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ELLIPTIC CURVES
WITH NONSPLIT MOD 11 REPRESENTATIONS

IMIN CHEN AND CHRIS CUMMINS

Abstract. We calculate explicitly the j-invariants of the elliptic curves cor-
responding to rational points on the modular curve X+

ns(11) by giving an
expression defined over Q of the j-function in terms of the function field gen-
erators X and Y of the elliptic curve X+

ns(11). As a result we exhibit infinitely
many elliptic curves over Q with nonsplit mod 11 representations.

1. Introduction

Let X(p) denote the modular curve which classifies elliptic curves with full level
p structure, where p is an odd prime. The group GL2(Z/pZ) acts on X(p). Let
X+
ns(p) denote the quotient of X(p) by the normalizer of a nonsplit Cartan subgroup

N ′ =
{(

a bε
b a

)
,

(
a bε
−b −a

)
| (a, b) ∈ Z/pZ× Z/pZ, (a, b) 6= (0, 0)

}
= C′ ∪

(
1 0
0 −1

)
C′,

where ε is a quadratic nonresidue in Z/pZ and

C′ =
{(

a bε
b a

)
| (a, b) ∈ Z/pZ× Z/pZ, (a, b) 6= (0, 0)

}
.

The subgroup N ′ has order 2(p2 − 1).
The modular curveX+

ns(p) is defined overQ, and its Q-rational points correspond
to elliptic curves E|Q with a specified level p structure φ : Z/pZ×Z/pZ→ E[p](Q)
such that the mod p representation ρE,p : Gal(Q|Q) → GL2(Z/pZ) obtained by
Galois action on the p-torsion points of E (with respect to φ) has image lying inside
the subgroup N ′ above. We say such an E|Q has a nonsplit mod p representation.

The Q-rational points of X+
ns(p) arise in the context of a question of Serre [11]

which asks whether the mod p representations of non-CM elliptic curves defined
over Q are always surjective for p greater than some absolute constant cQ. The
modular curve X+

ns(p) represents the most difficult case of Serre’s question, and it
has resisted study using currently known techniques such the methods of Mazur
[10] used in studying the modular curve X0(p). From current knowledge about the
Q-rational points on the modular curves arising from Serre’s question, cQ ≥ 37.
However, due to the difficulty of determining the Q-rational points on modular
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curves associated to the normalizer of Cartan subgroups (both split and nonsplit
cases), the true value of cQ is currently unknown.

The modular curves X+
ns(p) have at least one Q-rational point due to CM

elliptic curves. For p = 3, 5, 7, the modular curve X+
ns(p) has genus 0 and is

hence isomorphic to P1|Q. An explicit determination of the natural covering maps
X+
ns(p)→ X(1) to the j-line are known in these cases [2], [6], [13].
For p = 11, the modular curve X+

ns(p) is an elliptic curve. Using indirect meth-
ods, Ligozat [9] showed that X+

ns(11) is isomorphic over Q to the elliptic curve
Y 2 + Y = X3 − X2 − 7X + 10 (labelled 121D in [1]). The Mordell-Weil group
of this elliptic curve has rank 1 and is generated by the point [4 : 5 : 1]. Thus,
there are infinitely many elliptic curves over Q whose 11-torsion points give rise to
a nonsplit mod 11 representation.

In this paper, we explicitly determine the j-invariants of the elliptic curves corre-
sponding to the Q-rational points on X+

ns(11). In particular, we show the following
computational result using Magma.

Theorem 1.1. Let P = [X : Y : 1] denote a Q-rational point on the elliptic curve
X+
ns(11) given in Weierstrass form as Y 2 +Y = X3−X2−7X+10. Let (E|Q, [φ])

denote an elliptic curve with nonsplit mod 11 representation corresponding to P .
The j-invariant of E|Q is then given by

j =
B + CY

A
,

where A = (X5− 119X4 + 1381X3− 2642X2− 9313X+ 19249)11 and B,C ∈ Q[X ]
are the polynomials of degrees 54, 53, respectively, that are listed in the Appendix.

