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A MULTILEVEL SUCCESSIVE ITERATION METHOD
FOR NONLINEAR ELLIPTIC PROBLEMS

YUNQING HUANG, ZHONGCI SHI, TAO TANG, AND WEIMIN XUE

Abstract. In this paper, a multilevel successive iteration method for solving
nonlinear elliptic problems is proposed by combining a multilevel lineariza-
tion technique and the cascadic multigrid approach. The error analysis and
the complexity analysis for the proposed method are carried out based on
the two-grid theory and its multilevel extension. A superconvergence result
for the multilevel linearization algorithm is established, which, besides being
interesting for its own sake, enables us to obtain the error estimates for the
multilevel successive iteration method. The optimal complexity is established
for nonlinear elliptic problems in 2-D provided that the number of grid levels
is fixed.

1. Introduction

The multigrid method (MG) has been shown to be one of the most efficient
techniques for solving partial differential equations and has been studied by many
researchers, see, e.g., Brandt [6] and Hackbusch [12] and the references cited therein.
The nested version of the multigrid method or the so-called full multigrid method
(FMG) can yield the optimal order of operations O(N) in obtaining the approx-
imate solution with the accuracy of discretization. In contrast with FMG, Deufl-
hard [9] proposed a cascadic iteration algorithm which employs nested iterations
using the conjugate gradient (CG) method or the preconditioned conjugate gradi-
ent (PCG) method instead of using MG at each level. Some adaptive strategies are
also proposed, see, e.g., [9, 10]. The efficiency of the cascadic algorithm has been
demonstrated numerically in [9, 10], and the comparison is made with the numeri-
cal results obtained by using the multilevel preconditioner of Bramble, Pasciak and
Xu [5] and the hierarchical preconditioner of Yserentant [27]. The main feature of
the cascadic iteration is coarse-grid-correction free, and as a result it can be viewed
as a one-way multigrid method. Since the cascadic iteration never goes back to the
coarse grids, the error associated with the coarse grids is of relatively low frequen-
cies when the iteration reaches the fine grid, which is very hard to reduce by using
a conventional smoother. Hence, the cascadic algorithm has to solve the underlying
problems on each level to the same accuracy required for the final level, while FMG
solves the underlying problems on each level to the discretization accuracy required
for the current level. This implies that the cascadic algorithm may require a large
amount of computational time on coarse grids. From the theoretical point of view,
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another disadvantage of the cascadic iteration algorithm is that the optimal error
estimate can be obtained only under the energy norm.

On the other hand, the main advantage of the cascadic algorithm is its simplicity.
It is also efficient for a large class of problems, as demonstrated in [4, 9, 10]. Let
the index of the final level be J and that of the current level be j. The iteration
number on each grid level can be determined a priori or a posteriori, which in
general depends only on the difference J − j, but not on the spatial dimensions. It
is the independence of the spatial dimension that yields better efficiency in higher
dimensions. In recent years, there have been several analyses and applications of
the cascadic iteration algorithm, e.g., Shi and Xu [19, 20, 21] applied the cascadic
multigrid technique to elliptic problems with nonconforming elements, to the plate
bending problem, and to parabolic problems; and Braess and Dehmen [4] applied
the cascadic algorithm to the Stokes equations. On the theoretical side, Shaidurov
[18] obtained the optimal complexity in H2 for the cascadic algorithm with CG
as a smoother. Bornemann and Deuflhard [2] analyzed the cascadic algorithm for
some general smoothers such as the damped Jacobi, the Gauss-Seidel, etc., under
the weaker H1+α-regularity assumption with 0 < α ≤ 1.

The main objective of this paper is to study a multilevel successive iteration
algorithm for solving nonlinear elliptic equations. In obtaining the algorithm, a
multilevel linearization approach and a cascadic multigrid iteration technique are
employed. The error analysis and complexity analysis will be carried out by using
the theory for the two-grid method which was first introduced by Xu [24, 25] in
approximating nonsymmetric indefinite nonlinear problems. It is based on the facts
that the low frequencies are governed by some nonlinear nonsymmetric indefinite
operators on the coarse grid and the related high frequencies are governed by some
linear symmetric positive definite (SPD) operators on the fine grid. Therefore, we
can solve a rather complicated problem on the coarse grids, and then solve an easier
problem (linear, SPD) on the fine grid as a correction. If the solution on a coarse
grid is sufficiently accurate, then the correction (i.e., the difference between a finer
grid solution and the coarse grid solution) can be easily obtained by using simple
smoothers. It will be shown that on coarse grids only a fixed number of smoothing
iterations are needed. Moreover, the iteration number depends not on the meshsize
of the coarse grid but on the number of the refinements used. By extending the
two-grid theory to the multigrid case, a multilevel successive iteration algorithm can
be proposed to solve a class of nonlinear finite element equations. We note that the
idea of using the successive iterations to provide reasonable initial values for linear
problems can be traced back to Huang and Liu [14]. However, there had been no
theoretical justification until the cascadic multigrid iteration algorithm appeared.

