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THE LOCAL DISCONTINUOUS GALERKIN METHOD
FOR THE OSEEN EQUATIONS

BERNARDO COCKBURN, GUIDO KANSCHAT, AND DOMINIK SCHÖTZAU

Abstract. We introduce and analyze the local discontinuous Galerkin method
for the Oseen equations of incompressible fluid flow. For a class of shape-
regular meshes with hanging nodes, we derive optimal a priori estimates for
the errors in the velocity and the pressure in L2- and negative-order norms.
Numerical experiments are presented which verify these theoretical results and
show that the method performs well for a wide range of Reynolds numbers.

1. Introduction

In this paper, we introduce the local discontinuous Galerkin (LDG) method for
the Oseen equations of incompressible fluid flow. We conduct stability and a priori
error analysis and perform numerical tests of the scheme. The Oseen equations are

−ν∆u + (β · ∇)u + γ u +∇p = f in Ω,

∇ · u = 0 in Ω,(1.1)
u = g on Γ,

where u is the velocity, p the pressure, f ∈ L2(Ω)d a prescribed external body
force, ν the kinematic viscosity, β a convective velocity field and γ a given scalar
function. As usual, we take Ω to be a bounded domain of Rd, d = 2, 3, with
boundary Γ = ∂Ω, and the Dirichlet data g ∈ H1/2(Γ)d to satisfy the compatibility
condition

∫
Γ g · n ds = 0, where n denotes the outward unit normal vector to Γ.

Our long-term goal is studying the LDG method for both the transient and the
stationary incompressible Navier-Stokes equations, that is, for the case in which
β = u in the above equations. Thus, it is reasonable to study first the Oseen
equations since they appear by linearization of the incompressible Navier-Stokes
equations, e.g., in Picard’s iteration. Indeed, a typical situation is the one in which
one has that u is the velocity at the current time, β is the velocity at the previous
time step and γ = 1/∆t; it is thus quite natural to assume that γ > 0. However,
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for the steady-state Navier-Stokes problem, we do have γ ≡ 0; for this reason, we
are not going to make the assumption γ > 0. Instead, we assume that

(1.2) γ(x)− 1
2
∇ · β(x) =: γ0(x) ≥ 0, x ∈ Ω.

This condition guarantees (see, for example, [7, 15]) existence and uniqueness of a
solution (u, p) ∈ H1

g (Ω)d × L2
0(Ω) where, as usual,

H1
g (Ω)d := {u ∈ H1(Ω)d : u|Γ = g}, L2

0(Ω) := {p ∈ L2(Ω) :
∫

Ω

p dx = 0}.

Therefore, this paper extends the results recently obtained by Cockburn, Kanschat,
Schötzau and Schwab [12] for the LDG method for the Stokes system, that is, for
the case in which β = 0 and γ = 0.

Several arguments for the use of the LDG method for the Stokes problem have
been discussed in [12]. Here, let us briefly mention that since the LDG method
is a natural extension of the so-called Runge-Kutta DG methods which are robust
and high-order accurate methods for nonlinear hyperbolic systems (see the recent
review by Cockburn and Shu [14] and the references therein), it is reasonable to
expect that for problems in which convection might play an important role, like
Oseen and Navier-Stokes problems, the LDG method should provide high-quality
approximations for a significantly wide range of the Reynolds number,

Re =
L
∣∣β̄∣∣
ν

,

where L denotes a typical length scale and β̄ a typical velocity. In fact, the main
objective of this paper is to show that this is indeed the case for the Oseen sys-
tem (1.1).

In this paper, we also present results that are new for the Stokes system. Thus,
we show how to define the parameters associated with the numerical fluxes of the
LDG method such that, when β = 0, the condition number of the Schur complement
matrix for the pressure is independent of the kinematic viscosity ν; and we present
new negative-order norm estimates for both the velocity and the pressure.

To give the reader an idea of the main features of the LDG method, let us
compare it with other discontinuous Galerkin methods that have been devised for
Oseen equations or related problems.
• In 1998, Karakashian and Jureidini [18] devised a numerical method for the sta-

tionary incompressible Navier-Stokes equations (see also the earlier work by Baker,
Jureidini and Karakashian [4] on the Stokes problem). It uses a totally discontinu-
ous approximation for the velocity which is pointwise divergence-free inside each of
the elements, and a continuous approximation for the pressure. In particular, they
prove that if polynomials of degree k are used for the velocity and polynomials of
degree k − 1 for the pressure, the optimal order of convergence of k is achieved in
a suitable mesh-dependent norm which can be thought to be associated with the
H1-norm of the velocity plus the L2-norm of the pressure. There are three main
differences between the method proposed by Karakashian and Jureidini [18] and
the LDG method proposed in this paper. The first is that, although both meth-
ods weakly impose the incompressibility condition, Karakashian and Jureidini use
a piecewise divergence-free velocity approximation. The second is that they use
continuous approximations for the pressure whereas the LDG uses a discontinuous



THE LDG METHOD FOR THE OSEEN EQUATIONS 571

approximation. In the spirit of Taylor-Hood elements, they use a triangulation as-
sociated with the velocity which is a refinement of that associated with the pressure
whereas the LDG method uses the same mesh for both the velocity and the pres-
sure. The third difference is that the method used by Karakashian and Jureidini
[18] can be associated with the classical interior (IP) penalty methods developed in
the late seventies (see, in particular, the paper by Baker [3]) and hence has a penalty
parameter that has to be estimated properly in order to enforce the stability of the
method. In contrast, the LDG method is always stable, regardless of the size of the
penalty parameter. Concerning this point, it is worth noting that a computational
comparison of these (and other) DG methods for a purely elliptic model problem
was recently performed by Castillo [8]. In particular, he showed that for sufficiently
large penalty parameters, the quality of the approximate solutions given by these
methods is quite similar, but that the LDG method behaves extremely well in the
range of penalty parameters for which the IP methods are not stable; this range is
very difficult to find.
•Methods closely related to our approach are the mixed DG schemes introduced

recently by Hansbo and Larson [16] and Toselli [28] in the context of linear elasticity
and Stokes flow; these methods also use completely discontinuous approximations
for the velocity and the pressure and, as in the approaches of Baker, Karakashian
and Jureidini [4, 18], are based on interior penalty techniques to weakly enforce
the continuity requirements on the velocity fields. In particular, if polynomials of
degree k are used for the velocity and polynomials of degree k− 1 for the pressure,
a standard inf-sup condition was proved by Hansbo and Larson in [16] in a broken
H1-seminorm for the velocity and the L2-norm for the pressure, giving rise to
optimal error estimates. A more refined analysis was then given by Toselli in [28],
also covering hanging nodes and extensions to the hp-version. These results apply
immediately to the LDG method considered here and in [12]. Conversely, the
results in this paper for the extension of the LDG method to the Oseen equations
immediately carry over to the methods of Hansbo and Larson [16] and Toselli [28].
•Another DG method is the one introduced in 1999 by Baumann and Oden [6] for

the Euler and the incompressible Navier-Stokes equations; see also the application
of the method to purely diffusive problems in [24], an analysis of the one-dimensional
case in [2], an application to convection-diffusion problems in [5] and a review in
[25]. The method of Baumann and Oden, applied to a purely diffusive problem,
produces a stiffness matrix with more sparsity than the stiffness matrix of the LDG
method; for example, Castillo [8] showed that, in the two-dimensional case, the
LDG method has about 2.5 times more nonzero entries. On the other hand, unlike
the LDG method, the method of Baumann and Oden is unstable for polynomials
of degree 1, produces a stiffness matrix that is not symmetric, even for self-adjoint
elliptic problems, and gives sub-optimal orders of convergence in the L2-norm. A
unified analysis of the several DG methods proposed for solving second-order elliptic
problems has been recently proposed by Arnold, Brezzi, Cockburn and Marini [1].
Many of the elements of their analysis can be easily extended to other problems
like the one under consideration.
• In 2000, Liu and Shu [21, 22] developed a numerical method using discontinuous

approximations for the two-dimensional incompressible Navier-Stokes equations in
a vorticity-stream function formulation; they used an LDG discretization for the
vorticity equation, including the viscous terms, a standard Poisson solver using
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continuous finite elements for the stream-function, and a total variation diminishing
Runge-Kutta time discretization. In [21], a proof of the L2-stability of both the
vorticity and the velocity was given, which does not depend on the regularity of
the exact solutions. This property was used later in [23] to show that the method
converges for the case of a vortex sheet initial data having only positive vorticity.