The method used in determining the j-function explicitly as an element of
Q(X,Y ) consists of first exhibiting two functions x, y ∈ C(X,Y ) with poles sup-
ported at the cusp ∞. These functions x, y are constructed from Siegel functions
and have known q-expansions. This allows one to compute the j-function explicitly
as an element of C(x, y). However, since the cusp ∞ ∈ X+

ns(11)(C) is not defined
over Q, it is necessary to translate the coordinate functions x, y using the group law
on the elliptic curve to new coordinate functions x′, y′ with poles supported at a
known Q-rational point on X+

ns(11) (for example, a CM-point). It is then possible
to relate x′, y′ to X,Y , and to finally express the j-function explicitly as an element
of Q(X,Y ).

2. Klein forms and Siegel functions

This section gives a short introduction to the theory of Klein forms and Siegel
functions, following [7], Chapter 2, §1, closely. More complete definitions and proofs
can be found there.

Let L be a lattice in C and let f(z, L) denote the Klein form attached to L. This
is a function which takes as arguments a complex number z and a lattice L in C.
It is of degree 1; that is, f(λz, λL) = λf(z, L).

Let W =
(
ω1

ω2

)
∈ C2 be a vector whose components are linearly independent

over R. Let L = L(W ) = Zω1 + Zω2, and z = z(a,W ) = a1ω1 + a2ω2, where
a = (a1, a2) ∈ R × R. Define a function which takes as arguments a ∈ R × R and
W ∈ C2 whose components are linearly independent over R by fa(W ) ≡ f(z, L).
The function fa(W ) has the following properties.
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K0. fa(λW ) = λfa(W ).
K1. For γ ∈ SL2(Z), fa(γW ) = faγ(W ).
K2. If b = (b1, b2) ∈ Z× Z, then

fa+b(W ) = ε(a, b)fa(W ),

where ε(a, b) = (−1)b1b2+b1+b2e−πi(b1a2−b2a1).
Let H denote the complex upper half-plane. Let τ ∈ H and define fa(τ) ≡ fa(Wτ ),

where Wτ =
(
τ
1

)
. From properties K0 and K1 we see that for γ =

(
a b
c d

)
∈

SL2(Z), we have

faγ(τ) = faγ(Wτ )

= fa(γWτ )

= fa

((
aτ + b
cτ + d

))
= fa

(
(cτ + d)

(
aτ+b
cτ+d

1

))
= (cτ + d)fa

((
aτ+b
cτ+d

1

))
= (cτ + d)fa(γ(τ)).

Let f : H → C be a function. For k ∈ Z, the action of the k-th stroke operator
for γ ∈ SL2(R) on f is defined by

(f|k,γ )(τ) = f(γ(τ))j(γ, τ)−k,

where j(γ, τ) = (cτ+d). Note that (f1f2)|k,γ = f1|k1,γ
f2|k2,γ

as long as k1 +k2 = k,
and f|k,δγ = f|k,δf|k,γ . The above calculation shows that fa|−1,γ

= faγ .
The Siegel function ga(τ) is a function on H defined as ga(τ) = fa(τ)∆(τ)

1
12 ,

where ∆(τ)
1
12 = η(τ)2 and η(τ)2 = q

1
12
∏∞
n=1(1 − qn)2. If 0 6= a′ ∈ Q × Q, then

by property K2, fa(τ) = εfc(τ), where c = (c1, c2) satisfies 0 ≤ ci < 1 and ε is a
root of unity. Let q = qτ = e2πiτ and qz = e2πiz. The Siegel function ga(τ) can be
expressed in terms of q as follows:

ga(τ) = −q 1
2B2(a1)e2πia2(a1−1)/2(1− qz)

∞∏
n=1

(1 − qnqz)(1 − qn/qz),

where B2(x) = x2 − x+ 1
6 and z = a1τ + a2. If 0 ≤ ai < 1, then the lowest power

of q occurring in ga(τ) is B2(a1).
In the next section we will need the following condition, due to Kubert [8], for

the product of Klein forms to be an automorphic form for Γ(N).