We now state some notation and conventions for later use. Let Ω ⊂ Rd be a
bounded convex polygonal domain of dimension d, and let W k,p(Ω) be Sobolev
space equipped with the Lp norm and semi-norm:

‖u‖k,p,Ω =

∫
Ω

∑
|α|≤k

|Dαu|p
 1

p

, |u|k,p,Ω =

∫
Ω

∑
|α|=k

|Dαu|p
 1

p

,

where α = (α1, . . . , αd) is a multi-index. When p = 2 we denote W k,2(Ω) by Hk(Ω)
and omit the index p in the norm notation. H1

0 (Ω) consists of functions in H1(Ω)
that vanish on the boundary ∂Ω. H−1(Ω) is the dual of H1

0 (Ω). We shall use the
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notation . , & , =∼ as in Xu [26]: when we write x1 . y1, x2 & y2, x3 =∼ y3, it
means that there exist constants c1,c2, c3, C3 such that

x1 ≤ c1y1, x2 ≥ c2y2, c3x3 ≤ y3 ≤ C3x3,

where the ci’s and C3 are constants independent of the mesh level j and mesh size
hj. These constants may be different at different places. Some special constants
will be defined later. Throughout this paper, the Einstein summation convention
is used: summation is taken over repeated indices. For example, aijbi denotes∑n
i=1 aijbi.
The rest of the paper is organized as follows. In Section 2 some preliminaries

relevant to our error and complexity analysis will be provided. In particular, we will
briefly review and study the two-grid method and the multilevel linearization tech-
nique. With these preparations, a multilevel successive cascadic iteration algorithm
will be proposed and analyzed in Section 3.

2. Preliminaries

Let us consider the following second-order nonlinear elliptic problem:

(2.1)
{
L(u) = −∂i(ai(x,∇u)) = f(x) in Ω,

u = 0 on ∂Ω .

We assume that ai(x, y) : Ω̄ × Rd → R1 is smooth and (2.1) has a unique and
nonsingular solution u ∈ H1

0 (Ω) ∩W 2,d+ε for some ε > 0. The linearized operator
L′ of L at w is defined by the Fréchet derivative as

(2.2) L′(w)φ = −∂i(aij(x,∇w)∂jφ),

where

(2.3) aij(x,∇w) =
∂ai(x,∇w)

∂yj
.

Assume that aij(x,∇w) is SPD for w in a neighborhood of the solution u for (2.1),
i.e., there exist two constants α0 and K such that, ∀ξ ∈ Rd,

(2.4) aij(x,∇w)ξiξj ≥ α0|ξ|2 ∀w ∈ BK ,

where
BK = {w ∈ W 1,∞ : ‖w − u‖1,∞ ≤ K}.

Let

(2.5) A(u, v) := (ai(x,∇u), ∂iv)

and

(2.6) A′(w;φ, v) := (L′(w)φ, v) = (aij(x,∇w)∂jφ, ∂iv) .

Assume that A′ is bounded in a neighborhood of u in the following sense:

(2.7) |A′(w, φ, v)| ≤M‖φ‖1‖v‖1 ∀φ, v ∈ H1
0 (Ω), w ∈ BK .

Then the weak solution u ∈ H1
0 (Ω) for (2.1) is defined by the following equation:

(2.8) A(u, v) = (f, v) ∀v ∈ H1
0 (Ω),
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where (f, v) is the standard inner product in Ω. Let V h ⊂ H1
0 (Ω) be a finite element

space. The finite element approximation uh ∈ V h for the above problem is then
defined by

(2.9) A(uh, v) = (f, v) ∀v ∈ V h.

For any u, v, w ∈ H1
0 , set η(t) = A(w + t(u− w), v). Since

η(1)− η(0) = η′(0) +
∫ 1

0

η′′(t)(1 − t)dt,

we obtain the equality

(2.10) A(u, v)−A(w, v) = A′(w;u − w, v) +R(w, u, v),

where the last term satisfies

(2.11) |R(w, u, v)| . ‖u− w‖21,2p‖v‖1,p′ ,
1
p

+
1
p′

= 1 .