Now, let us briefly describe our results. We show that if we use polynomials of
degree k to approximate the velocity u and polynomials of degree k − 1 for the
pressure p and the variable σ = ν∇u (we will refer to this variable as “stress”1),
the L2-norm of the error in the velocity is of order k + 1, and the L2-norms of the
errors in p and σ are of order k. We also prove that the error in the H−`-norm
of the velocity as well as the error in the H−`−1-norm of the pressure are of order
` + k + 1 for 0 ≤ ` ≤ k − 1. We point out that these rates remain invariant if the
pressure p and “stresses” σ are approximated by polynomials of degree k as well.

Finally, let us stress several of the salient features of the techniques used to prove
our theoretical results:
• Since our analysis of the Oseen problem is closely related to that of the Stokes

system performed in [12], we are using the same notation and the same approach.
For this reason, we have resisted the temptation of rewriting our error analysis in
terms of the lifting operators that proved to be so useful in the unified analysis
of DG methods for elliptic problems carried out in [1]. Instead, we present the
analysis in a new and simpler way which emphasizes the fact that only a few upper
bounds on the bilinear forms of the LDG method are needed.
• Also, it is not difficult to present a unified analysis of DG methods for the

Oseen equations by combining the results presented in this paper with the approach
developed in [1] for second-order elliptic problems. We have not done that in this
paper in order to emphasize the treatment of the difficulties introduced by the
presence of the convective velocity field β. Because of that, we have taken great
care to express all the estimates in terms of dimensionless constants; this was not
carried out in [12], where the kinematic viscosity was taken to be equal to 1 and
the velocity β equal to zero.
• The technique used to treat the terms of the Stokes system is exactly the

one used in [12]. However, to deal with the convective term, we are not using the
classical hypothesis γ0 ≥ γ? > 0 (see, e.g., the recent analysis of hp-version discon-
tinuous Galerkin methods for convection-diffusion equations in Houston, Schwab
and Süli [17]); instead, to control the terms associated with the convection, we rely
on the viscous term −ν∆u.
• The regularity estimates needed to obtain the negative-order norm error esti-

mates are obtained by a suitable adaptation of Theorem 6.9 by Karakashian and
Jureidini [18] to our case.

The paper is organized as follows. In section 2, we introduce and discuss the LDG
method by using the typical element-by-element flux formulation; then we rewrite
the method in compact form by using the classical mixed setting that is convenient
to carry out the analysis. In section 3, we state and discuss our theoretical results
which we prove in section 4. In section 5, we present a series of numerical results
that show that the order of convergence for the approximate solution given by

1The tensor σ corresponds to a stress variable in elastic models. In fact, if we chose the form
of the Oseen equations with symmetric gradients, σ = ν(∇u + (∇u)T ) would be the deviatoric
stress tensor.
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the theoretical results are actually sharp and that the method behaves well for a
large range of values of the Reynolds number. Finally, in section 6, we end with
concluding remarks. Last, but not least, in the Appendix, we consider a matter
of practical importance: the dependence of the condition number of the Schur
complement matrix for the pressure on the choice of the stabilization parameters in
the numerical fluxes. For the case β = 0, which is the case in which the condition
number can actually be estimated, we show how to make this choice in order to
render the condition number independent of the kinematic viscosity ν.

2. The local discontinuous Galerkin method

In this section, we introduce the LDG discretization of the Oseen equations
(1.1). This is achieved by combining the LDG discretization of the Stokes problem
introduced in [12] with the classical DG discretization of the convective term.

2.1. The flux formulation of the LDG method. We use the standard notation
(∇u)ij = ∂jui and (∇ · σ)i =

∑d
j=1 ∂jσij . We also denote by u ⊗ v the matrix

whose ijth component is ui vj and write

σ : τ :=
d∑

i,j=1

σijτij , v · σ · n :=
d∑

i,j=1

viσijnj = σ : (v ⊗ n).

Then, we introduce the “stresses” σ = ν∇u and rewrite the Oseen problem as the
following system of first-order equations:

σ = ν∇u in Ω,

−∇ · σ + (β · ∇)u + γ u +∇p = f in Ω,
∇ · u = 0 in Ω,

u = g on Γ.

Multiplying these equations by smooth test functions τ , v, and q, respectively,
and integrating by parts over an arbitrary subset K ⊂ Ω with outward unit normal
vector nK , we obtain∫

K

σ : τ dx = −ν
∫
K

u · ∇ · τ dx + ν

∫
∂K

u · τ · nK ds,(2.1) ∫
K

[
σ : ∇v − p∇ · v

]
dx−

∫
∂K

[
σ : (v ⊗ nK)− pv · nK

]
ds

+
∫
K

[
γ u · v − u · ∇ · (v ⊗ β)

]
dx +

∫
∂K

β · nK u · v ds =
∫
K

f · v dx,
(2.2)

−
∫
K

u · ∇q dx +
∫
∂K

u · nKq ds = 0.(2.3)

This is the weak form of the Oseen equations used to define the LDG method.
We enforce the above equations on each element K of a general triangulation T of Ω
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which can have hanging nodes and elements of various shapes. Equations (2.1)–
(2.3) are well defined for functions (σ,u, p) and (τ ,v, q) in Σ×V ×Q where

Σ :={σ ∈ L2(Ω)d
2

: σij
∣∣
K
∈ H1(K), ∀K ∈ T , 1 ≤ i, j ≤ d},

V:={v ∈ L2(Ω)d : vi
∣∣
K
∈ H1(K), ∀K ∈ T , 1 ≤ i ≤ d},

Q :={q ∈ L2(Ω) :
∫

Ω

q dx = 0, q
∣∣
K
∈ H1(K), ∀K ∈ T }.

We wish to approximate the exact solution (σ,u, p) with functions (σh,uh, ph) in
the finite element space Σh ×Vh ×Qh ⊂ Σ×V ×Q, where

Σh :={σ ∈ L2(Ω)d
2

: σij
∣∣
K
∈ S(K), ∀K ∈ T , 1 ≤ i, j ≤ d},

Vh:={v ∈ L2(Ω)d : vi
∣∣
K
∈ V(K), ∀K ∈ T , 1 ≤ i ≤ d},

Qh :={q ∈ L2(Ω) :
∫

Ω

q dx = 0, q
∣∣
K
∈ Q(K), ∀K ∈ T },

and the local finite element spaces S(K), V(K) and Q(K) typically consist of poly-
nomials.

The approximate solution (σh,uh, ph) is defined by imposing that for all K ∈ T ,
for all (τ ,v, q) ∈ S(K)d

2 × V(K)d ×Q(K),∫
K

σh : τ dx = −ν
∫
K

uh · ∇ · τ dx + ν

∫
∂K

ûσh · τ · nK ds,(2.4)

∫
K

[
σh : ∇v − ph∇ · v

]
dx−

∫
∂K

[
σ̂h : (v ⊗ nK)− p̂h v · nK

]
ds

+
∫
K

[
γ uh · v − uh · ∇ · (v ⊗ β)

]
dx +

∫
∂K

β · nK ûch · v ds =
∫
K

f · v dx,

(2.5)

−
∫
K

uh · ∇q dx +
∫
∂K

ûph · nKq ds = 0.(2.6)

Here, ûσh, σ̂h, p̂h, ûch and ûph are the so-called numerical fluxes, which are discrete
approximations to traces on the boundary of the elements. We refer to ûσh, σ̂h as
the diffusive fluxes, whereas ûch is the convective flux. Moreover, p̂h and ûph are the
fluxes related to the incompressibility condition on the velocity.