Theorem 2.1. Let N be odd. Let f =
∏
r f
mr
(r1/N,r2/N) be a finite product of Klein

forms, where r = (r1, r2) ∈ Z× Z. If∑
r

mrr
2
1 ≡

∑
r

mrr
2
2 ≡

∑
r

mrr1r2 ≡ 0 (mod N),

then f is an automorphic form for Γ(N).

Proof. Theorem 4.1 in Chapter 3 of [7] �
This condition is called QUAD(N)odd in [7].
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3. Method of calculation

For γ ∈ SL2(Z), let γ be its reduction modulo 11. Let SN ′ = N ′ ∩ SL2(Z/11Z).
Consider the congruence subgroup given by

Γ+
ns(11) = {γ ∈ SL2(Z) | γ ∈ SN ′} .

As Riemann surfaces we have that X+
ns(11)(C) ∼= Γ+

ns(11)\H∗ [5]. We can regard
∞ ∈ Γ+

ns(11)\H∗ ∼= X+
ns(11)(C) as a C-point of X+

ns(11). In fact, it is known ([12],
A.5) that ∞ is Q(ζ11)+-rational, where Q(ζ11)+ denotes R ∩Q(ζ11).

Proposition 3.1. Let Γ∗(11) = ±I ·Γ(11), where Γ(11) is the principal congruence
subgroup of level 11. Let Ω be a complete set of inequivalent coset representatives
for Γ∗(11)\Γ+

ns(11). For a ∈ Q×Q, define

ua(τ) =
∏
γ∈Ω

gaγ(τ).

Now let

x = θx · u(5/11,0)(τ),

y = θy · u(5/11,0)(τ)/u(3/11,0)(τ),

where θx, θy ∈ C are constants (depending on Ω) chosen so that the leading terms
in the q-expansions of x, y are 1.

(1) The functions x, y are independent of the choice of Ω.
(2) The functions x, y are automorphic functions for the group Γ+

ns(11), i.e.,
they lie in the function field C(X+

ns(11)) of X+
ns(11)

(3) The functions x and y only have poles at the cusp ∞ of orders 2 and 3,
respectively, so that C(x, y) = C(X+

ns(11)).
(4) The functions x, y satisfy the Weierstrass equation

y^2 + (2*z^9 + 2*z^8 + 2*z^7 + 2*z^6 + 2*z^5 + 2*z^4
+ 2*z^3 + 2*z^2 + 2)*x*y

+ (-2*z^9 - 2*z^8 - z^7 - z^4 - 2*z^3 - 2*z^2)*y
= x^3 + (2*z^9 + 2*z^8 + 2*z^7 + 2*z^4 + 2*z^3 + 2*z^2)*x^2
+ (-2*z^9 - 3*z^8 - z^7 + z^6 + z^5 - z^4 - 3*z^3

- 2*z^2 + 2)*x,

where z = ζ11 is a primitive 11-th root of unity. Let E ∼=Q(ζ11) X
+
ns(11)

denote the elliptic curve over Q(ζ11) defined by this Weierstrass equation.
Thus, x, y ∈ Q(ζ11)(X+

ns(11)).

Proof. (1) If δ ∈ Γ(11), γ ∈ Γ+
ns(11), then faδγ(τ) = fa|−1,δγ

(τ) = ε(δ)fa|−1,γ
(τ) =

ε(δ)faγ(τ), where ε(δ) is an 11-th root of unity (see the argument in (2)). Also,
fa|−1,−I (τ) = −fa(τ). Thus, we see that a different choice of a complete set of
inequivalent coset representatives for Ω will only result in changing ua by a scalar
factor which is a 22-nd root of unity. As we scale x and y so they have leading term
1, the resulting x and y are then independent of the choice of coset representatives
Ω.
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(2) Consider the following elements of SN ′ ≤ SL2(Z/11Z):

σ̄ =
(

3 5
6 3

)
,

s̄ =
(

1 8
8 10

)
.

