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COMPUTATIONAL ESTIMATION OF THE ORDER OF ζ(1
2 + it)

TADEJ KOTNIK

Abstract. The paper describes a search for increasingly large extrema (ILE)

of
∣∣ζ( 1

2
+ it)

∣∣ in the range 0 ≤ t ≤ 1013. For t ≤ 106, the complete set of ILE

(57 of them) was determined. In total, 162 ILE were found, and they suggest

that ζ( 1
2

+ it) = Ω(t2/
√

log t log log t). There are several regular patterns in the
location of ILE, and arguments for these regularities are presented. The paper
concludes with a discussion of prospects for further computational progress.

1. Introduction

Riemann’s zeta function on the critical line, ζ(1
2 + it), is unbounded. Balasubra-

manian and Ramachandra have shown in 1977 [1] that

ζ(1
2 + it) = Ω(t

3
4
√

log t log log t )

whereas Huxley proved in 1993 [3] that

ζ(1
2 + it) = O(t

89
570 +ε) for every ε > 0.

This leaves a considerable gap between the Ω- and O-results. Already in 1908,
Lindelöf conjectured a much stronger O-bound [4]

ζ(1
2 + it) = O(tε) for every ε > 0.

The truth of this conjecture, known as Lindelöf’s hypothesis, would follow from
that of Riemann’s hypothesis, since the latter can only hold if [8]

ζ(1
2 + it) = O(t

C
log log t ) for some C > 0.

Since
∣∣ζ(1

2 + it)
∣∣ = |Z(t)|, where Z(t) is the Riemann-Siegel Z function, the

conjectures and results about the order of ζ(1
2 + it) may, and henceforth, will be

stated more compactly in terms of Z(t). As Z(t) is an even function, any discussion
about its behavior will be restricted to t ∈ R+ without loss of generality, so “at
values of t smaller than T ” will always mean 0 ≤ t < T . The acronym ILE will
be used for increasingly large extrema of |Z(t)|, and an interval bounded by two
consecutive zeros of Z(t) will be referred to as an interzero interval.

A computational search for large values of |Z(t)| obviously cannot provide rig-
orous Ω- and O-results. Still, the results presented in this paper show that with
a sufficiently comprehensive set of ILE determined in a sufficiently large t-interval,
certain regularities in the values of Z(t) at ILE become detectable. The values
of ILE in the interval 0 ≤ t ≤ 1013 suggest that the Ω-bound of Z(t) could be
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improved substantially. On the other hand, a much broader t-interval would have
to be investigated to suggest potential improvements of the O-bound of Z(t).

2. Methods of computation

2.1. General. The computations were performed on a PC equipped with a 1700
MHz Intel Pentium 4 processor. The values of Z(t) and ϑ(t) were computed with
Mathematica 4.0 (Wolfram Research, Urbana, IL, USA) using the RiemannSiegelZ
and RiemannSiegelTheta routines, respectively. The search algorithm was run us-
ing 16-digit precision, while the values of ILE were determined with 24-digit preci-
sion. Least-squares regression was performed with Sigma Plot 6.0 (SPSS Science,
Chicago, IL, USA).

2.2. Determination of all ILE for 0 ≤ t ≤ 106. In T1 := [0, 106], Z(t) has
1747146 zeros,1 and Riemann’s hypothesis is never violated there [7]. Hence Z(t)
has exactly one local extremum in each interzero interval in T1 [2]. Together with
three extrema below the first zero, there are thus 1747148 local extrema of Z(t) in
T1. Of these extrema, 57 are ILE, forming the list Z1 (see the Appendix).

Section 4.1 presents two plausible theoretical arguments for the proximity of
large extrema of |Z(t)| to the points tk := 2kπ

log 2 , k ∈ N. This indeed appears to be
the case — each of the interzero intervals containing an ILE of Z1 also contains
such a point. Furthermore, in all cases, |Z(tk)| exceeds 47% of the maximum value
of |Z(t)| in the same interzero interval, and on average, it exceeds 91% of that value.