The last estimate is obtained by calculating η′′(t) directly and by using a Hölder-
type inequality, see also [25]. Replacing (w, u) in (2.10) by the solution u of (2.8)
and uh of (2.9) gives

(2.12) A′(u;u− uh, v) = R(u, uh, v) ∀v ∈ V h

or

(2.13) A′(uh;uh − u, v) = R(uh, u, v) ∀v ∈ V h.

The existence and uniqueness for the finite element approximation (2.9) and its
error estimates can be found in Frehse and Rannacher [11], Rannacher [15], Xu
[24], and Chen and Huang [8].

Lemma 2.1 (Xu [24]). If u ∈ W 2,d+ε(Ω) and uh ∈ V h are the solution of (2.8)
and (2.9) respectively, then the following estimates hold:

(2.14)
‖u− uh‖1,p . h if u ∈ W 2,p, 2 ≤ p ≤ ∞,
‖u− uh‖0,p . h2 if u ∈ W 2,p, 2 ≤ p <∞,
‖u− uh‖0,∞ . h2| lnh| if u ∈ W 2,∞.

Suppose that T hj , 1 ≤ j ≤ J , is a nested quasi-uniform triangulation of Ω and
the corresponding linear conforming finite element space is defined by

(2.15) Vj = {v ∈ C(Ω), v|e ∈ P1, ∀e ⊂ T hj , v = 0 on ∂Ω}.

Since T hj is nested, we have

V0 ⊂ V1 ⊂ · · · ⊂ VJ ⊂ H1
0 (Ω).

For simplicity we assume that

(2.16) hj =∼ 2−jh0.

The main objective of this work is to propose a multilevel successive iteration
method for solving nonlinear elliptic equations. Although the problem under in-
vestigation is nonlinear, at each fixed level it is linear. Having this in mind, we
will carry out some analysis for the two-grid iterative algorithm and the multilevel
linearization methods in this section.
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2.1. A two-grid analysis. Let us consider the linear model problem to get some
intuition:

(2.17) (∇u,∇v) = (f, v) ∀v ∈ V = H1
0 (Ω),

and the corresponding finite element approximation

(2.18) (∇uj ,∇v) = (f, v) ∀v ∈ Vj .
It is easy to see that

(2.19) (∇(uj − ui),∇v) = 0 , j ≥ i, ∀v ∈ Vi .
This implies that the finite element solution ui approximating u can also be regarded
as a finite element approximation to uj , j ≥ i. The increment uj −ui is orthogonal
to the subspace Vi, indicating that it is of high frequency on the coarser grid T hi.
One then expects to obtain the increment by some simple smoothing iteration.

Now we turn to the nonlinear equation (2.8). Suppose that we have the exact
finite element solution uhi on the level i and want to find an approximation uj of
the finite element solution uhj on the level j, j > i. It follows from (2.10) that if u
is the solution of (2.8) and w is an approximation of u, then

A′(w;u, v) = A′(w;w, v) +A(u, v)−A(w, v) −R(w, u, v)
= A′(w;w, v) + (f, v)−A(w, v) −R(w, u, v) .(2.20)

It is known that R(w, u, v) is a higher order term in H1(Ω) and may be neglected.
This will lead to the following linearized equation:

(2.21) A′(uhi ;uj , v) = A′(uhi ;uhi, v) + (f, v)−A(uhi , v) ∀v ∈ Vj .
The solution uj of the above problem is an approximation of uhj . This describes a
standard two-grid method of [24]. It is easy to see from (2.21) and (2.10) that

(2.22) A′(uhi ;uj − uhj , v) = R(uhi , uhj , v) ∀v ∈ Vj ,
which implies that

‖uj − uhj‖1,2 . h2
i .

So the discrete accuracy is guaranteed.

Two-grid iteration algorithm.
(1) Solve the finite element equation (2.9) for uhi on the level i.
(2) Set uj,0 = uhi , and solve (2.21) by executing mj smoothing steps on the

level j. Let Ij,mjuj,0 be the output after mj steps of iteration: uj,mj =
Ij,mjuj,0.

We assume that the error propagation operator Sj,mj : Vj → Vj is a linear
mapping:

(2.23) uj − Ij,mjuj,0 = Sj,mj (uj − uj,0).