It can be verified that σ̄ has order 12, s̄ has order 4, and that 〈σ̄〉 ∩ 〈τ̄〉 = {±I}. In
addition, s̄−1σ̄s̄ = σ̄−1. Thus, Ω̄ =

{
σ̄i, s̄σ̄i | i = 0, . . . , 5

}
forms a complete set of

inequivalent coset representatives for {±I} \SN ′.
Let σ and s be lifts of σ̄ and s̄ to SL2(Z). Let Ω =

{
σi, sσi | i = 0, . . . , 5

}
. This

is a complete set of inequivalent coset representatives for Γ∗(11)\Γ+
ns(11). We work

with this fixed set of coset representatives for convenience in later arguments.
Let a have denominator 11. Consider the function

ua(τ) =
∏
γ∈Ω

gaγ(τ)

= ∆(τ)
∏
γ∈Ω

faγ(τ),

where the last equality follows from the fact that there are 12 elements in Ω. Let
ha(τ) =

∏
γ∈Ω faγ(τ).

The condition QUAD(N)odd is satisfied by the product defining ha(τ) for
N = 11; so, by Theorem 2.1, ha(τ) is an automorphic form for Γ(11) of weight
−12. This can be verified by using the explicit form of the subgroup N ′ given in the
introduction and the fact that

∑
α,β∈Z/pZ α

2 =
∑

α,β∈Z/pZ αβ =
∑

α,β∈Z/pZ β
2 = 0.

Since fa|−1,−I (τ) = −fa(τ), we see that ha(τ) is an automorphic form of weight
−12 for Γ∗(11), as there are an even number of elements in Ω. Thus, ua(τ) is an
automorphic function for Γ∗(11).

By Theorem 1.1 in Chapter 2 of [7], fa(τ)11 is an automorphic form for Γ(11) of
weight −11. Thus, for γ ∈ Γ(11)

f11
a |−11,γ

=
(
fa|−1,γ

)11

= f11
a .

Thus for γ ∈ Γ(11) we have fa|−1,γ
= ε(γ)fa, where ε is an 11-th root of unity.

Let g ∈ SL2(Z). Then

ha|−12,g =

∏
γ∈Ω

faγ


|−12,g

=
∏
γ∈Ω

(
fa|−1,γ |−1,g

)
=
∏
γ∈Ω

fa|−1,γg
.

Let σg denote the permutation of the coset representatives in Ω obtained by multi-
plication on the left by g, written so it acts from the right in exponential notation.
It has the property that γg = δ(γ, g) · γσg , where δ(γ, g) ∈ Γ∗(11), γ ∈ Ω. Let
ε(g, γ) be the 22-nd root of unity such that fa|−1,γg

= ε(γ, g)fa|−1,γσg
. Note that if
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δ(γ, g) ∈ Γ(11), then ε(γ, g) is an 11-th root of unity; otherwise it is the negative
of an 11-th root of unity. We then have that∏

γ∈Ω

fa|−1,γg
=
∏
γ∈Ω

ε(γ, g)fa|−1,γσg

= ε(g)ha,

where ε(g) =
∏
γ∈Ω ε(γ, g).

If ḡ = σ̄j , then

σ̄iḡ = σ̄i+j ,

s̄σ̄iḡ = s̄σ̄i+j ,

so that

σig = δσi+j ,

sσig = δ′sσi+j ,

for some δ, δ′ ∈ Γ(11). Thus, we see that all the ε(γ, g)’s are in fact 11-th roots of
unity, so ε(g) is an 11-th root of unity.

Similarly, if ḡ = s̄σ̄j , then

σ̄iḡ = s̄σ̄j−i,

s̄σ̄iḡ = s̄2σ̄j−i = −σ̄j−i,

so that

σig = δsσj−i,

sσig = δ′s2σj−i = −δ′σj−i,

for some δ, δ′ ∈ Γ(11). Thus, we see that there are an even number of ε(γ, g)’s
which are the negatives of an 11-th root of unity, so that ε(g) is in fact an 11-th
root of unity.

Thus, ua|0,g = ε(g)ua, where ε(g) is an 11-th root of unity. We can then define
a homomorphism from G = {±I} \SN ′ to C× given by

ρ : G→ C×,
g 7→ε(g).