2.3. Search for ILE for 106 < t ≤ 109. The regularity in the location of ILE in
Z1 suggests that many large |Z(t)| are located in the interzero intervals containing
a point tk and a relatively large |Z(tk)|. The search for ILE in T2 := (106, 109] was
performed as follows:

(1) Z(tk) was computed;
(2) if |Z(tk)| exceeded 20% of the largest ILE for smaller t, the local extremum

was computed;
(3) if |Z(t)| at the extremum exceeded the largest ILE for smaller t, it was

added to the list Z2.
None of the ILE in T1 would have been missed by this algorithm. In total, the

list Z2 consists of 43 extrema, and they are given in the Appendix.
Section 4.2 sketches an argument for another regular pattern in the location of

large extrema of |Z(t)|. Denoting by dp the absolute deviation of k log p
log 2

(p prime) from an integer, a large |Z(tk)| is likely if d3, d5, d7, ..., are relatively
small. The list Z2 provides a sample of dp for 43 ILE in T2. The increase of dp
with p in Z2 is rather rapid; thus mean(d3) = 0.0281. . . , max(d3) = 0.0861. . . , and
mean(d47) = 0.1581. . . , max(d47) = 0.4966. . . .

2.4. Search for ILE for 109 < t ≤ 1013. Since in Z2 the dp for small p are small,
ILE near tk with large dp are unlikely. The ranges of permitted dp were chosen on
the basis of their respective values in Z2, and the search for ILE in T3 := (109, 1013]
was performed as follows:

(1) the values of dp, 3 ≤ p ≤ 17, were checked to be within prescribed ranges:
d3 ≤ 0.10, d5 ≤ 0.15, d7 ≤ 0.20, d11 ≤ 0.25, d13 ≤ 0.28, d17 ≤ 0.30;

1The list of zeros, accurate to ±10−9, was kindly provided by Dr. Andrew M. Odlyzko.
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(2) if the value of k qualified, Z(tk) was computed;
(3) if |Z(tk)| exceeded 20% of the largest ILE for smaller t, the local extremum

was computed;
(4) if |Z(t)| at the extremum exceeded the largest ILE for smaller t, it was

added to the list Z3.
None of the ILE found in T2 would have been missed with this choice of bounds

on d3, ..., d17. In total, the list Z3 consists of 62 extrema, and they are given in the
Appendix.

3. Results and discussion

Let

a(t) :=
log |Z(t)|

log t
and b(t) :=

log |Z(t)|
√

log log t√
log t

.

Denoting lim supt→∞ a(t) = A and lim supt→∞ b(t) = B, we have 0 ≤ A ≤ 89
570 by

the theorem of Huxley, and 3
4 ≤ B ≤ ∞ by the theorem of Balasubramanian and

Ramachandra. At sufficiently large t, where large |Z(t)| start to reflect the actual
order of Z(t), the values of a(t) and b(t) at ILE should start to approach the true
values of A and B, respectively.

Figure 1 shows the values of a(t) and b(t) for ILE in Z1 ∪ Z2 ∪ Z3, excluding
|Z(0)|, and for

∣∣Z(4.257...× 1015)
∣∣ = 855.3... in the vicinity of a point located by

Odlyzko [5]. The values of a(t) at ILE seem to delineate a monotonically decreasing
asymptote for t > 103, but these a-values are too large to suggest a stronger upper
bound of A than the value 89

570 = 0.1561... imposed by the theorem of Huxley.
On the other hand, the values of b(t) at ILE seem to delineate a monotonically
increasing asymptote for all t, exceeding for t > 102 the lower bound of B imposed
by the theorem of Balasubramanian and Ramachandra. Close to the upper bound
of the investigated t-range, we have b(t) > 2, and the asymptotic increase of b(t)
seems to continue, which suggests that

Z(t) = Ω(t2/
√

log t log log t).

It seems likely that the extension of the range of ILE to larger t would allow to
strengthen this tentative estimate.

Figure 1.
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4. Patterns in the location of large extrema

4.1. Proximity of t log 2
2π to N. As described in Section 2.2, of the subzero interval

and the 55 interzero intervals containing ILE in Z1, each also contains a point
tk := 2kπ

log 2 . Plausible arguments for this can be derived from at least two starting
points.
Argument A. From the well-known formula

ζ(σ + it) =
1

(1− 21−σ−it)

∞∑
n=1

(−1)n−1

nσ+it
for σ > 0

we have

|Z(t)| = (3− 2
√

2 cos(t log 2))−1/2

∣∣∣∣∣
∞∑
n=1

(−1)n−1

n1/2+it

∣∣∣∣∣ .
Large |Z(tk)| can then be explained by periodicity of (3 − 2

√
2 cos(t log 2))−1/2,

with maxima of
√

2 + 1 at t = 2kπ
log 2 and minima of

√
2− 1 at t = (2k−1)π

log 2 .