We say an iteration is a smoother if it admits the following properties:

‖Sj,mjvj‖a .
h−1
j

mγ
j

‖vj‖0 ∀vj ∈ Vj ,(2.24)

‖Sj,mjvj‖a ≤ ‖vj‖a ∀vj ∈ Vj ,(2.25)

for some constant 0 < γ ≤ 1, where ‖·‖a is the a-norm (energy norm) corresponding
to the linear system we wish to solve. It is shown that the Gauss-Seidel iteration,
SOR, the Richardson iteration, and the damped Jacobi iteration are all smoothers
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with the constant γ = 1
2 ; see, e.g., [12, 26]. Moreover, Shaidurov [18] and Borne-

mann and Deuflhard [2] proved that the CG method behaves like a linear smoother
with γ = 1.

The following result gives an error bound for the two-grid iteration algorithm.

Assertion 2.1. Let uj be the exact solution of the linearized equation (2.21) and
uj,mj be an approximation of uj defined by the above two-grid iteration algorithm;
namely, uj,mj = Ij,mjuj,0. If the iteration used is a smoother, then

‖uj − uj,mj‖1 .
22(j−i)

mγ
j

hj ,

where 0 < γ ≤ 1 is defined by (2.24).

Proof. It follows from (2.23)-(2.25) and (2.16) that

‖uj − uj,mj‖1 .
h−1
j

mγ
j

‖uj − ui‖0

=
h−1
j

mγ
j

‖uj − u+ u− ui‖0

.
h−1
j

mγ
j

‖u− ui‖0

. 22(j−i)

mγ
j

hj .

This establishes the desired estimate. �

The above result shows that to achieve the discretization accuracy on the level
j it is sufficient to do mj iterations, with

mj =∼ 2
2
γ (j−i).

We can see that this mj depends only on the difference j− i, and the result is valid
for any spatial dimensions.

If we choose i = j − 1, then only a fixed number of iterations are needed, i.e.,
m =∼ 2

2
γ , which is independent of the level and the mesh size. However, if we want

to iterate the solution on the level i to achieve the discretization accuracy on the
level J , then the number of iterations required is mi =∼ 2

2
γ (J−i).

The generalization of the two-grid algorithm to the multilevel gives the cascadic
multigrid iteration scheme. The key idea in the generalization is to use the two-grid
technique recursively.

2.2. Multilevel linearization method. Similarly to the projective Newton
method [23, 16, 22], we can derive the following multilevel linearization algorithm
for solving the nonlinear equation (2.8).

Multilevel linearization algorithm. [1, 13, 24]
(1) Find u0 ∈ V0 such that A(u0, v) = (f, v) ∀v ∈ V0.
(2) For j = 1, 2, . . . , J, find uj ∈ Vj such that

(2.26) A′(uj−1;uj, v) = A′(uj−1;uj−1, v) + (f, v)−A(uj−1, v) ∀v ∈ Vj .
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Let uhj be the solution of (2.9) in Vj . From (2.26) and (2.10) we have

A′(uj−1;uj − uj−1, v) = (f, v)−A(uj−1, v)
= A(uhj , v)−A(uj−1, v)

= A′(uj−1;uhj − uj−1, v) +R(uj−1, uhj , v),

which gives

(2.27) A′(uj−1;uj − uhj , v) = R(uj−1, uhj , v) ∀v ∈ Vj .

We now prove some superconvergence properties for the error between uhj , the
exact solution of (2.9), and uj , the approximation of uhj given by (2.26).

Assertion 2.2. Assume h0 � 1, and let u be the solution of (2.8). The following
results hold:

• If u ∈W 2,∞(Ω), then

(2.28) ‖uj − uhj‖1,∞ . h2
j | lnhj | .

• If u ∈W 2,4(Ω), then

(2.29) ‖uj − uhj‖1,2 . h2
j .

Proof. By Lemma 2.1, we may assume that

(2.30) ‖uhj − uhj−1‖1,∞ ≤ C2hj .

Moreover, we may also choose h0 � 1 such that uhj ∈ BK/2; namely,

(2.31) ‖u− uhj‖1,∞ ≤
K

2
,

where the constant K is the same as in (2.4). It is known that the finite element
approximation Gh of the regularized Green function of derivative type related to
the bilinear form A′(w;φ, v) satisfies the following inequality [7, 17]:

(2.32) ‖Gh‖1,1 ≤ C0| lnh|.

Let C1 = MC0/α0 and C = 4C1C
2
2 . Choose h0 � 1 such that

2Ch0| lnh0| ≤ C2 .