2.2. Definition of numerical fluxes. First, we introduce some notation associ-
ated with traces. Let K+ and K− be two adjacent elements of T ; let x be an
arbitrary point of the set e = ∂K+ ∩ ∂K−, which is assumed to have a nonzero
(d−1)-dimensional measure, and let n+ and n− be the corresponding outward unit
normal vectors at that point. Let (σ,u, p) be an elementwise smooth function K±,
and let us denote by (σ±,u±, p±) the traces of (σ,u, p) on e from the interior of
K±. Then, we define the mean values {{·}} and jumps [[·]] at x ∈ e as

{{p}} := (p+ + p−)/2, [[[[[[p]]]]]] := p+ n+ + p− n−,

{{u}} := (u+ + u−)/2, [[u]] := u+ ⊗ n+ + u− ⊗ n−,

{{σ}} := (σ+ + σ−)/2, [[[[[[σ]]]]]] := σ+ n+ + σ− n−.

Note that the jumps [[[[[[p]]]]]] and [[[[[[σ]]]]]] are both vectors, whereas the jump [[u]] is a tensor
of rank two. We are now ready to define the numerical fluxes.
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The diffusive numerical fluxes. We begin by defining the diffusive fluxes, σ̂ and
û, which we pick as in [12]; this choice is in turn an extension of the fluxes for
the Laplace operator considered in [9] and [11]. That is, on a face e inside the
domain Ω, we take

(2.7) σ̂ = {{σ}} − C11[[u]]− [[[[[[σ]]]]]]⊗C12, ûσ = {{u}}+ [[u]] ·C12,

and, if e lies on the boundary, we take

(2.8) σ̂ = σ − C11(u− g)⊗ n, ûσ = g.

The parameters C11 and C12 depend on x ∈ e and have to be chosen properly.
Their purpose is to enhance the stability and accuracy of the LDG method; see
[9, 11]. Note that the numerical flux ûσ is independent of the variable σ. For this
reason, it is possible to eliminate it from the equations by using the equation (2.4)
to solve for σh in terms of uh, in an element-by-element manner; see, e.g., [9, 13]
for more details.

The numerical fluxes related to the incompressibility constraint. The numerical
fluxes associated with the incompressibility constraint, ûp and p̂, are defined by
using an analogous recipe; see [12]. If the face e is on the interior of Ω, we take

(2.9) ûp = {{u}}+D11[[[[[[p]]]]]] + D12 tr [[u]], p̂ = {{p}} −D12 · [[[[[[p]]]]]],

where D11, D12 depend on x ∈ e. Here, tr [[u]] denotes the trace of [[u]]. On the
boundary, we set

(2.10) ûp = g, p̂ = p+.

The convective numerical flux. For the convective flux ûc in (2.5), we take the
standard upwind flux introduced in [20, 26], namely,

(2.11) ûc(x) = lim
ε↘0

u (x− εβ(x)) .

This completes the definition of the LDG method. Next, following [12], we
recast the LDG method in a classical mixed setting. We do this at this point to
introduce a mesh-dependent seminorm that appears naturally in the error analysis
of the method; an estimate of the error in this seminorm is a key ingredient of the
analysis.

2.3. The compact formulation of the LDG method. First, we sum equations
(2.4)–(2.6) over all elements, taking into account the above form of the numerical
fluxes. A second integration by parts of the volume terms

∫
K
σh : ∇v dx and∫

K uh · ∇q dx in (2.5) and (2.6), respectively, and elementary manipulations then
show that the approximate solution (σh,uh, ph) ∈ Σh×Vh×Qh of the LDG method
satisfies the equations

a(σh, τ )+b(uh, τ ) =f(τ),

−b(v, σh)+c(uh,v) + d(v, ph)+O(uh,v) =g(v),(2.12)

−d(uh, q) + e(ph, q) =h(q),
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for all (τ ,v, q) ∈ Σh ×Vh ×Qh. Here,

a(σ, τ):=
1
ν

∫
Ω

σ : τ dx,

b(u, τ):=
∑
K∈T

∫
K

u · ∇ · τ dx−
∫
EI

({{u}}+ [[u]] ·C12) · [[[[[[τ]]]]]] ds,

c(u,v):=
∫
EI
C11[[u]] : [[v]] ds+

∫
ED

C11(u⊗ n) : (v ⊗ n) ds,

d(v, p):=−
∑
K∈T

∫
K

p∇ · v dx +
∫
EI

({{p}} −D12 · [[[[[[p]]]]]])[[v]] ds +
∫
ED

pv · n ds,

e(p, q) :=
∫
EI
D11[[[[[[p]]]]]] · [[[[[[q]]]]]] ds,

where EI denotes the union of all interior faces of the triangulation T and ED the
union of faces lying on Γ.

All the above bilinear forms are associated with the Stokes system; only the
following bilinear form captures all the characteristic features that distinguish the
Oseen equations from the Stokes equations:

O(u,v):=
∑
K∈T

∫
K

[
γ u · v − u · ∇ · (v ⊗ β)

]
dx +

∑
K

∫
∂K\Γ−

β · nK ûc · v ds,

where Γ− = {x ∈ Γ : β(x) · n < 0} is the so-called inflow part of the boundary Γ.
The linear forms on the right-hand side are defined as follows:

f(τ ):=
∫
ED

g · τ · n ds,

g(v):=
∫

Ω

f · v dx +
∫
ED

C11(g ⊗ n) : (v ⊗ n) ds−
∫

Γ−

β · n g · v ds,

h(q):=−
∫
ED

g · n q ds.

Notice that only the last term of the linear functional g(·) differs from the corre-
sponding Stokes discretization.

Now, we rewrite the mixed system (2.12) in the following compact form: Find
(σh,uh, ph) ∈ Σh ×Vh ×Qh such that

(2.13) A(σh,uh, ph; τ ,v, q) = F(τ ,v, q) ∀ (τ ,v, q) ∈ Σh ×Vh ×Qh,
where

A(σ,u, p; τ,v, q) :=a(σ, τ ) + b(u, τ)− b(v, σ) + c(u,v)

+ d(v, p) − d(u, q) + e(p, q) +O(u,v),

F(τ ,v, q) :=f(τ) + g(v) + h(q).

We can now introduce the seminorm which appears naturally in the error analysis
of this method. It is denoted by | · |A and is defined by

(2.14) | (σ,u, p) |2A := A(σ,u, p;σ,u, p).

To see that | · |A is actually a seminorm, we only have to realize that we can write

(2.15) A(σ,u, p;σ,u, p) = ‖σ‖2a + |u |2c + | p |2e + |u |2O,
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where

‖σ‖2a = a(σ, σ) =
1
ν
‖σ‖20,Ω,(2.16)

|u |2c = c(u,u) =
∫
EI
C11|[[u]]|2 ds+

∫
ED

C11|u |2 ds,(2.17)

| p |2e = e(p, p) =
∫
EI
D11|[[[[[[p]]]]]]|2 ds,(2.18)

|u |2O = O(u,u) = ‖γ
1
2
0 u‖20,Ω +

1
2

∫
EI
|β · n| |[[u]]|2 ds+

1
2

∫
Γ

|β · n||u|2 ds,(2.19)

since the kinematic viscosity ν and the stabilization parameters C11 and D11 are
positive. The last identity is a classical result which is a direct consequence of the
definition of the form O(·, ·) and the assumption (1.2). Note that in the integral
over EI , n denotes any unit normal to the edges that belong to EI .

3. Theoretical results

In this section, we present and discuss our theoretical results.

3.1. The assumptions. We begin by stating our assumptions on the exact solu-
tion, the meshes, the local finite element spaces and the parameters in the definition
of the numerical fluxes.

