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ON THE MULTIDIMENSIONAL DISTRIBUTION
OF THE SUBSET SUM GENERATOR

OF PSEUDORANDOM NUMBERS

ALESSANDRO CONFLITTI AND IGOR E. SHPARLINSKI

Abstract. We show that for a random choice of the parameters, the subset
sum pseudorandom number generator produces a sequence of uniformly and
independently distributed pseudorandom numbers. The result can be useful for
both cryptographic and quasi-Monte Carlo applications and relies on bounds
of exponential sums.

1. Introduction

For an integer m ≥ 1 we denote by Zm the residue ring modulo m. For integers
s and m ≥ 1 we denote by bscm the remainder of s on division by m.

Let (u(x)) be a linear recurrence sequence of order r over the field of two elements
F2; see [2, Chapter 8].

For an integer m ≥ 1 one can consider the following subset sum generator of
pseudorandom numbers. Given an r-dimensional vector z = (z1, . . . , zr) ∈ Zrm of
weights, one can consider the sequence

Vz(n) =

 r∑
j=1

u(n+ j − 1)zj


m

, n = 1, 2, . . . ,

of elements of Zm.
This generator, which is also known as the knapsack generator , has been intro-

duced in [7] and studied in [5]; see also [3, Section 6.3.2] and [6, Section 3.7.9].
For cryptographic applications, it is usually recommended to use a linear re-

currence sequence of maximal period τ = 2r − 1 and also the modulus m = 2r;
however, here we consider more general settings.

Here we study some statistical properties of the subset sum generator and show
that for any fixed dimension ν with 1 ≤ ν ≤ r, for almost all choices of weights
z = (z1, . . . , zr) ∈ Zrm, the vectors (Vz(n), . . . , Vz(n+ ν − 1)) are uniformly and
independently distributed. We formulate this result as a more general statement
about the deviation of the distribution of these vectors from the perfectly uniform
ν-dimensional distribution. In fact we use the classical number-theoretic notion

Received by the editor December 5, 2001.
2000 Mathematics Subject Classification. Primary 11K45, 11T71; Secondary 11T23, 94A60.
Key words and phrases. Pseudorandom numbers, subset sum problem, knapsack, exponential

sums.
The first author would like to thank Macquarie University for its hospitality during the prepa-

ration of this paper.

c©2003 American Mathematical Society

1005



1006 ALESSANDRO CONFLITTI AND IGOR E. SHPARLINSKI

of the multidimensional discrepancy to give a quantitative form of this property.
It can also be reformulated in terms of the ε-bias of the most significant bits of
the elements of the generating sequences, which is more common in cryptographic
literature.

We remark that in the special case of weights zj = 2r−j, j = 1, . . . , r, and the
modulus m = 2r this generator is well known in the theory of quasi-Monte Carlo
methods. An exhaustive survey of known results about the distribution of this
and more general generators can be found in [4, Chapter 9]. Although, for this
(deterministic) choice of weights some uniformity of distribution results are known,
they are weaker than our results which, however, apply only to randomized choice
of weights. It is also clear that this choice of weights corresponds to very easy in-
stances of the knapsack problem and thus is probably not suitable for cryptographic
applications.

Our method is based on some simple bounds on exponential sums and the fa-
mous Koksma–Szüsz inequality (see Lemma 2.2 below) which relates the deviation
from uniformity of distribution, that is, the discrepancy, and the corresponding
exponential sums.

Throughout the paper, the implied constants in symbols “O” may depend on
the integer parameter ν ≥ 1.

2. Preparations

Here we present several necessary technical tools.
We say that a linear recurrence sequence u(x) of elements of F2 is of order r with

characteristic polynomial

f(T ) = T r + cr−1T
r−1 + . . .+ c1T + c0 ∈ F2[T ]

if

u(x+ r) + cr−1u(x+ r − 1) + . . .+ c1u(x+ 1) + c0u(x) = 0, x = 1, 2, . . . ,

and it does not satisfy any shorter linear relation; see [2, Chapter 8].
It is easy to see that the set of all sequences with the same characteristic poly-

nomial f form a linear space L(f) over F2.
We also need the following property of sequences from L(f) with irreducible f

which is essentially [2, Theorem 8.28].

Lemma 2.1. If f ∈ F2[T ] is irreducible over F2, then all nonzero sequences from
L(f) are purely periodic with the same period.

For a real z and an integer q we use the notation

e(z) = exp(2πiz) and eq(z) = exp(2πiz/q).

We need the identity (see Exercise 11.a in Chapter 3 of [8])

(2.1)
q−1∑
η=0

eq(ηλ) =
{

0, if λ 6≡ 0 (mod q),
q, if λ ≡ 0 (mod q).