This one-dimensional representation takes on values which must be both 11-th and
12-th roots of unity (as G has order 12), so is in fact trivial.

We have thus shown that ua(τ) =
∏
γ∈Ω gaγ(τ) is an automorphic function for

Γ+
ns(11), at least when we take Ω to be the particular choice of coset representatives

given at the beginning of this proof. The result then follows for any choice of coset
representatives, thanks to the remark in (1).

(3) The fact that x and y have poles of order 2 and 3, respectively, only at∞ can
be seen from the explicit q-expansions of x and y as calculated by Magma (see the
Appendix). Note from [7], Chapter 2, Theorem 1.2, that ga(τ) has neither zeroes
nor poles on the upper half-plane.
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To calculate the q-expansion of gaγ(τ), we calculate the q-expansion of gc(τ),
where c = aγ − b and b ∈ Z × Z is chosen so that c = (c1, c2) satisfies 0 ≤ ci < 1.
Since gc(τ) differs from ga(τ) by a root of unity, this does not affect the final
q-expansions of the x and y we obtain.

(4) Since we know X+
ns(11) has genus 1, and x and y have poles supported at

∞ of order 2 and 3 respectively, x and y should satisfy a Weierstrass equation.
Using the explicit q-expansions of x and y (which are elements of the ring R =
Q(ζ11)((q1/11))), we used Magma to solve for a1, a2, a3, a4, a6 ∈ Q(ζ11) such that
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 in the ring R. This amounts to solving
a linear system over the field Q(ζ11), i.e., one considers the above equation over R
to a specified order of precision in q1/11 such that the resulting linear system over
Q(ζ11) has a 1-dimensional solution space. �

The j-invariant of 121D is −32768. We confirmed using Magma that the j-
invariant of E is also −32768, so E ∼=C X+

ns(11), as predicted by theory. Since
j ∈ Q(ζ11)(x, y), the function j is expressible in the form

(1) j =
b + cy

a

for a, b, c ∈ Q(ζ11)[x].
By specifying maximal degrees for a, b, c, one can solve the linear system corre-

sponding to the equation aj = b + cy over R using a specified order of precision
in q1/11. We found the minimal maximal degrees for a, b, c which gave nontrivial
solution spaces using a specified order of precision in q1/11. With these maximal
degrees, we then increased the order of precision in q1/11 until the solution space
of the linear system was 1-dimensional. We omit giving the values of a, b, c, which
are of degrees 33, 38, 37, respectively.

Since X+
ns(11) is an elliptic curve over Q with Weierstrass equation Y 2 + Y =

X3−X2 − 7X + 10, there are functions X and Y in the function field Q(X+
ns(11))

satisfying this equation such that Q(X,Y ) = Q(X+
ns(p)). Since j ∈ Q(X+

ns(11)), j
is expressible in the form

j =
B + CY

A

where A,B,C ∈ Q[X ].
Our objective is to find A,B,C ∈ Q[X ] explicitly. To do this, we relate the

functions x, y to X,Y . The functions x, y ∈ Q(ζ11)(X+
ns(11)) have poles at ∞.

However, the point∞ of X+
ns(11) is only defined over Q(ζ11)+ [4], and X,Y should

have poles at a point O which is Q-rational.

Lemma 3.2. Let E|Q denote an elliptic curve with CM by a maximal order O in
an imaginary quadratic field with class number 1 in which p is inert. Then there is a
choice of φ : Z/pZ×Z/pZ→ E[p](Q) such that (E, [φ]) corresponds to a Q-rational
point on X+

ns(p).

Proof. Cf. [12], A.5 �

Corollary 3.3. Let E be an elliptic curve with CM by Z[−1+
√
−3

2 ] or Z[
√
−1]

(corresponding to j-invariant 0 or 1728, respectively). Then (E, [φ]) from the lemma
above corresponds to a Q-rational point on X+

ns(11).
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Let P ∈ X+
ns(11)(Q) be the point as in the corollary which corresponds to an

elliptic curve with CM by Z[−1+
√
−3

2 ]. Similarly, let Q ∈ X+
ns(11)(Q) be the point

which corresponds to an elliptic curve with CM by Z[
√
−1]. Both P,Q can be

regarded in E(Q(ζ11)) under the isomorphism E ∼=Q(ζ11) X
+
ns(11).