We take β and γ such that

(3.1) β ∈ L∞(Ω)d, γ ∈ L∞(Ω), γ −∇ · β ∈ L∞(Ω)

and assume the following standard smoothness properties for the exact solution

(3.2) u ∈ Hs+1(Ω)d, p ∈ Hs(Ω),

with integer s ≥ 1.
We assume that every element K of the triangulation T is affinely equivalent (see

[10, Section 2.3]) to one of several reference elements in an arbitrary but fixed set;
this allows us to use elements of various shapes with possibly curved boundaries.
For each K ∈ T , we denote by hK the diameter of K and by %K the diameter of the
largest ball included in K; we set, as usual, h := maxK∈T hK . The triangulations
we consider have to be shape-regular , that is, there exists a positive constant δ1
such that (see [10, Section 3.1])

(3.3)
hK
%K
≤ δ1, ∀ K ∈ T .

We assume that the triangulation covers the whole domain Ω and that the in-
tersection of two grid cells is lower-dimensional. It is explicitly admitted that the
intersection of two edges (in 2D) is a strict subset of both edges (surfaces in 3D).
Furthermore, the maximum number of neighbors of a given element K has to be
bounded independently of the mesh size. This assumption is formalized by requiring
that there exists a positive constant δ2 < 1 such that

(3.4) δ2 ≤
hK′

hK
≤ δ−1

2 ,

whenever the (d−1)-dimensional Lebesgue measure of the intersection of the bound-
aries of the elements K and K ′ is not zero.
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The only mild conditions we impose on the local spaces are the following:

u ∈ V(K) :
∫
K

∇u · v dx = 0 ∀v ∈ Sd(K) implies ∇u ≡ 0 on K,(3.5)

q ∈ Q(K) :
∫
K

v · ∇q dx = 0 ∀v ∈ Vd(K) implies ∇q ≡ 0 on K.(3.6)

These are the same conditions used in the study of LDG methods for the Stokes
system in [12]; they ensure that the approximate solution is well defined (this follows
from [12, Proposition 2.1] and the coercivity property in (2.15)).

In order to guarantee certain approximation properties of the local spaces, we
assume that they contain at least all polynomials of degree k ≥ 1 and k − 1,
respectively, that is,

(3.7) P k(K) ⊆ V(K), P k−1(K) ⊆ S(K), P k−1(K) ⊆ Q(K).

Let us point out that in [12], it was shown that, for the Stokes system, the same
orders of convergence are obtained if all the above local spaces are taken to be
P k(K) and that it is not less efficient to use the equal-order spaces.

We choose the stabilization coefficients C11 and D11 as follows

C11(x) =

{
c11 max{h−1

K , h−1
K′} if x in the interior of ∂K ∪ ∂K ′,

c11h
−1
K if x in the interior of ∂K ∩ Γ,

D11(x) =
{
d11 max{hK , hK′} if x in the interior of ∂K ∪ ∂K ′,

(3.8)

with parameters c11 and d11 independent of the mesh size. A simple dimensional
analysis reveals that these parameters must be taken as

(3.9) c11 ∼ ν, d11 ∼ ν−1

and that |C12| as well as |D12| must be of order one. In particular, this choice
ensures that the condition numbers of the matrices associated with the method are
independent of the kinematic viscosity ν; see the Appendix, where the impact of
this choice on the condition number of the matrices of the method is explored.

3.2. The results. In this section, we state and discuss our main results. These
are a priori error estimates of the approximation error in the so-called A-seminorm
defined in (2.14). We also present an estimate of the L2-norm of the error in the
pressure and an estimate of negative-order norms of the error in the velocity and
the pressure.

To express our estimates in terms of dimensionless quantities, we use a slightly
unusual definition of these norms. Namely, for any integer ` ≥ 0, we set

‖ u ‖`,Ω =
{
ci
∑̀
i=0

|u |2i,Ω
}1/2

, |u |i,Ω =
{ ∑
|α|=i

‖Dαu ‖20,Ω
}1/2

,

with parameters ci > 0 independent of the discretization. These parameters solely
depend on the measure units and are chosen in such a way that all the seminorms
are dimensionally equivalent. The Sobolev norm ‖ · ‖−`,Ω, ` ≥ 0, is then given by

‖ u ‖−`,Ω = sup
φ∈C∞0 (Ω)

∫
Ω u(x)φ(x) dx
‖φ ‖`,Ω

.
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To measure the pressure p ∈ L2
0(Ω) in negative-order norms, we define similarly

‖ p ‖−`,Ω = sup
φ∈C∞0 (Ω)∩L2

0(Ω)

∫
Ω p(x)φ(x) dx
‖φ ‖`,Ω

.

We are also going to use the following norm,

(3.10) ||| (u, p) |||s = ν
1
2 ‖u‖s+1,Ω + ν−

1
2 ‖p‖s,Ω,

for integer s. Note that the two terms of the above norm have the same dimensions
if the parameters ci above are suitably chosen.

The error estimates we present next are stated in terms of the constant κ in the
continuous inf-sup condition for the divergence operator [7, 15]:

(3.11) inf
q∈L2

0(Ω)
sup

v∈H1
0 (Ω)d

∫
Ω
q∇ · v dx

‖q‖0,Ω‖v‖1,Ω
≥ κ = κ(Ω) > 0,

and in terms of the following two other dimensionless parameters:

µh = max
{
h ‖ β ‖L∞(Ω)d

ν
,
h2 ‖ γ −∇ · β ‖L∞(Ω)

ν

}
,(3.12)

Mh =
hCPoinc ‖ γ −∇ · β ‖L∞(Ω)

ν
,(3.13)

where CPoinc is the Poincaré constant that we use here to dimensionally balance
the term Mh. Note that the number ν−1h‖ β ‖L∞(Ω)d = L−1hRe is the cell Peclet
number which can be thought of as being a measure of the numerical resolution of
the convection. Similarly, the other parameter can be thought of as a measure of
how well the “reaction” is being resolved.

Finally, we assume that the boundary of the domain Ω is of class C`+2 for some
` ≥ 0. This ensures that the so-called dual problem is well posed in the norm
||| (·, ·) |||−`−1; see [4, 18, 27].

We have the following result.

Theorem 3.1. Under the assumptions of section 3.1 and for all h < h0, where
h0 solely depends on the data, we have that the error (eσ, eu, ep) between the exact
solution (σ,u, p) and the LDG approximation (σh,uh, ph) satisfies the following
bounds:

| (eσ, eu, ep) |A ≤ CA hmin{s,k} ||| (u, p) |||s,(3.14)

ν−
1
2 ‖ep‖0,Ω ≤ Cp

κ
hmin{s,k} ||| (u, p) |||s,(3.15)

||| (eu, ep) |||−`−1 ≤ C−`−1 h
min{`+1,k}+min{k,s}||| (u, p) |||s ∀ ` ≥ 0,(3.16)

where the dimensionless constants CA, Cp and C−`−1 are continuous functions of
µh (Cp also depends on Mh) and depend only on k and the mesh constants in (3.3)
and (3.4).

In particular, for ` = 0, the bound (3.16) implies the L2-norm error estimate

(3.17) ν
1
2 ‖eu‖0,Ω ≤ C−1 h

min{1,k}+min{k,s}||| (u, p) |||s
of the velocity.

Let us briefly discuss this result:
• If we use polynomials of degree k for the velocity u and polynomials of degree

k−1 for the “stresses” σ and for the pressure p, this theorem states that we obtain
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an order of convergence of k+ 1 for the L2-norm of the error in the velocity and of
k for the L2-norm of the error in σ and p.
• Let Λ(u, p) be a linear functional such that

|Λ(u, p) | ≤ C ||| (u, p) |||−`−1.

Then, by linearity,

|Λ(eu, ep) | ≤ C ||| (eu, ep) |||−`−1.

