonlinearity of the SDE implies the
simulation of a particle system. Even in this nonlinear case, it must be possible to
adapt the Romberg extrapolation as a speed-up procedure.

Figures 1–4 present numerical experiments on the Burgers equation (1.2). We
compare the numerical solution obtained with the present version of the particle
method (for a given time step ∆t) and a solution obtained by extrapolation between
the solutions computed for the time steps ∆t and ∆t/2. More precisely, for a
given ∆t, let (Y i,∆ttk , i = 1, . . . , N ; k = 0, . . . ,K) be the family of discrete time

processes involved in the algorithm and defined in (2.3). We denote by V
∆t

tk
(x) the

corresponding numerical solution defined in (2.4). For final time T = K∆t, we
define the extrapolated solution V

∆t,∆t/2

T (x) by

V
∆t,∆t/2

T (x) = 2V
∆t/2

T (x)− V ∆t

T (x).(4.1)

If we are able to expand the error as

V
∆t

T (x) − V (T, x) = C(x)∆t +O(∆t2) +R(ω),(4.2)

where the constant C(x) does not depend on ∆t and where the random variableR is
such that E‖R‖ ≤ C′/

√
N for an appropriate choice of the norm ‖ ‖, then we will be

in a position to conclude that E‖V ∆t,∆t/2

T (x)−V (T, x)‖ is of order O(∆t2 +1/
√
N).

In the point of view of numerical tests, Figures 1, 2 and 3 give encouraging results.
But we can observe strong local error when we increase the time step ∆t (see
Figure 3 for ∆t = 0.01 and Figure 4 for ∆t = 0.05). The sensibility on ∆t varies
according to the choice of the initial condition and the viscosity parameter σ. This
phenomenon can be easily explained. The constants in the expansion (4.2) must
depend on the space variable x and also on the derivatives of the solution V . This
means that we need to choose ∆t sufficiently small to have C(x)∆t large enough
compared to ∆t2 for all x and to benefit from the extrapolation procedure at all
points x.

Moreover, the direct extrapolation procedure does not conserve the nature of
the measure derivative of the corresponding numerical solution V

∆t,∆t/2

T (x). For
example, if the solution V (T, x) is the distribution function of a probability measure,
the same is true for the numerical solutions V

∆t

T (x) and V
∆t/2

T (x) but not for
V

∆t,∆t/2

T (x). This is why in Figure 4 the extrapolated solution is a nonmonotonous
function.

Thus we need to explore some variants of the direct extrapolation in order to
reduce these phenomena. A tentative move in this direction could be based on the
use of the extrapolation procedure during the computation, in order to correct the
drifts of the particles, and not just at the final time.
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Figure 1. Exact and numerical solutions of the Burgers equa-
tion with initial condition V (0, x) = H(x). The second picture
shows a zoom for x ∈ [1.8, 2.7]. The corresponding approxima-
tions of the L1-norm of the error are ‖V (1, x) − V ∆t

1 (x)‖L1(R) =

0.0991, ‖V (1, x)−V ∆t/2

1 (x)‖L1(R) = 0.0501, ‖V (1, x)−2V
∆t/2

1 (x)+

V
∆t

1 (x)‖L1(R) = 0.00292.
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Figure 2. Exact and numerical solutions of the Burgers equa-
tion with initial condition V (0, x) = H(x) − H(x − 1). The sec-
ond picture shows a zoom for x ∈ [0.11, 1.5]. The correspond-
ing approximations of the L1-norm of the error are ‖V (1, x) −
V

∆t

1 (x)‖L1(R) = 0.0183, ‖V (1, x) − V
∆t/2

1 (x)‖L1(R) = 0.0094,

‖V (1, x)− 2V
∆t/2

1 (x) + V
∆t

1 (x)‖L1(R) = 0.0030.
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Figure 3. Exact and numerical solutions of the Burgers equation
with initial condition V (0, x) = 10− tanh( xσ2 ). The second picture
shows a zoom for x ∈ [9.97, 10]. The corresponding approxima-
tions of the L1-norm of the error are ‖V (1, x) − V ∆t

1 (x)‖L1(R) =

0.0049, ‖V (1, x)−V ∆t/2

1 (x)‖L1(R) = 0.0024, ‖V (1, x)−2V
∆t/2

1 (x)+

V
∆t

1 (x)‖L1(R) = 0.00062.
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Figure 4. Exact and numerical solutions of the Burgers equation
with initial condition V (0, x) = 10− tanh( xσ2 ). The second picture
shows a zoom for x ∈ [9.92, 10]. The corresponding approxima-
tions of the L1-norm of the error are ‖V (1, x) − V ∆t

1 (x)‖L1(R) =

0.024, ‖V (1, x)− V ∆t/2

1 (x)‖L1(R) = 0.012, ‖V (1, x)− 2V
∆t/2

1 (x) +

V
∆t

1 (x)‖L1(R) = 0.0081.
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