By translation under the group law on X+
ns(11), we may assume without loss of

generality that O = P . Let [x′ : y′ : 1] = [x : y : 1]− [x(P ) : y(P ) : 1]. Then x′, y′

still satisfy the Weierstrass equation (E), but now have poles at P instead of ∞.
Since x′, y′ and X,Y are two different Weierstrass models for X+

ns(11)|Q(ζ11)
with poles at O = P , there is a relation

X = u2x′ + r,

Y = u3y′ + u2sx′ + t,

for some u, r, s, t ∈ Q(ζ11), by uniqueness of Weierstrass models. The values of
u, r, s, t can be determined, as the Weierstrass models have known coefficients (the
ambiguity in sign in u is due to the extra automorphism −1). Thus, one can now
obtain the (now formal) q-expansion of X,Y . Using a method similar to expressing
j in terms of x, y, one can then express j in terms of X,Y .

To determine the values of x(P ), y(P ), we used the following method. Plugging
in j = 0 in relation (1) and solving for x subject to the equation satisfied by x, y, we
obtained 5 possible distinct values for x(P ) ∈ Q(ζ11), given below with multiplicity:

<z^3 + z^2, 3>,
<z^6 + z^5 + 1, 11>,
<-z^9 - z^8 - z^7 - z^4 - z^3 - z^2, 11>,
<-z^9 + z^8 + z^7 - z^6 - z^5 + z^4 + z^3 - z^2 + 2, 1>,
<z^9 + z^8, 3>.

To determine which choice of x(P ) is correct, we first computed the possibilities
for x(Q) in a similar fashion:

<z^6 + z^5 + 1, 11>,
<-z^8 - z^7 - z^6 - z^5 - z^4 - z^3 + 1, 1>,
<-z^9 - z^ 8 - z^7 - z^4 - z^3 - z^2, 11>.

For each choice of x(P ), y(P ), x(Q), y(Q), we checked if X(Q), Y (Q) wasQ-rational.
There was only one choice of (P,Q) for which this property held, namely

x(P) = -z^9 + z^8 + z^7 - z^6 - z^5 + z^4 + z^3 - z^2 + 2,
x(Q) = -z^8 - z^7 - z^6 - z^5 - z^4 - z^3 + 1.

4. Some examples of elliptic curves

with nonsplit mod 11 representations

As an application, we can now determine the j-invariants of the elliptic curves
corresponding to the Q-rational points of X+

ns(11). Let R = [4 : 5 : 1] be the
generator of the Mordell-Weil group of X+

ns(11) over Q. Here are examples of the



ELLIPTIC CURVES WITH NONSPLIT MOD 11 REPRESENTATIONS 877

j-invariants of the elliptic curves corresponding to some multiples of R:

3R :j = 24335317641371389316733133/231119711 (non-CM),

2R :j = 2339531131762935331913/76911 (non-CM),

R :j = −6403203 (CM by − 163),

O :j = 0 (CM by − 3),

−R :j = 1728 (CM by − 4),

−2R :j = −52803 (CM by − 67),

−3R :j = 54000 (CM by − 12),

−4R :j = 663 (CM by − 16),

−5R :j = −12288000 (CM by − 27),

−6R :j = 283356113533/2311 (non-CM),

−7R :j = −2933531317131813/4311 (non-CM).

For each of the non-CM j-invariants indicated above, the following table gives a
corresponding elliptic curve with small conductorNE and the discriminant dK of the
quadratic fieldK associated to its projectively dihedral mod 11 representation. This
was determined using the information about K given in [11] and the congruences
which ap(E) should satisfy (i.e., for p - NE · 11, p inert in K, ap(E) ≡ 0 (mod 11))
(cf. also [3]).