Now we prove (2.28) by induction. For j = 0, (2.28) holds since u0 = uh0 . Under
the assumptions

(2.33) uj−1 ∈ BK and ‖uj−1 − uhj−1‖1,∞ ≤ Ch2
j−1| lnhj−1|,

we will show that (2.33) is also true when the index j − 1 is replaced by j. Taking
v = Gh in (2.27), the ellipticity (2.4) and the boundedness (2.7) yield

‖uj − uhj‖1,∞ ≤ C1‖uhj − uj−1‖21,∞| lnhj |
≤ 2C1(‖uhj − uhj−1‖21,∞ + ‖uhj−1 − uj−1‖21,∞)| lnhj |
≤ 2C1(C2

2h
2
j + C2h4

j−1| lnhj−1|2)| lnhj |
≤ 2C1(C2

2 + 4C2h2
j−1| lnhj−1|2)h2

j | lnhj |
≤ 4C1C

2
2h

2
j | lnhj |

≤ Ch2
j | lnhj|(2.34)
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and

‖uj − u‖1,∞ ≤ ‖uj − uhj‖1,∞ + ‖uhj − u‖

≤ Ch2
j | lnhj |+

K

2
≤ K .

This completes the induction proof for (2.28). We will now prove (2.29). Let the
constant C2 in (2.30) also be the bounding constant for the W 1,4 norm, i.e.,

(2.35) ‖uhj − uhj−1‖1,4 ≤ C2hj .

Let C3 be the bounding constant in the inverse estimate of the finite element spaces,
i.e.,

(2.36) ‖v‖1,p ≤ C3h
d
p−

d
q

j ‖v‖1,q ∀v ∈ Vj .

Assume h0 � 1 such that 2CC3h
1− d4
0 ≤ C2. Again we use induction to prove (2.29).

For j = 0, (2.29) holds since u0 = uh0 . Assume

(2.37) uj−1 ∈ Bk and ‖uj−1 − uhj−1‖1,2 ≤ Ch2
j−1;

we will show that (2.37) is also true when the index j−1 is replaced by j. Similarly
to the derivation of (2.34), we have

‖uj − uhj‖1,2 ≤ C1‖uhj − uj−1‖21,4
≤ 2C1(‖uhj − uhj−1‖21,4 + ‖uhj−1 − uj−1‖21,4)

≤ 2C1(C2
2h

2
j + C2

3h
−d2
j−1‖uhj−1 − uj−1‖21,2)

≤ 2C1

(
C2

2 + 4C2C2
3h

2(1− d4 )
j−1

)
h2
j

≤ 4C1C
2
2h

2
j ≤ Ch2

j ,(2.38)

and

‖u− uj‖1,∞ ≤ ‖u− uhj‖1,∞ + C3h
− d2
j ‖uhj − uj‖1,2

≤ K

2
+ C3Ch

2− d2
j ≤ K .(2.39)

This completes the proof. �

The superconvergence estimates (2.28) and (2.29) appear to be new. Similar
results for the derivatives were obtained by Xu [24] and Bank [1]. The following
corollary is a direct consequence of the above assertion.

Corollary 2.1. Assume h0 � 1 and let u be the solution of (2.8).
• If u ∈ W 2,∞(Ω), then

‖u− uj‖1,∞ . hj ,(2.40)

‖u− uj‖0,∞ . h2
j | lnhj | .(2.41)

• Furthermore, if u ∈W 2,4(Ω), then

‖u− uj‖1,4 . hj ,(2.42)

‖u− uj‖0,2 . h2
j .(2.43)
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2.3. Inexact multilevel linearization method. In the multilevel linearization
method stated above, one must compute uj exactly by using (2.26) with the initial
value uj−1. However, in practice, uj is only approximated up to some accuracy by
using approximation methods or the so-called inexact solvers. In this subsection
we analyze the influence of the inexact solver on each grid level to the final grid
solution. The error estimates under both the energy norm and the L2 norm will
be obtained. To prove the L2 norm estimate, a duality argument for nonlinear
problems will be developed. We concentrate only on the 2-D case.

Suppose we use an inexact solver in the multilevel linearization method at the
level j and obtain the approximation u∗j , j = 1, . . . , J . Let Uj be the exact solution
of the linearized equation (2.26) with the initial value u∗j−1, j ≥ 1. Denote by ej
the error of this solver on the level j, i.e.,

(2.44) u∗j = Uj + ej .

Then the inexact multilevel linearization algorithm is as follows.