We also make use of the inequality

(2.2)
q−1∑
η=0

∣∣∣∣∣
M∑
λ=1

eq (ηu)

∣∣∣∣∣ = O (q log q) ,
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which holds for any integers q and M , 1 ≤M ≤ q; see [8, Chapter III, Exercise 11c].
For a sequence of N points

(2.3) Γ = (γ0,x, . . . , γν−1,x)Nx=1

in the ν-dimensional unit cube, we denote its discrepancy by DΓ. That is,

DΓ = sup
B⊆[0,1)ν

∣∣∣∣TΓ(B)
N

− |B|
∣∣∣∣ ,

where TΓ(B) is the number of points of the sequence Γ in the box

B = [α0, β0)× . . .× [αν−1, βν−1) ⊆ [0, 1)ν

and the supremum is taken over all such boxes.
As we have mentioned, one of our basic tools for studying the uniformity of

distribution is the Koksma–Szüsz inequality, which we present in a slightly weaker
form than that given by Theorem 1.21 of [1].

For an integer vector a = (a1, . . . , aν) ∈ Zν we define

(2.4) |a| = max
j=1,... ,ν

|aj|, r(a) =
ν∏
j=1

max{|aj |, 1}.

Lemma 2.2. For any integer L > 1 and any sequence Γ of N points (2.3) the
bound

DΓ = O

 1
L

+
1
N

∑
0<|a|<L

1
r(a)

∣∣∣∣∣∣
N∑
x=1

e

ν−1∑
j=0

ajγj,x

∣∣∣∣∣∣


on the discrepancy DΓ holds, where |a|, r(a) are defined by (2.4) and the sum is
taken over all integer vectors

a = (a0, . . . , aν−1) ∈ Zν

with 0 < |a| < L.

3. Main result

We denote by Dν
z(N) the discrepancy of the points(
Vz(n)
m

, . . . ,
Vz(n+ ν − 1)

m

)
, n = 1, . . . , N.

Theorem 3.1. Let the linear recurrence sequence (u(x)) be purely periodic with
period τ and order r and let its characteristic polynomial be irreducible over F2.
Then for any δ > 0, and any ν ≤ r for all z ∈ Zrm except at most O(δmr) of them,
for all 1 ≤ N ≤ τ the bound

Dν
z(N) = O

(
δ−1N−1/2 logνm log2 τ

)
holds.

Proof. From Lemma 2.2, used with L = bm/νc, we derive

Dν
z(N) = O

 1
m

+
1
N

∑
0<|a|<m/ν

1
r(a)

∣∣∣∣∣∣
N∑
n=1

em

ν−1∑
j=0

ajVz(n+ j)

∣∣∣∣∣∣
 .
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Let Nµ = 2µ, µ = 0, 1, . . .. Define k by the inequality Nk−1 < N ≤ Nk, that is,
k = dlog2Ne. Then from (2.1) we derive

N∑
n=1

em

ν−1∑
j=0

ajVz(n+ j)


=

1
Nk

Nk∑
n=1

N∑
λ=1

Nk∑
η=0

em

ν−1∑
j=0

ajVz(n+ j)

 eNk (η(n− λ)) .

Hence,

(3.1) Dν
z (N) = O

(
1
m

+
1

NNk
∆ν

z(k)
)

where

∆ν
z(k) =

∑
0<|a|<m/ν

1
r(a)

Nk∑
η=0

∣∣∣∣∣
N∑
λ=1

eNk (−ηλ)

∣∣∣∣∣
×

∣∣∣∣∣∣
Nk∑
n=1

em

ν−1∑
j=0

ajVz(n+ j)

 eNk (ηn)

∣∣∣∣∣∣ .
Applying the Cauchy inequality, we derive∑

z∈Zrm

∣∣∣∣∣∣
Nk∑
n=1

em

ν−1∑
j=0

ajVz(n+ j)

 eNk (ηn)

∣∣∣∣∣∣
2

≤ mr
∑

z∈Zrm

∣∣∣∣∣∣
Nk∑
n=1

em

ν−1∑
j=0

ajVz(n+ j)

 eNk (ηn)

∣∣∣∣∣∣
2

= mr
Nk∑
n,l=1

eNk (η(n− l))
∑

z∈Zrm

em

ν−1∑
j=0

aj (Vz(n+ j)− Vz(l + j))

 .

By definition of Vz(n) we have

∑
z∈Zrm

em

ν−1∑
j=0

aj (Vz(n+ j)− Vz(l + j))


=

r∏
h=1

∑
zh∈Zm

em

zh ν−1∑
j=0

aj (u(n+ j + h− 2)− u(l + j + h− 2))

 .