This simple calculation shows that the theorem also implies that the error of smooth
linear functionals of the velocity and the pressure converges with an order of 2 k.
• If we use polynomial approximations of degree k for all the unknowns, it is

easy to prove that the above orders of convergence remain the same. This fact is
actually verified in our numerical experiments for which we have used rectangular
elements and tensor product polynomials of degree k. This choice of polynomial
spaces is motivated by the fact that, in the case of the Stokes system investigated
in [12], using equal-degree polynomial spaces has been shown to be not less efficient
than using polynomials of degree k − 1 for σ and p.
• The condition h < h0 does not have any practical relevance since the numerical

scheme is well defined for any mesh.
• The error estimates in the A-seminorm and the L2-error estimate for the

pressure hold true for any bounded Lipschitz domain Ω ⊂ Rd whereas the L2-norm
error bound (3.17) for the velocity is proved by a duality argument for smooth
domains of class C2. As can be inferred from our proof in section 4 and standard
elliptic regularity results, the L2-bound (3.17) for the velocity also holds true on
two-dimensional convex polygons, cf., e.g., [15, Remark 5.6].
• It is still possible to have a well-defined LDG method if we take D11 ≡ 0.

Indeed, for the mixed-order polynomial spaces V(K) = P k(K), S(K) = P k−1(K)
and Q(K) = P k−1(K), we can proceed as in [16, Section 4] (see [28, Section 6.2]
for tensor product polynomial spaces) to prove a standard inf-sup condition and
obtain identical error estimates. However, when using the same polynomial degree
k for all the unknowns, this approach is no longer available and the stabilization
terms induced by D11 of the order O(h) seem to be necessary.

4. Proof of Theorem 3.1

This section is devoted to proving Theorem 3.1. To do that, we are not going
to assume that the function γ0 in (1.2) is strictly larger than a positive parameter.
This renders the proof more delicate since we cannot control the convective term
as is usually done; instead, we use the stabilizing effects of the viscosity.

To be able to do that, the numerical scheme should have captured these viscosity
effects in a suitable manner. The mathematical condition that reflects this fact is

Cstab CO µh < 1,

where Cstab is the stability constant of the dual problem and CO is a continuity
constant of the bilinear form associated with the convective term. The condition
h < h0 in Theorem 3.1 is nothing but a rewriting of the above inequality.

We proceed in several steps.
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4.1. Step 1: Estimates of the bilinear forms. We begin with a result that
contains all the estimates of the bilinear forms of the LDG method needed to carry
out the error analysis.

We denote by Π, Π and Π the L2-projections into the finite element spaces Σh,
Vh and Qh, respectively, and set ξ

σ
= σ−Πσ, ξu = u−Πu, as well as ξp = p−Πp.

Lemma 4.1. Assume that (u, p) belongs to Hs+1(Ω)d × Hs(Ω) and that (v, q)
belongs to Ht+1(Ω)d ×Ht(Ω); set σ = ∇u and τ = ∇v. Then we have

‖ ξ
σ
‖a ≤ Ca hmin{s,k} ||| (u, 0) |||s,

| b(ξu, τh) | ≤ Cb hmin{s,k} ||| (u, 0) |||s ‖ τh ‖a, ∀ τh ∈ Σh,

| b(vh, ξσ) | ≤ Cb hmin{s,k} ||| (u, 0) |||s |vh |c, ∀ vh ∈ Vh,

| b(ξu, ξτ ) | ≤ C2
b h

min{s,k} ||| (u, 0) |||s hmin{t,k} ||| (v, 0) |||t,
| ξu |c ≤ Cc hmin{s,k} ||| (u, 0) |||s,
| d(ξu, qh) | ≤ Cd hmin{s,k} ||| (u, 0) |||s | qh |e, ∀ qh ∈ Qh,
| d(vh, ξp) | ≤ Cd hmin{s,k} ||| (0, p) |||s |vh |c, ∀ vh ∈ Vh,

| d(ξu, ξq) | ≤ C2
d h

min{s,k} ||| (u, 0) |||s hmin{t,k} ||| (0, q) |||t,
| ξp |e ≤ Ce hmin{s,k} ||| (0, p) |||s,

where the constants Ca, Cb, Cc, Cd, and Ce depend solely on inverse inequality and
approximation constants. Moreover,

| O(ξu,vh) | ≤ CO µh hmin{s,k} ||| (u, 0) |||s
(
|vh |c + ν

1
2 h−1 ‖vh ‖0,Ω

)
, ∀ vh ∈ Vh,

| O(vh, ξu) | ≤ CO µh hmin{s,k} ||| (u, 0) |||s
(
|vh |c + ν

1
2 h−1 ‖vh ‖0,Ω

)
, ∀ vh ∈ Vh,

| O(ξu, ξv) | ≤ C2
O µh h

min{s,k} ||| (u, 0) |||s hmin{t,k} ||| (v, 0) |||t,

where CO depends solely on inverse inequality and approximation constants.
Finally, if w ∈ H1

0 (Ω)d, then

| b(w, σ) | ≤ ν 1
2 |w |1,Ω ‖ σ ‖a, ∀ σ ∈ Σ,

| O(v,w) | ≤ (Mh + µh) ν
1
2 |w |1,Ω ν

1
2 h−1 ‖v ‖0,Ω, ∀ v ∈ V.

Proof. The first set of estimates have been proved in [12]; see [12, Corollaries 3.4
and 3.8]. To prove the estimates for the Oseen bilinear form, we proceed as follows.
We begin by noting that we can write,

O(ξu,vh) = T1 + T2 + T3,

where

T1 =
∑
K∈T

∫
K

(γ −∇ · β) ξu · vh dx,

T2 = −
∑
K∈T

∫
K

ξu · (β · ∇)vh dx,

T3 =
∑
e⊂Γ+

∫
e

(ξ̂cu ⊗ β) : (vh ⊗ n) ds+
∑
e⊂EI

∫
e

(ξ̂cu ⊗ β) : [[vh]] ds,
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and where Γ+ = {x ∈ Γ : β(x) · n ≥ 0 } is the outflow boundary of Γ. Using
standard approximation properties of the L2-projection, we find that

|T1 | ≤
∑
K∈T

‖ γ −∇ · β ‖L∞(K) ‖ ξu ‖0,K ‖vh ‖0,K

≤ C h ‖ γ −∇ · β ‖L∞(Ω) h
min{s,k} |u |s+1,Ω ‖vh ‖0,Ω,

≤ C µh h
min{s,k} ν

1
2 |u |s+1,Ω ν

1
2h−1 ‖vh ‖0,Ω,

≤ C µh h
min{s,k} ||| (u, 0) |||s ν

1
2 h−1 ‖vh ‖0,Ω.

Similarly,

|T2 | ≤
∑
K∈T

‖ β ‖L∞(K)d ‖ ξu ‖0,K ‖∇vh ‖0,K

≤ C ‖ β ‖L∞(Ω)d h
min{s,k} |u |s+1,Ω ‖vh ‖0,Ω

≤ C µh h
min{s,k} ν

1
2 |u |s+1,Ω ν

1
2h−1 ‖vh ‖0,Ω,

≤ C µh h
min{s,k} ||| (u, 0) |||s ν

1
2h−1 ‖vh ‖0,Ω,

and

|T3 | ≤
(
‖ β ‖L∞(Ω)d h

1
2

ν
1
2

) (∑
e⊂E
‖ ξu ‖20,e

) 1
2

|vh |c

≤ C µh h
min{s,k} ν

1
2 |u |s+1,Ω |vh |c

≤ C µh h
min{s,k} ||| (u, 0) |||s |vh |c.

Here, E = EI ∪ ED. This completes the proof of the first estimate. The second and
third estimates can be proved in a similar way.

Finally, the last set of estimates can be proved easily by noting that, for w ∈
H1

0 (Ω)d, we have

b(w, σ) = −
∫

Ω

∇w : σ dx,

O(v,w) =
∫

Ω

((γ −∇ · β) v ·w − v · ∇w · β) dx.