Argument B. We invoke the main sum in the Riemann-Siegel formula

Z0(t) = 2
∑

1≤n≤
√

t
2π

cos (ϑ(t)− t logn)√
n

,

where ϑ(t) is the Riemann-Siegel theta function. At the points t = tk we have
cos (ϑ(tk)− tk logn) = cosϑ(tk) for summands with n = 2m, m ∈ {0} ∪ N, which
therefore reinforce each other (i.e., have the same sign), and

Z0(tk) = 2 cosϑ(tk)
∑

1≤n≤
√

t
2π ,

n=2m

1√
n

+ 2
∑

3≤n≤
√

t
2π ,

n6=2m

cos (ϑ(tk)− tk logn)√
n

.

4.2. Proximity of k log p
log 2 to N. For {tk(3)} ⊂ {tk}, for which k log 3

log 2 ≈ l ∈ N, we
have 2kπ

log 2 ≈
2lπ
log 3 , so cos (ϑ(tk)− tk logn) ≈ cosϑ(tk) for summands with n = 3m

and n = 2m3m
′
, with m,m′ ∈ N, and these summands are also mutually reinforcing.

Denoting {tk(3,5)} ⊂ {tk(3)}, for which k log 5
log 2 is also close to an integer, mutual

reinforcement also occurs for summands with n = 5m, n = 2m5m
′
, n = 3m5m

′
, and

n = 2m3m
′
5m
′′
. Thus, {tk(3,5,7)}, {tk(3,5,7,11)}, . . . are subsets of points tk at which

large |Z(t)| are increasingly likely.

4.3. Proximity of ϑ(t)
π to N. The Riemann-Siegel formula provides another hint

about the location of large values of |Z(t)|. The mutually reinforcing terms (see
Section 4.2) are proportional to |cosϑ(t)|, which is the largest if t corresponds to a
Gram point (a point t = gm > 7 such that ϑ(gm) = mπ, m ∈ {−1, 0}∪N). In fact,
for each of the 105 ILE in Z2 ∪ Z3, either at the closest Gram point below tk, or
at the closest Gram point above tk, |Z(gm)| exceeds 99.2% of the value at the local
extremum.2 Among the tk that qualify both by proximity of k log p

log 2 to integers and
by a large |Z(tk)|, further selection of the candidates for ILE can thus be made by
computing |Z(t)| at the two Gram points closest to tk.

2Of the two Gram points closest to tk, it is not always the one closer to tk at which |Z(t)| is
large (e.g., for k = 954, the closest Gram point is t = g8571, yet |Z(t)| is larger at t = g8570).
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4.4. Partial Riemann-Siegel sums at large |Z(t)|. Let

rZ0(t) := 2
∑

1≤n≤m

cos (ϑ(t)− t logn)√
n

, where m =

[(
t

2π

)1/(2+r)
]
,

so that Z0(t) ≡ 0Z0(t). For 61 of the 62 ILE in Z3, the value of 1Z0 at the corre-
sponding point tk exceeds 9.0% of the value of Z at the extremum. Furthermore,
for all 62 ILE in Z3, the value of 1Z0 (resp. 2Z0) at one of the two Gram points
closest to tk exceeds 39.5% (resp. 19.6%) of the value of Z at the extremum. In
all these cases, the sign of rZ0 at the considered point equals the sign of Z at
the extremum. Thus, evaluation of 1Z0 at points tk and of either 1Z0 or 2Z0 at
Gram points could be used for elimination of unlikely ILE candidates, significantly
reducing the number of complete Z-evaluations.