The product is equal to mr if for every h = 1, . . . , r

(3.2)
ν−1∑
j=0

aj (u(n+ j + h− 2)− u(l+ j + h− 2)) ≡ 0 (mod m);

otherwise it vanishes.
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Therefore

(3.3)
∑

z∈Zrm

∣∣∣∣∣∣
Nk∑
n=1

em

ν−1∑
j=0

ajVz(n+ j)

 eNk (ηn)

∣∣∣∣∣∣ ≤ mrT
1/2
k

where Tk is the number of pairs (n, l), 1 ≤ n, l ≤ Nk, for which (3.2) holds for every
h = 1, . . . , r.

Because u(x) ∈ {0, 1} for all integers x ≥ 1 and 0 ≤ |aj | < m/ν, the congru-
ence (3.2) becomes an equation

ν−1∑
j=0

aj (u(n+ j + h− 2)− u(l + j + h− 2)) = 0, h = 1, . . . , r.

Let us write aj = 2αbj where 2α is the largest power of 2 which divides every aj ,
j = 0, . . . , ν − 1. In particular, at least one bj is odd. Then the previous equation
becomes

(3.4)
ν−1∑
j=0

bj (u(n+ j + h− 2)− u(l + j + h− 2)) = 0, h = 1, . . . , r.

Considering the equation (3.4) in F2, we derive

w(n+ h) ≡ w(l + h) (mod 2), h = 1, . . . , r,

where

w(x) =
ν−1∑
j=0

bju(x+ j − 2)

is a non-zero sequence over F2 because at least one bj , j = 0, . . . , ν − 1, is odd and
ν ≤ r. Taking into account that w(x) is a linear recurrence sequence of order r
(with the same characteristic polynomial as u(x)), we obtain

(3.5) w(n+ x) ≡ w(l + x) (mod 2), x = 1, 2, . . . .

Because the characteristic polynomial of u is irreducible, by Lemma 2.1 the
linear recurrence sequence w(x) has the same period τ . Therefore (3.5) implies
that n ≡ l (mod τ) which yields the inequality Tk ≤ Nk(bNk/τc + 1) ≤ 2Nk,
because Nk = 2Nk−1 < 2N ≤ 2τ .

Thus by (3.3) we have

∑
z∈Zrm

∣∣∣∣∣∣
Nk∑
n=1

em

ν−1∑
j=0

ajVz(n+ j)

 eNk (ηn)

∣∣∣∣∣∣ ≤ 21/2mrN
1/2
k .
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Hence recalling (2.2) we obtain∑
z∈Zrm

∆ν
z(k) =

∑
0<|a|<m/ν

1
r(a)

Nk∑
η=0

∣∣∣∣∣
N∑
λ=1

eNk (−ηλ)

∣∣∣∣∣
×
∑

z∈Zrm

∣∣∣∣∣∣
Nk∑
n=1

em

ν−1∑
j=0

ajVz(n+ j)

 eNk (ηn)

∣∣∣∣∣∣
= 21/2mrN

1/2
k

∑
0<|a|<m/ν

1
r(a)

Nk∑
η=0

∣∣∣∣∣
N∑
λ=1

eNk (−ηλ)

∣∣∣∣∣
= O

mrN
3/2
k k

∑
0<|a|<m/ν

1
r(a)


= O

(
mrN

3/2
k k logνm

)
= O

(
mrN

3/2
k logνm log τ

)
,

because k = O(log τ).
This implies that for any k the number of vectors z ∈ Zrm with

∆ν
z(k) ≥ δ−1N

3/2
k logνm log2 τ

is at most O(δmr log−1 τ). Therefore, we have that the number of vectors z ∈ Zrm
with

∆ν
z(k) ≥ δ−1N

3/2
k logνm log2 τ

for at least one k = 1, . . . , dlog τe is at most O(δmr). For other z ∈ Zrm, from (3.1),
we obtain

Dν
z(N) = O

(
1
m

+
1

NNk
∆ν

z(k)
)

= O
(
δ−1N−1N

1/2
k logνm log2 τ

)
.

Taking into account the inequality N−1N
1/2
k ≤ 2N−1/2, we obtain the desired

result. �

We remark that the result of Theorem 3.1 can be extended to more general
classes of characteristic polynomials. However, as we have mentioned, the case
of the most practical interest is τ = 2r − 1 which implies that the characteristic
polynomial is primitive, and thus irreducible, over F2.
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Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Via

della Ricerca Scientifica, I-00133 Roma, Italy

E-mail address: conflitt@mat.uniroma2.it

Department of Computing, Macquarie University, Sydney, New South Wales 2109,

Australia

E-mail address: igor@ics.mq.edu.au

http://www.ams.org/mathscinet-getitem?mr=93h:65008
http://www.ams.org/mathscinet-getitem?mr=88h:94002
http://www.ams.org/mathscinet-getitem?mr=15:933e

	1. Introduction
	2. Preparations
	3. Main result
	Acknowledgments
	References