This completes the proof of Lemma 4.1. �
4.2. Step 2: A first estimate of the A-seminorm. Now, let us keep Π, Π and
Π as in the previous lemma, and let us split the error (σ − σh,u − uh, p − ph) as
follows:

(4.1) (σ − σh,u− uh, p− ph) = (ξ
σ
, ξu, ξp) + (η

σ
, ηu, ηp),

where again (ξ
σ
, ξu, ξp) = (σ−Πσ,u−Πu, p−Πp) and (η

σ
, ηu, ηp) = (Πσ−σh,Πu−

uh,Πp− ph).
We have the following result.

Lemma 4.2. We have

| (η
σ
, ηu, ηp) |2A ≤ Ψ1 h

min{s,k} ||| (u, p) |||s,
where

Ψ1 = C1 | (ησ, ηu, ηp) |A + CO µh ν
1
2 h−1 ‖ ηu ‖0,Ω,

and C1 = 2Cb + Cc + 2Cd + Ce + CO µh.
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Let us emphasize that this result holds even if the function γ0, defined by (1.2),
is identically equal to zero. If we assume that γ0 ≥ γ? > 0, the A-seminorm can be
bounded easily in terms of hmin{s,k} ||| (u, p) |||s only.

Proof. By the definition of the A-seminorm, (2.14), and Galerkin orthogonality, we
have

| (η
σ
, ηu, ηp) |2A = A(ξ

σ
, ξu, ξp; ησ, ηu, ηp).

Now, a direct application of Lemma 4.1 gives

| (η
σ
, ηu, ηp) |2A ≤ Θ hmin{s,k} ||| (u, p) |||s,

where

Θ = Cb ‖ ησ ‖a + (Cb + Cc + Cd + CO µh) | ηu |c
+(Ce + Cd) | ηp |e + CO µh ν

1
2 h−1 ‖ ηu ‖0,Ω ≤ Ψ1.

Note that we also used that a(ξ
σ
, η
σ
) = 0 thanks to the orthogonality properties of

the L2-projections. This completes the proof. �

It is clear that when estimating the error in the A-seminorm, we must find an
estimate of the L2-norm of the error in the velocity. This is achieved by a standard
duality argument as we show next.

4.3. Step 3: A key estimate of negative-order norms. The so-called dual
problem is the following:

−ν∆z−∇ · (z⊗ β) + γ z−∇ψ = λ in Ω,

−∇ · z = χ in Ω,(4.2)
z = 0 on Γ,

where the data χ satisfies the usual compatibility condition
∫

Ω χdx = 0. Due to
assumption (1.2) on γ0, it can be easily seen that the above problem has a unique
solution in H1

0 (Ω)d × L2
0(Ω).

Now let Γ be of class C`+2 for ` ≥ 0. From the regularity results in [4, 18, 27], we
conclude that for λ ∈ H`(Ω)d, χ ∈ H`+1(Ω) we have z ∈ H`+2(Ω)d, ψ ∈ H`+1(Ω)
and the stability estimate

(4.3) ||| (z, ψ) |||`+1 ≤ Cstab||| (χ, λ) |||`,
where we use the analogous notation

||| (χ, λ) |||` = ν
1
2 ‖χ‖`+1,Ω + ν−

1
2 ‖λ‖`,Ω,

and where the constant Cstab depends on dimensionless quantities as can be seen
from a simple scaling argument.

Lemma 4.3. We have, for ` ≥ 0,∫
Ω

λ · eu dx +
∫

Ω

χep dx ≤ Cstab Ψ2 h
min{`+1,k} ||| (χ, λ) |||`,

where

Ψ2 = C1 | (ησ, ηu, ηp) |A + CO µh ν
1
2 h−1 ‖ ηu ‖0,Ω + C2 h

min{s,k} ||| (u, p) |||s,

and C2 = C2
a + 2C2

b + C2
c + 2C2

d + C2
e + C2

O µh.
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Proof. If we introduce the auxiliary variable ζ = −ν∇z, it is easy to verify that we
have

a(ζ, τ ) − b(z, τ ) = 0 ∀τ ∈ Σ,

b(v, ζ) + c(z,v) − d(v, ψ) +O(v, z) =
∫

Ω

λ · v dx ∀v ∈ V,

d(z, q) + e(ψ, q) =
∫

Ω

χq dx ∀q ∈ Q.

Now, if we add the above equations, we obtain∫
Ω

λ · v dx +
∫

Ω

χq dx = A(τ ,v, q; ζ, z, ψ) ∀(τ ,v, q) ∈ Σ×V ×Q,

and if we take (τ ,v, q) = (eσ, eu, ep), and use the Galerkin orthogonality property,
we get ∫

Ω

λ · eu dx +
∫

Ω

χep dx = A(eσ, eu, ep; ζ − ζh, z− zh, ψ − ψh)

for any (ζ
h
, zh, ψh) ∈ Σh ×Vh × Qh. Finally, if we take ζ

h
= Πζ, zh = Πz, and

ψh = Πψ, we obtain∫
Ω

λ · eu dx +
∫

Ω

χep dx = A(eσ, eu, ep; ξζ , ξz , ξψ)

= A(η
σ
, ηu, ηp; ξζ , ξz, ξψ) +A(ξ

σ
, ξu, ξp; ξζ , ξz , ξψ).

As in Lemma 4.2, we have

| A(η
σ
, ηu, ηp; ξζ , ξz , ξψ) | ≤ Θ1 h

min{`+1,k} ||| (z, ψ) |||`+1,

where Θ1 = C1 | (ησ, ηu, ηp) |A+CO µh ν
1
2 h−1 ‖ ηu ‖0,Ω, and, by a direct application

of Lemma 4.1,

| A(ξ
σ
, ξu, ξp; ξζ , ξz , ξψ) | ≤ Θ2 h

min{`+1,k} ||| (z, ψ) |||`+1,

where Θ2 = C2 h
min{s,k} ||| (u, p) |||s. As a consequence, by the stability estimate

(4.3), ∫
Ω

λ · eu dx +
∫

Ω

χep dx ≤ Cstab (Θ1 + Θ2) hmin{`+1,k} ||| (χ, λ) |||`.

Since Ψ2 = Θ1 + Θ2, this completes the proof. �

4.4. Step 4: The estimates of the A-seminorm and negative-order norms.
An immediate consequence of Lemma 4.3 is the following result.

Corollary 4.4. Assume that Cstab CO µh < 1. Then we have

ν
1
2 h−1 ‖ ηu ‖0,Ω ≤

Cstab

1− Cstab CO µh

(
C1 | (ησ, ηu, ηp) |A + C2 h

min{s,k} ||| (u, p) |||s
)
.

Proof. This result follows easily from Lemma 4.3 with ` = 0 simply by taking
(χ, λ) = (0, ν

1
2 ηu) and noting that, in this case, ||| (χ, λ) |||0 = ‖ ηu ‖0,Ω and also∫

Ω λ · eu dx = ν
1
2 ‖ ηu ‖20,Ω. �

We can now obtain the error estimates in the A-seminorm and in negative-order
norms given by Theorem 3.1.
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Corollary 4.5. Assume that Cstab CO µh < 1. Then we have

| (η
σ
, ηu, ηp) |A ≤ C3 h

min{s,k} ||| (u, p) |||s,
||| (eu, ep) |||−`−1 ≤ C4 h

min{`+1,k}+min{s,k} ||| (u, p) |||s, ∀ ` ≥ 0,

where

C3 = (C1 +
√

2C2)/(1− Cstab CO µh),

C4 = 2Cstab (C1 C3 + C2) / (1− Cstab CO µh) .

Note that from this result, the first and third estimates of Theorem 3.1 easily
follow.

Proof. If we insert the estimate of the L2-norm of the projection of the error in the
velocity obtained in Corollary 4.4 into the estimate of Lemma 4.2, we get

| (η
σ
, ηu, ηp) |2A ≤ Ψ hmin{s,k} ||| (u, p) |||s,

where

Ψ =
1

1− CstabCO µh

(
C1 | (ησ, ηu, ηp) |A + C2 h

min{s,k} ||| (u, p) |||s
)
.