5. Prospects for further progress

The analysis of the order of Z(t) by means of the functions a(t) and b(t) is based
on the rigorously established results, Z(t) = O(tA) and Z(t) = Ω(tB/

√
log t log log t),

and as such might be viewed as rather conservative. It would be tempting to eval-
uate a stronger Ω-conjecture than the one tested through b(t), e.g., by considering
the function g(t) := log |Z(t)| /

√
log t to test the conjecture Z(t) = Ω(tG/

√
log t)

for some G > 0. However, the results of such a procedure could be mislead-
ing, as we have no knowledge of the multiplicative constant involved in the or-
der of Z(t). For example, the values of |Z(t)| at ILE agree rather well (with
the correlation coefficient R = 0.9994 for ILE with t > 103) with the estimate
|Z(t)| = 0.0199t3.36/

√
log t log log t. If this were actually the case, then g(t) at ILE

would increase up to t ≈ 1089, and in any computationally accessible t-range one
would be led to the wrong conclusion that G > 0. In other words, while g(t) at
ILE increases for t ≤ 1013 and exceeds the value of 1, there is no guarantee that
lim supt→∞ g(t) > 0.

One might also be tempted to extrapolate. That is, if the functional forms
of the asymptotes that the values of a(t) and b(t) at ILE seem to outline were
identified correctly, say as aS(t) and bS(t), the respective limits as t → ∞ would
yield estimates of A and B. Yet, without any theoretical indications with respect to
what the functions aS(t) and bS(t) should be, such an identification would amount
to guessing, and it is unclear how one could assess its correctness. For example, the
values of a(t) at ILE agree reasonably well (R = 0.9985 for ILE with t > 103) with
the power-decay function aS(t) = 0.149 + 0.255t−0.0528, which would suggest that
Z(t) = Ω(t0.149). This estimate would contradict Lindelöf’s (and hence Riemann’s)
hypothesis, and while it also agrees well with the data for t < 1013, for sufficiently
large t it is destined to run into a complete disagreement with the estimate of |Z(t)|
at ILE given in the previous paragraph.

It is sometimes supposed that if any violations of Riemann’s hypothesis exist,
they could be located close to very large values of |Z(t)|. There are no such viola-
tions in the vicinity of the 162 ILE determined in this study.

The computations presented in this paper took approximately nine months using
a personal computer. At the time of writing, the most powerful supercomputers
could have handled this task at least one thousand times faster. It is unlikely
that a supercomputer would be dedicated somewhere to the search for further ILE,
but this search could also be distributed among a number of personal computers,



954 TADEJ KOTNIK

with the rate of advancement proportional to the total computing power of the
computers involved.3 In addition, the search could be accelerated by selecting ILE
candidates through partial Riemann-Siegel sums (Section 4.4) and by computing
the extrema using the Odlyzko-Schönhage algorithm [6].

Appendix

t Z (t)

Z1 1 0.000000 –1.460

2 10.212075 –1.552

3 17.882582 2.341

4 27.735883 2.847

5 35.392730 2.942

6 45.636113 –3.665

7 63.060428 –4.167

8 90.723857 4.477

9 108.986791 5.193

10 171.759106 –4.980

11 199.651794 6.063

12 245.532580 6.069

13 280.810364 –7.003

14 371.545466 7.570

15 480.401432 –8.250

16 652.212123 9.158

17 897.836383 9.406

18 1069.360643 9.851

19 1178.449084 10.355

20 1378.316536 –10.468

21 1550.029928 11.077

22 1967.268238 11.271

23 2030.520469 11.730

24 2447.635780 13.371

25 3099.906368 13.479

26 3825.816853 –13.497

27 3997.707224 –13.575

28 4478.096605 –14.755

29 6726.121510 –15.612

30 6925.621938 –15.955

31 8475.812323 –16.252

32 8647.210888 16.391

33 9173.716528 16.506

34 10025.578053 16.906

35 10677.929307 –17.237

36 11204.207758 17.337

t Z (t)