E dK NE

3R y2 = x3 −3208243 222315921971543772

−646193572576431485607974755231535x

+19813780048239074375628018028202424203478982531558

2R y2 = x3 −171924 25327691143272

+370507764651148661222565x

+194235066835140240901967105334293614

-6R y2 = x3 + 26366175x + 454085948673 −67 2232231672

-7R y2 = x3 − 6682520x− 39157150032 −4 25132431
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6. Appendix

The q-expansions of the functions x and y in Proposition 2.1, where q = e2πiτ :
x = q^(-2/11) + -z^9 - z^2 + (-z^7 - z^4)*q^(1/11) + (-z^8 - z^6

- z^5 - z^3 + 1)*q^(2/11) + (z^9 - z^7 + z^6 + z^5 - z^4
+ z^2 - 1)*q^(3/11) + (-z^9 - z^7 - z^4 - z^2 - 1)*q^(4/11)
+ (z^9 - 3*z^8 - 2*z^7 - 2*z^6 - 2*z^5 - 2*z^4 - 3*z^3 + z^2
- 2)*q^(5/11) + (2*z^9 + z^8 + z^3 + 2*z^2 + 4)*q^(6/11)
+ (-2*z^9 - 2*z^2 - 2)*q^(7/11) + (-4*z^9 - 2*z^8 - z^7 - 4*z^6
- 4*z^5 - z^4 - 2*z^3 - 4*z^2 - 3)*q^(8/11) + (2*z^8 - 4*z^6
- 4*z^5 + 2*z^3 + 10)*q^(9/11) + (-3*z^8 + z^7 - 3*z^6 - 3*z^5
+ z^4 - 3*z^3)*q^(10/11) + O(q),
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y = q^(-3/11) + (-z^9 - z^8 - z^7 - z^6 - z^5 - z^4 - z^3 - z^2 - 1)
*q^(-2/11) + (z^8 + z^7 + z^4 + z^3 + 1)*q^(-1/11) + 2*z^9 + z^8
+ z^6 + z^5 + z^3 + 2*z^2 + 1 + (-2*z^9 - 2*z^8 - z^7 - 4*z^6
- 4*z^5 - z^4 - 2*z^3 - 2*z^2 - 1)*q^(1/11) + (-z^8 - 5*z^7
- 5*z^4 - z^3 - 3)*q^(2/11) + (2*z^9 + z^8 + 3*z^7 + 2*z^6
+ 2*z^5 + 3*z^4 + z^3 + 2*z^2 + 4)*q^(3/11) + (3*z^9 - 7*z^8
- 5*z^7 - 3*z^6 - 3*z^5 - 5*z^4 - 7*z^3 + 3*z^2 - 5)*q^(4/11)
+ (-6*z^9 + z^8 - 9*z^7 - 7*z^6 - 7*z^5 - 9*z^4 + z^3 - 6*z^2
+ 2)*q^(5/11) + (-z^9 - 4*z^8 - 2*z^7 - 2*z^6 - 2*z^5 - 2*z^4
- 4*z^3 - z^2 - 7)*q^(6/11) + (4*z^9 + 12*z^7 - z^6 - z^5

+ 12*z^4 + 4*z^2 + 12)*q^(7/11) + (-7*z^9 + 4*z^8 - 12*z^7
- 13*z^6 - 13*z^5 - 12*z^4 + 4*z^3 - 7*z^2 + 16)*q^(8/11)
+ (-24*z^9 - 18*z^8 - 15*z^7 - 30*z^6 - 30*z^5 - 15*z^4
- 18*z^3 - 24*z^2 - 21)*q^(9/11) + (2*z^9 + 11*z^8 + 21*z^7
+ 5*z^6 + 5*z^5 + 21*z^4 + 11*z^3 + 2*z^2 + 23)*q^(10/11)
+ O(q).