The first estimate now follows after a simple application of Young’s inequality.
If we now insert the first estimate in the inequality given by Corollary 4.4, we

get

ν
1
2 h−1 ‖ ηu ‖0,Ω ≤

C4

2
hmin{s,k} ||| (u, p) |||s.

Finally, the second estimate follows by inserting the first estimate of the corollary
and the above inequality in the estimate given by Lemma 4.3 and by noting that

ν
1
2 ‖ eu ‖−`,Ω = sup

λ∈(C∞0 (Ω))d

∫
Ω

eu · λdx
ν−

1
2 ‖λ ‖`,Ω

and that

ν−
1
2 ‖ ep ‖−`−1,Ω = sup

χ∈C∞0 (Ω)∩L2
0(Ω)

∫
Ω ep χdx

ν
1
2 ‖χ ‖`+1,Ω

.

This completes the proof of the corollary. �

4.5. Step 5: Estimate of the L2-norm of the error in the pressure. To
prove Theorem 3.1, it only remains to get the estimate of the error in the pressure.
To do that, we use a variation of the corresponding argument presented in [12].

Since the error in the pressure, ep, belongs to L2(Ω) and is such that
∫

Ω ep dx = 0,
it follows from the continuous inf-sup condition in (3.11) that there is a velocity
field w ∈ H1

0 (Ω)d satisfying

(4.4) −
∫

Ω

ep∇ ·w dx ≥ κ ‖ep‖20,Ω, ‖w‖1,Ω ≤ ‖ep‖0,Ω.

In the following result, we exploit this fact to obtain an upper bound of the L2-norm
of ep in terms of the bilinear forms of the LDG method.

Lemma 4.6. Let w ∈ H1
0 (Ω)d be the continuous velocity field in (4.4). Then we

have
κ ‖ep‖20,Ω ≤ A(eσ, eu, ep; 0, ξw, 0) + b(w, eσ)−O(eu,w).
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Proof. By the first inequality in (4.4), we have

κ ‖ep‖20,Ω ≤−
∫

Ω

ep∇ ·w dx = d(w, ep)

= [−b(w, eσ) + c(eu,w) + d(w, ep) +O(eu,w)] + b(w, eσ)−O(eu,w)

= A(eσ, eu, ep; 0,w, 0) + b(w, eσ)−O(eu,w)

= A(eσ, eu, ep; 0, ξw, 0) + b(w, eσ)−O(eu,w),

by Galerkin orthogonality. Note that we have used the fact that c(eu,w) = 0 since
w ∈ H1

0 (Ω)d. This completes the proof. �

Next, we use the upper bounds of Lemma 4.1 and the already obtained bounds
on the errors to obtain the wanted estimate.

Lemma 4.7. We have

ν−
1
2 ‖ ep ‖0,Ω ≤

C5

κ
hmin{s,k} ||| (u, p) |||s,

where

C5 = CA + (Mh + µh)C4 + (C1 C3 + C2)
(

1 + Cstab CO µh
1− Cstab CO µh

)
.

Proof. To prove this result, we proceed as follows:

κ ‖ep‖20,Ω≤A(η
σ
, ηu, ηp; 0, ξw, 0) +A(ξ

σ
, ξu, ξp; 0, ξw, 0)

+ b(w, eσ)−O(eu,w), by the previous lemma,

≤C5 hmin{s,k} ||| (u, p) |||s ν
1
2 ‖w‖1,Ω by Lemma 4.1,

≤C5 hmin{s,k} ||| (u, p) |||s ν
1
2 ‖ep‖0,Ω,

by Lemma 4.6, Lemma 4.1, and the second inequality in (4.4). This completes the
proof. �

Since the corollary we just proved is exactly the L2-estimate of the pressure, the
proof of Theorem 3.1 is complete.

5. Numerical results

The numerical experiments in this section are devised to verify our theoretical
estimates. As exact solution in our tests, we choose the two-dimensional analytical
solution of the incompressible Navier-Stokes equations derived by Kovasznay in [19].
Since this solution is smooth for any Reynolds number Re, it allows us to easily
assess the approximation properties of the LDG method for higher-order elements
and for a wide range of the Reynolds number.

Let us describe Kovasznay’s solution for a given Reynolds number Re: let the
(dimensionless) viscosity ν = 1/Re, and set λ = Re/2−

√
Re2/4 + 4π2. Then, the

functions

u1(x, y) = 1− eλx cos 2πy,

u2(x, y) = λ
2π e

λx sin 2πy,

p(x, y) = 1
2e

2λx + C,

(5.1)
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Table 1. L2-errors and numerica l convergence rates for Re = 10.

k level ‖eu‖0,Ω order ‖ep‖0,Ω order ‖eσ‖0,Ω order

5 1.5e-02 2.10 5.9e-02 1.23 1.3e-01 0.84
1 6 3.7e-03 2.06 2.9e-02 1.03 7.1e-02 0.91

7 9.2e-04 2.01 1.5e-02 0.99 3.7e-02 0.96

5 4.2e-04 3.11 1.2e-03 2.73 1.6e-03 2.50
2 6 5.1e-05 3.04 2.1e-04 2.49 3.3e-04 2.28

7 6.3e-06 3.01 4.6e-05 2.23 7.5e-05 2.13

5 1.7e-05 3.92 9.6e-05 2.87 2.0e-04 2.69
3 6 1.0e-06 4.04 1.3e-05 2.87 2.9e-05 2.81

7 6.1e-08 4.05 1.7e-06 2.95 3.9e-06 2.92

4 2.6e-06 5.87 1.2e-05 4.88 2.0e-05 4.94
4 5 4.6e-08 5.83 4.6e-07 4.74 8.2e-07 4.60

6 9.5e-10 5.59 2.2e-08 4.40 4.1e-08 4.31

solve the Oseen equations (1.1) with β = u, γ = 0, a suitably chosen right-hand side
f and a constant C chosen such that

∫
Ω p dx = 0. In our numerical experiments,

we take the computational domain to be

Ω =
(
−1

2
,

3
2

)
× (0, 2)

and impose Dirichlet boundary values for the velocities on Γ obtained from (5.1).
The vector plot on the left-hand side of Figure 1 shows that this flow is not trivial.
We emphasize that with our choice of β and γ we have that γ0 ≡ 0 in (1.2); thus,
we test the sharpness of the theoretical results as well as the performance of the
LDG method in this difficult limiting case.

The asymptotic behavior of the L2-norms of the components (σ,u, p) of the exact
solution with respect to the Reynolds number is displayed on the right-hand side of
Figure 1. When the Reynolds number becomes large, the L2-norm of the pressure
decays withO(1/Re), while the L2-norm of the velocity remains essentially constant
if the Reynolds number is larger than about 30. The L2-norm of the “stress” tensor
σ = ν∇u also decays like O(1/Re).

Our computations were performed on quadrilateral meshes generated by consec-
utive refinement of the original square. In each refinement step, each grid cell is
divided into four similar cells by connecting the edge midpoints. Therefore, grid
level L corresponds to a mesh width hL = 21−L. All the unknowns are approxi-
mated with tensor product polynomials of degree k ≥ 1 and, throughout, we choose
the parameters of the LDG method as c11 = ν and d11 = 1/10ν.

First, we display in Table 1 the L2-norms of the errors eu = u−uh, ep = p− ph
and eσ = σ−σh, respectively, for small Reynolds numbers, obtained on different grid
levels and for different polynomial degrees. We see that the optimal approximation
order k + 1 is achieved for the velocities whereas the pressure p and “stresses” σ
converge with one order less, hereby confirming the sharpness of the error estimates
in Theorem 3.1. For biquadratic elements, we display in Figure 2 the dependence
of the L2-norms of the errors eu, eσ, and ep on the Reynolds number. There,
the norms are scaled with the appropriate powers of ν taken from the estimates
in Theorem 3.1. The diagrams show the predicted convergence orders two and
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u
p
σ

Figure 1. Velocity field for Re = 10 (top) and L2-norms of so-
lution components (σ,u, p), depending on the Reynolds number
(bottom).

three, respectively. Furthermore, robustness of the discretization with respect to
the Reynolds number is evident.