Inexact Multilevel Linearization Algorithm.
(1) Let U0 = uh0 ∈ V0 be the solution of A(U0, v) = (f, v) ∀v ∈ V0.
(2) For j = 1, 2, . . . , J, find Uj ∈ Vj such that

(2.45) A′(u∗j−1;Uj , v) = A′(u∗j−1;u∗j−1, v) + (f, v)−A(u∗j−1, v) ∀v ∈ Vj .
Let uhj be the solution of (2.9) in Vj . Similarly to (2.22), we have

A′(u∗j−1;Uj − u∗j−1, v) = (f, v)−A(u∗j−1, v)

= A(uhj , v)−A(u∗j−1, v)

= A′(u∗j−1;uhj − u∗j−1, v) +R(u∗j−1, uhj , v).

Hence

(2.46) A′(u∗j−1;Uj − uhj , v) = R(u∗j−1, uhj , v) ∀v ∈ Vj .
Now we turn to the error analysis for the solution Uj of (2.45) given by the inexact
multilevel linearization algorithm and the exact nonlinear solution uhj on the level
j.

Assertion 2.3. Assume h0 � 1, and let u be the solution of (2.8). If u ∈ W 2,4(Ω)
and the error ej, defined by (2.44), satisfies

‖ej‖1 ≤ δhj , ‖ej‖1 ≤ Ce‖ej+1‖1 , j = 0, 1, . . . , J − 1,

then

(2.47) ‖Uj − uhj‖1,2 . h2
j + ‖ej‖1 , j ≤ J.

Furthermore, if Ω is smooth or convex, then

(2.48) ‖Uj − uhj‖0,2 . h2
j + ‖ej‖21| lnhj |

1
2 , j ≤ J.

Proof. We prove the above results by induction again. If u∗j−1 is in the neighborhood
of u, using (2.11) and (2.46), we have

‖Uj − uhj‖1,2 ≤ C1‖uhj − u∗j−1‖21,4
≤ 2C1(‖uhj − uhj−1‖21,4 + ‖uhj−1 − u∗j−1‖21,4)

≤ 2C1

{
C2

2h
2
j + 2C2

3h
−1
j−1(‖uhj−1 − Uj−1‖21,2 + ‖ej−1‖21,2)

}
,(2.49)
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where C2 and C3 are constants defined in (2.35) and (2.36), respectively. Let
C = 4C1C

2
2 . Suppose h0 is small enough so that

(2.50) ‖u− uhj‖1,∞ ≤ K/2 , 64C1C
2
3h0 ≤ 1 , CC3h0 ≤ K/4 .

Suppose δ � 1 is such that

(2.51) C3Ceδ ≤ K/4 , 12C1C
2
3C

2
e δ ≤ 1 .

For j = 0 we have U0 − uh0 = 0, so the estimate (2.47) is valid. Furthermore, by
(2.50) and (2.51) we have

‖u− u∗0‖1,∞ ≤ ‖u− uh0‖1,∞ + ‖e0‖1,∞
≤ K/2 + C3δ ≤ K ,(2.52)

which implies that u∗0 ∈ BK . Suppose (2.47) holds for j ≤ i− 1, i.e.,

(2.53) ‖Uj − uhj‖1 ≤ Ch2
j + ‖ej‖21 , j < i.

It can be verified that u∗i−1 ∈ BK , and

‖u− u∗i−1‖1,∞ ≤ ‖u− Ui−1‖1,∞ + ‖ei−1‖1,∞
≤ K/2 + C3Ceδ ≤ K .(2.54)

The assumption (2.53), together with (2.49)-(2.51), yields

‖Ui − uhi‖1,2 ≤ 2C1(C2
2 + 16CC2

3hi)h
2
i + 12C1C

2
3C

2
e δ‖ei‖1

≤ Ch2
i + ‖ei‖1,(2.55)

which means that (2.47) is valid for j = i. It remains to verify that Ui is still in the
neighborhood of u, i.e., Ui ∈ Bk, in order to complete the proof of (2.47). In fact,
using (2.50), (2.51) and the inverse estimates gives

‖u− Ui‖1,∞ ≤ ‖u− uhi‖1,∞ + C3h
−1
i ‖uhi − Ui‖1

≤ K

2
+ C3(Chi + δ) ≤ K .(2.56)

Finally, we prove the optimal L2 error estimate for uj generated by the inexact
multilevel linearization algorithm. We use a duality argument. Construct the
following auxiliary problem: Find w ∈ H1

0 (Ω) such that

(2.57) A′(u∗j−1; v, w) = (v, Uj − uhj ) ∀v ∈ H1
0 (Ω) .