The polynomials A,B,C of Theorem 1.1:

A = (X^5 - 119*X^4 + 1381*X^3 - 2642*X^2 - 9313*X + 19249)^11,

B = (-98387520*X^54 - 220438794499*X^53 - 53420217837899*X^52
+ 6338048458979853*X^51 + 71475058557035848*X^50
- 44291597887311980733*X^49 + 3242711585656502142337*X^48
- 123595289334495611502045*X^47
+ 2465220203610361958991252*X^46
+ 4714178266732077504326779*X^45
- 2230431303801367431478586543*X^44
+ 92332146130690688142517974663*X^43
- 2507289782484853611270309175397*X^42
+ 53359697809475207245060557363937*X^41
- 942047948418627104106931499116639*X^40
+ 14114007315932826893573283384330808*X^39
- 183690447317522366668854840197651161*X^38
+ 2171510861410311795157039184686867406*X^37
- 24911038397772665326423913919305711163*X^36
+ 291169675293150416804617731761995291067*X^35
- 3415529427584012398564140280662798038067*X^34
+ 37855207962015462701067289499903775336771*X^33
- 374992775331213422799775513202374746471447*X^32
+ 3207001025188524833125521692358292634027949*X^31
- 23141471939301096287187426104081929791336253*X^30
+ 137360034469063724618182923106280369775169352*X^29
- 638617861348315025223322860571024211741905470*X^28
+ 2013006888766112251485827113833063752292822797*X^27
- 1166820457630183374266235764879683724824730753*X^26
- 35448755737371974992340224606099228330400359378*X^25
+ 281145492835905205314154378132072415664685281266*X^24
- 1275116642123942750922015094862993429873903104392*X^23
+ 3568711769977516712360325915844869782908014276967*X^22
- 2726507178866477380574048143644325194320130884262*X^21 -
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- 31447406024550699683476578355464224641763394892606*X^20
+ 197361861608467000470304339921230248072363968371848*X^19
- 643843434857848539194345398112509232578975566640912*X^18
+ 1128465811680636343908207782177026746693398274553346*X^17
+ 524140684586680712601096167837041759847337764905845*X^16
- 10885187911246093023626114863052011064731450879359939*X^15
+ 39857128619273491965616000165383486337766191277815834*X^14
- 84589728306889040578344459661369455545325068373188045*X^13
+ 88500068455184117632678312070023099514040525790222556*X^12
+ 104398778112711569893288221924610365293381106411320929*X^11
- 726902167552191816655792183457716265829393178314290203*X^10
+ 1922066025331454173287246580581811058539922937509487197*X^9
- 3492260106307174621894306341112753326884644246511613126*X^8
+ 4822306854049822036578236210158621331526397751603080867*X^7
- 5206498890378369345974012647584825537483793460792861627*X^6
+ 4404285062296867833339540949860778861874260792846590353*X^5
- 2876755961598229733762335392724553413116008544800512599*X^4
+ 1405323891345305062625580442426700486014326484361169531*X^3
- 484366886859956010863945499018675725522237006939513480*X^2
+ 105171426618171439624835342819839690818149446384628800*X
- 10824748863501827168751917307247790074531337625536000),

C = -1331*(X^3 + 769*X^2 - 6563*X + 33607)
*(512*X^8 + 61144*X^7 - 6442069*X^6 + 172304133*X^5
- 1536518406*X^4 + 4337330046*X^3 + 6950207639*X^2
- 49462585951*X + 62713879832)

*(X^12 + 8279*X^11 + 24882*X^10 + 1026960*X^9 - 12744710*X^8
+ 101685573*X^7 - 834657362*X^6 + 2839501456*X^5
- 3824254676*X^4 - 17889937351*X^3 + 132513794655*X^2
- 294458963550*X + 217556206213)

*(X^14 + 10*X^13 - 2075*X^12 + 30428*X^11 + 758769*X^10
- 8519313*X^9 + 76367126*X^8 - 92006079*X^7
- 2344653619*X^6 + 11698230071*X^5
- 11140635495*X^4 - 55927459933*X^3
+ 185519871981*X^2 - 221506967280*X + 98133150272)

*(X^16-75*X^15+3295*X^14-92424*X^13
+ 1947917*X^12 - 30142674*X^11 + 329659022*X^10
- 2543487848*X^9 + 14048607628*X^8 - 56478689465*X^7
+ 167296164552*X^6 - 366229712039*X^5
+ 586536468642*X^4 - 668442965082*X^3
+ 512872346720*X^2 - 236894208325*X + 49952548375).
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