37 12645.135236 –18.006

38 13125.470242 18.091

39 14303.975890 19.817

40 22299.074877 21.059

41 24329.633861 21.434

42 30774.966419 23.228

43 50626.478383 23.747

44 55104.583439 –24.830

45 63751.863162 –26.073

46 74956.025038 –27.694

47 77403.722067 28.216

48 105731.032300 28.853

49 130060.556256 31.415

50 152359.757336 32.671

51 260538.282724 34.161

52 314464.228643 34.516

53 328768.228899 –36.689

54 521928.541866 36.739

55 534573.688201 –40.991

56 865898.755362 –42.392

57 929650.688269 –43.107

Z2 58 1024177.378756 44.063

59 1345367.802772 –47.593

60 1923053.135018 –48.350

61 2186410.518907 –50.879

62 2939652.714358 53.233

63 3268420.883436 –55.204

64 3345824.546021 55.767

65 5419578.489302 –58.425

66 6155416.653707 61.038

67 9850232.528074 –62.448

68 9969615.203761 62.793

69 11026769.624984 –65.674

70 12372137.487612 –67.952

71 15236834.026567 –68.116

72 15457423.712975 74.268

3This strategy is being applied efficiently in an ongoing computation of the zeros of Riemann’s
zeta function, which has so far shown that Riemann’s hypothesis holds for |t| < 3× 1010 [9].
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t Z (t)

73 28642802.916415 –75.213

74 28660206.960842 75.625

75 30694257.761606 79.679

76 37002034.097306 –80.035

77 42792359.891727 –80.513

78 46747714.116054 –82.469

79 53325356.508449 –84.321

80 60090302.842436 84.715

81 81792403.155463 85.761

82 82985411.177787 –86.254

83 87568424.951600 91.882

84 99273480.761352 –91.989

85 102805259.027575 92.643

86 119015924.891142 92.654

87 124570459.059572 95.158

88 144327207.118141 –95.326

89 151614082.016804 97.031

90 173723252.257957 –101.319

91 178900422.227382 103.906

92 244946055.644911 108.011

93 298271412.198149 108.187

94 363991205.176448 –114.451

95 418878041.160027 –118.153

96 607838127.431023 118.447

97 631240860.404037 119.782

98 673297382.192693 124.043

99 868556070.995988 128.017

100 900138526.590236 –128.993

Z3 101 1189754916.313216 –130.488

102 1253191043.688385 133.120

103 1387123309.986048 148.728

104 2287261836.552282 149.404

105 3238682014.814266 149.611

106 3443895116.936669 –152.488

107 4209002696.395103 155.270

108 4266153346.590529 157.986

109 4945603697.701426 –160.578

110 5230260126.511580 –164.581

111 5272517912.850547 170.199

112 7181324522.908048 –171.458

113 7965404181.305970 –176.842

114 11166740191.846172 180.227

115 12251628740.237935 181.884

116 13066290725.695175 183.530

117 18168214001.673350 190.187

118 19018488753.002784 192.635

t Z (t)

119 21559062801.941668 –192.996

120 22412382038.812786 –196.059

121 23165396411.338070 196.477

122 25985505104.438565 –197.606

123 27279224693.810314 204.462

124 27331684151.577735 209.054

125 31051083602.364182 213.898

126 38688523992.011831 224.263

127 62792807608.657779 –228.392

128 79881740253.040389 233.330

129 102108905446.095547 240.103

130 108903432915.370254 242.415

131 124855728535.680010 –246.885

132 131443859639.685072 251.267

133 133159989048.388546 251.576

134 165822762086.732367 –254.192

135 170165889140.424800 –256.095

136 192604855973.407448 258.354

137 197804421842.227818 –262.702

138 243860776768.360133 –271.338

139 297280771283.496679 –276.661

140 326473979757.428188 –289.781

141 461305748544.638105 292.784

142 472692195365.796730 –293.833

143 479489261691.339254 293.845

144 514119669706.650653 295.026

145 576555893019.852818 295.375

146 643049954739.247192 –297.567

147 669980906189.791285 301.088

148 722931694992.231828 309.299

149 812980259631.147353 –334.401

150 1459387308608.408274 349.779

151 1765497206246.212277 354.787

152 2515593134489.563683 –361.066

153 2589877332690.841810 370.395

154 3210707929490.468401 375.250

155 4154422573264.686997 –376.393

156 4778933265685.642359 379.550

157 5695465916337.181354 388.067

158 6586779209214.248987 –403.914

159 7709188977559.148583 405.312

160 8743721888758.038535 415.783

161 9090142088295.475463 416.329

162 9918400224732.229613 –441.106

4257232978148261.797669 855.364
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