Let wj ∈ Vj be the finite element approximation of w in Vj , and set v = Uj − uhj
in (2.57). It follows from (2.46), (2.11) and (2.7) that

‖Uj − uhj‖20,2 = A′(u∗j−1;Uj − uhj , w)

= A′(u∗j−1;Uj − uhj , w − wj) +A′(u∗j−1;Uj − uhj , wj)
= A′(u∗j−1;Uj − uhj , w − wj) +R(u∗j−1, uhj , wj)

. ‖Uj − uhj‖1‖w − wj‖1 + ‖uhj−1 − uhj‖21,4‖wj‖1
+
(
‖Uj−1 − uhj−1‖21 + ‖ej−1‖21

)
‖wj‖1,∞

.
(
h2
j + ‖ej‖21| lnhj|

1
2

)
‖w‖2 .(2.58)

In the last inequality we have used the fact that ‖wj‖1,∞ . | lnhj |
1
2 ‖w‖2, which

can be obtained by using the inverse estimates, the W 1,p-stability property and the
embedding theorem. Hence, applying standard a priori estimates yields (2.48). �
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3. Multilevel successive iteration method

Based on the preparations in the last section, we propose the following multilevel
successive iterative algorithm for solving the nonlinear equation (2.9).

Multilevel Successive Iteration Algorithm.

(1) Solve the nonlinear problem A(uh0 , v) = (f, v) ∀v ∈ V0 by an appropri-
ate solver to obtain u∗0 with the accuracy δh0 and h2

0 in the H1-norm and
L2-norm, respectively.

(2) For j = 1, 2, . . . , J, , let Ij,mj denote mj basic smoothing iterations on the
level j with initial data u∗j−1 for solving the linearized equation

A′(u∗j−1;Uj , v) = A′(u∗j−1;u∗j−1, v) + (f, v)−A(u∗j−1, v) ∀v ∈ Vj ,

and set u∗j = Ij,mju
∗
j−1.

Now we give the error analysis for the exact solution Uj and its approximation
u∗j in the above algorithm. Let u∗j = Uj − ej . Then

ej = Uj − u∗j = Sj,mj (Uj − u∗j−1)

= Sj,mj (Uj − Uj−1) + Sj,mjej−1 .(3.1)

Define the level-dependent norm

(3.2) ‖v‖2a,j = A′(u∗j−1; v, v) ∀v ∈ Vj , j ≥ 1.

Lemma 3.1. Assume h0 � 1, and let u be the solution of (2.8). If u ∈ W 2,4(Ω)
and the error ej, defined by (2.44), satisfies

‖ej‖1 ≤ δhj , ‖ej‖1 ≤ Ce‖ej+1‖1 , j = 0, 1, . . . , J − 1,

then for any v ∈ Vj , j ≥ 2,

(3.3) ‖v‖2a,j ≤
(

1 + Ch
1
2
j + C‖ej−1‖1,∞ + C‖ej−2‖1,∞

)
‖v‖2a,j−1,

where C is a constant independent of the mesh size h and the level j.

Proof. It follows from the definitions (2.6) and (3.2) that

‖v‖2a,j = A′(u∗j−1; v, v)

= ‖v‖2a,j−1 +A′(u∗j−1; v, v)−A′(u∗j−2; v, v)

≤ ‖v‖2a,j−1 + C|u∗j−1 − u∗j−2|1,∞‖v‖21 .(3.4)

Using the inverse estimate (2.36) and Lemma 2.1, we obtain

|uhj−1 − uhj−2 |1,∞ . h
− 1

2
j−1‖uhj−1 − uhj−2‖1,4

. h
1
2
j .(3.5)

If we use estimates (3.4) and (3.5), then Assertion 2.3 together with the identities

u∗j−1 − u∗j−2 = Uj−1 − Uj−2 − ej−1 − ej−2,

Uj−1 − Uj−2 = (Uj−1 − uhj−1) + (uhj−1 − uhj−2) + (uhj−2 − Uj−2),

yields the desired inequality (3.3). �
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Theorem 3.1. Assume that d = 2, h0 � 1, u ∈ W 2,4(Ω) and Ω is smooth or
convex. If we choose the number of iterations as mj = mm̃j with

m̃j =
{

[J222(J−j)] + 1 if γ = 1
2 ,

[J
1
2 2β(J−j)] + 1, 1 < β < 2, if γ = 1 ,

(3.6)

where m is a proper constant, then the multilevel successive iteration algorithm
admits the error bound

(3.7) ‖ej‖a,j . hJ , j = 1, 2, . . . , J,

and the total number of operations is bounded by

WJ .
{
J3NJ , γ = 1

2 ,√
JNJ , γ = 1.