Next, let us numerically verify the negative-order estimates obtained in Theo-
rem 3.1. To this end, we consider the smooth linear function M defined by

M(u) :=
∫

Ω

u(x)η(x) dx,
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Figure 2. Scaled L2-norms of the errors eu, ep and eσ with k = 2
for different Reynolds numbers.

where η is the C∞-cutoff function on a ball of radius % = 0.8 defined by

η(x) :=

{
exp

(
− r2

r2−%2

)
r < %

0 r ≥ %
where r :=

∣∣∣∣x− (0.5
0

)∣∣∣∣ .
We show in Figure 3 the errors of the weighted averages, M(eu), M(ep) and

M(eσ), for k = 2, again scaled by the powers of ν indicated by our analytical
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Figure 3. Weighted averages of eu, ep and eσ with k = 2 for
different Reynolds numbers.

results. Since η and the true solution (σ,u, p) are smooth, we can exploit the
negative-order estimate (3.16). We expect convergence of M(eu) with at least
fourth order. Since (3.16) establishes an estimate of the H−2-norm of the pressure,
we observe fourth-order convergence of p, too. In the last diagram, we even observe
fourth-order convergence of the weighted average of σ. We show in Table 2 the same
evaluations for fixed Reynolds number Re = 20 and for k = 2. We do not show
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Table 2. Weighted averages of eu, ep and eσ with Reynolds num-
ber Re = 20 and biquadratic elements.

level ν
1
2 |M(eu)| order ν−

1
2 |M(ep)| order ν−

1
2 |M(eσ)| order

2 4.9e-03 2.53 2.7e-03 3.61 1.0e-03 2.86
3 9.2e-05 5.72 1.7e-04 3.95 7.6e-05 3.72
4 3.4e-06 4.76 2.3e-06 6.27 9.8e-07 6.28
5 1.7e-07 4.34 1.0e-07 4.43 6.8e-08 3.85
6 9.4e-09 4.16 5.1e-09 4.36 4.4e-09 3.97
7 5.7e-10 4.06 2.7e-10 4.22 2.7e-10 4.00

results for k > 2 since the approximation is so good that the asymptotic regime is
reached when the errors are in the range of machine accuracy.

6. Concluding remarks

In this paper, we have extended the LDG method proposed for the Stokes sys-
tem in [12] to the Oseen problem. We have shown, both theoretically as well as
computationally, that optimal error estimates are obtained and that the resulting
method performs well for a wide range of the Reynolds number.

From the analysis we have presented, it is not very difficult to realize that an
LDG method that uses approximate velocities that are piecewise solenoidal can be
easily defined. However, this choice has several interesting aspects that have to be
properly discussed and analyzed. Such a case requires more space than allowed for
this work and will be treated in a forthcoming paper.

Appendix: The impact of the choice c11 = d−1
11 = ν

on the condition numbers of the LDG matrices

The result we present here concerns the dependence of the condition numbers
of the matrices for the velocity and the pressure with respect to the kinematic
viscosity ν in the absence of convection.

In this case, it is easy to see that the weak formulation (2.12) induces the fol-
lowing matrix equation A Bt 0

−Bt C Dt

0 −D E

SU
P

 =

FG
H

 .

We have the following result.

Proposition A.1. If c11 = d−1
11 = ν, the condition numbers of the matrices

C = C +BA−1 Bt and E = E +DC−1Dt,

are independent of the kinematic viscosity ν.

Proof. Since

C = C +BA−1Bt = ν

(
1
ν
C +B

1
ν
A−1Bt

)
,
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and since the matrix B is independent of ν, the condition number of C is indepen-
dent of ν if both 1

ν C and ν A are independent of ν. But, since we have

St (νA)T =
∫

Ω

σh : τh dx,

for the functions σh and τh represented by S and T , and

Ut 1
ν
CV =

∫
EI

C11

ν
[[uh]] : [[vh]] ds+

∫
ED

C11

ν
(uh ⊗ n) : (vh ⊗ n) ds,

for the functions uh and vh represented by U and V, it is clear that C is independent
of ν if C11

ν is independent of ν. Thus, if c11 = ν, we can write

C = ν C̃,

where C̃ is independent of ν; this implies that for this choice of c11, the condition
number of C is independent of ν.

Now, since

E = E + DC−1Dt =
1
ν

(ν E +D C̃−1Dt),

and since the matrices D and C̃ are independent of ν, the condition number of
E is also independent of ν if ν E is independent of ν. But, since we have for P
corresponding to the function ph

P t (ν E)P = ν e(ph, ph) =
∫
EI
ν D11|[[[[[[ph]]]]]]|2 ds,

this happens if ν D11 is independent of ν. Thus, for d11 = ν−1 the condition number
of E is independent of ν. This completes the proof. �
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2. I. Babuška, C.E. Baumann, and J.T. Oden, A discontinuous hp-finite element method for
diffusion problems: 1-D analysis, Comput. Math. Appl. 37 (1999), 103–122. MR 2000a:65118

3. G.A. Baker, Finite element methods for elliptic equations using nonconforming elements,
Math. Comp. 31 (1977), 45–59. MR 55:4737

4. G.A. Baker, W.N. Jureidini, and O.A. Karakashian, Piecewise solenoidal vector fields and the
Stokes problem, SIAM J. Numer. Anal. 27 (1990), 1466–1485. MR 91m:65246

5. C.E. Baumann and J.T. Oden, A discontinuous hp-finite element method for convection-
diffusion problems, Comput. Methods Appl. Mech. Engrg. 175 (1999), 311–341. MR
2000d:65171

6. C.E. Baumann and T.J. Oden, A discontinuous hp-finite element method for the solution
of the Euler and Navier-Stokes equations, Internat. J. Numer. Methods in Fluids 31 (1999),
79–95. MR 2000g:76072

7. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Com-
putational Mathematics, vol. 15, Springer, New York, 1991. MR 92d:65187

8. P. Castillo, Performance of discontinuous Galerkin methods for elliptic partial differential
equations, SIAM J. Sci. Comput., to appear.

9. P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An a priori error analysis of the
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17. P. Houston, C. Schwab, and E. Süli, Discontinuous hp-finite element methods for advection–
diffusion–reaction problems, SIAM J. Numer. Anal. 39 (2002), 2133–2163.

18. O.A. Karakashian and W.N. Jureidini, A nonconforming finite element method for the sta-
tionary Navier-Stokes equations, SIAM J. Numer. Anal. 35 (1998), 93–120. MR 99d:65320

19. L. I. G. Kovasznay, Laminar flow behind a two-dimensional grid, Proc. Camb. Philos. Soc.

44 (1948), 58–62. MR 9:476d
20. P. LeSaint and P.A. Raviart, On a finite element method for solving the neutron trans-

port equation, Mathematical Aspects of Finite Elements in Partial Differential Equations
(C. de Boor, ed.), Academic Press, New York, 1974, pp. 89–145. MR 58:31918

21. J.-G. Liu and C.-W. Shu, A high order discontinuous Galerkin method for 2D incompressible
flows, J. Comput. Phys. 160 (2000), 577–596. MR 2000m:76079

22. , A numerical example on the performance of high-order discontinuous Galerkin
method for 2D incompressible flows, Discontinuous Galerkin Methods: Theory, Computation
and Applications, Lect. Notes Comput. Sci. Eng., vol. 11, Springer, 2000, pp. 369–374.

23. J.-G. Liu and Z.-P. Xin, Convergence of a Galerkin method for 2D discontinuous Euler flows,
Comm. Pure Appl. Math. 53 (2000), 786–798. MR 2000m:76028
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