(3.8)

Proof. Without loss of generality, we may choose h0 � 1 as in (2.31) such that

(3.9) ‖u− Uj‖1,∞ ≤ K/2.

We establish the error bound (3.7) by induction. For j = 0, the result is obvious.
Suppose that

(3.10) ‖ej‖a < hJK/2

for j ≤ i− 1. Then

‖u∗j − u‖1,∞ ≤ K, j = 1, . . . , i− 1,(3.11)

‖ej‖1,∞ . h−1
j ‖ej‖1,2 . hJ

hj
. 2j−J , j = 1, . . . , i− 1.(3.12)

By using Lemma 3.1, the smoothing property (2.25), and (3.12), we have

‖ei‖a,i ≤ ‖Si,mi(Ui − Ui−1)‖a,i + ‖Si,miei−1‖a,i
≤ ‖Si,mi(Ui − Ui−1)‖a,i + ‖ei−1‖a,i
≤ ‖Si,mi(Ui − Ui−1)‖a,i +

(
1 + C2j−1−J + Ch

1
2
i−1

)
‖ei−1‖a,i−1

≤
i∑

j=1

i−1∏
l=j

(
1 + C2l−J + Ch

1
2
l

)
‖Sj,mj (Uj − Uj−1)‖a,j

≤ C̃1

i∑
j=1

‖Sj,mj(Uj − Uj−1)‖a,j .

Furthermore, it follows from the smoothing property (2.24) and the superconver-
gence result (2.41) that

‖ei‖a,i ≤
C̃1

mγ

i∑
j=1

(
hj
m̃γ
j

+
h−1
j h2

J | lnhj |
1
2

m̃γ
j

)

≤ C̃1C̃2

mγ
hJ(3.13)

with

C̃2 =

 J∑
j=1

2J−j

m̃γ
j

+
J∑
j=1

J
1
2 2j−J

m̃γ
j

 ,
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where the iteration number m̃j is given by (3.6). Hence

‖ei‖a,i ≤
K

2
hJ

provided m is sufficiently large. So (3.7) holds for j = i, as long as u∗i is still in
the neighborhood of u. The latter requirement can be verified by the following
observations:

‖u∗i − u‖1,∞ ≤ ‖u∗i − Ui‖1,∞ + ‖Ui − u‖1,∞

≤ K

2
+
K

2
≤ K .(3.14)

Therefore, (3.7) is proved. Finally, we will estimate the total number of operations
(3.8). For γ = 1/2,

WJ =
J∑
j=1

mjNj .
J∑
j=1

J222(J−j)22jN0

. J3NJ ;(3.15)

while for γ = 1,

WJ =
J∑
j=1

mjNj .
J∑
j=1

J
1
2 2β(J−j)22jN0

. J
1
2NJ

J∑
j=1

2(β−2)(J−j)

. J
1
2NJ .(3.16)

This completes the proof of this theorem. �
Theorem 3.1 shows that for a fixed grid level J the complexity of the proposed

multilevel successive iteration algorithm is optimal, and is proportional to the total
number of unknowns. For an arbitrary grid level the algorithm is quasi-optimal,
since J =∼ lnNJ asymptotically.

We close this section with the following observations:
• First, we only considered the error estimate in the H1-norm in this paper.

However, it is easy to see that for a fixed level J , we can obtain the opti-
mal convergence rate in any norm, provided that the operation number is
proportional to the number of unknowns on the final grid. On the other
hand, if the mesh level J is arbitrary as in the case of cascadic iterations,
then only the H1-norm estimate can be kept optimal.
• Although our analysis for nonlinear equations is given only for the 2-D case,

it can be extended to 3-D problems when the mesh level J is fixed. However,
if the mesh level J is arbitrary, the situation is more complicated. In this
case, the cascadic multigrid method only achieves the optimal accuracy
in the energy norm, and as a result the most difficult step is to verify
whether the iterative approximation u∗j remains in the neighborhood of
u uniformly in the W 1,∞-norm. Unforturnately, this is not the case for
strongly nonlinear equations in 3-D. Therefore, it seems difficult to extend
the 2-D analysis presented in this section to deal with 3-D problems when
J is not fixed. This remains one of our further research topics.
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