COMPUTATIONAL ESTIMATION OF THE ORDER OF $\zeta\left(\frac{1}{2}+i t\right)$

TADEJ KOTNIK

Abstract

The paper describes a search for increasingly large extrema (ILE) of $\left|\zeta\left(\frac{1}{2}+i t\right)\right|$ in the range $0 \leq t \leq 10^{13}$. For $t \leq 10^{6}$, the complete set of ILE (57 of them) was determined. In total, 162 ILE were found, and they suggest that $\zeta\left(\frac{1}{2}+i t\right)=\Omega\left(t^{2 / \sqrt{\log t \log \log t}}\right)$. There are several regular patterns in the location of ILE, and arguments for these regularities are presented. The paper concludes with a discussion of prospects for further computational progress.

1. Introduction

Riemann's zeta function on the critical line, $\zeta\left(\frac{1}{2}+i t\right)$, is unbounded. Balasubramanian and Ramachandra have shown in 1977 [1] that

$$
\zeta\left(\frac{1}{2}+i t\right)=\Omega\left(t^{\frac{3}{4 \sqrt{\log t \log \log t}}}\right)
$$

whereas Huxley proved in 1993 [3] that

$$
\zeta\left(\frac{1}{2}+i t\right)=O\left(t^{\frac{89}{570}+\varepsilon}\right) \quad \text { for every } \varepsilon>0
$$

This leaves a considerable gap between the Ω - and O-results. Already in 1908, Lindelöf conjectured a much stronger O-bound [4]

$$
\zeta\left(\frac{1}{2}+i t\right)=O\left(t^{\varepsilon}\right) \quad \text { for every } \varepsilon>0
$$

The truth of this conjecture, known as Lindelöf's hypothesis, would follow from that of Riemann's hypothesis, since the latter can only hold if [8]

$$
\zeta\left(\frac{1}{2}+i t\right)=O\left(t^{\frac{C}{\log \log t}}\right) \quad \text { for some } C>0
$$

Since $\left|\zeta\left(\frac{1}{2}+i t\right)\right|=|Z(t)|$, where $Z(t)$ is the Riemann-Siegel Z function, the conjectures and results about the order of $\zeta\left(\frac{1}{2}+i t\right)$ may, and henceforth, will be stated more compactly in terms of $Z(t)$. As $Z(t)$ is an even function, any discussion about its behavior will be restricted to $t \in \mathbb{R}_{+}$without loss of generality, so "at values of t smaller than T " will always mean $0 \leq t<T$. The acronym ILE will be used for increasingly large extrema of $|Z(t)|$, and an interval bounded by two consecutive zeros of $Z(t)$ will be referred to as an interzero interval.

A computational search for large values of $|Z(t)|$ obviously cannot provide rigorous Ω - and O-results. Still, the results presented in this paper show that with a sufficiently comprehensive set of ILE determined in a sufficiently large t-interval, certain regularities in the values of $Z(t)$ at ILE become detectable. The values of ILE in the interval $0 \leq t \leq 10^{13}$ suggest that the Ω-bound of $Z(t)$ could be

[^0]improved substantially. On the other hand, a much broader t-interval would have to be investigated to suggest potential improvements of the O-bound of $Z(t)$.

2. Methods of computation

2.1. General. The computations were performed on a PC equipped with a 1700 MHz Intel Pentium 4 processor. The values of $Z(t)$ and $\vartheta(t)$ were computed with Mathematica 4.0 (Wolfram Research, Urbana, IL, USA) using the RiemannSiegelZ and RiemannSiegelTheta routines, respectively. The search algorithm was run using 16-digit precision, while the values of ILE were determined with 24-digit precision. Least-squares regression was performed with Sigma Plot 6.0 (SPSS Science, Chicago, IL, USA).
2.2. Determination of all ILE for $0 \leq t \leq 10^{6}$. In $\mathcal{T}_{1}:=\left[0,10^{6}\right], Z(t)$ has 1747146 zeros ${ }^{11}$ and Riemann's hypothesis is never violated there [7]. Hence $Z(t)$ has exactly one local extremum in each interzero interval in \mathcal{T}_{1} [2]. Together with three extrema below the first zero, there are thus 1747148 local extrema of $Z(t)$ in \mathcal{T}_{1}. Of these extrema, 57 are ILE, forming the list \mathcal{Z}_{1} (see the Appendix).

Section 4.1 presents two plausible theoretical arguments for the proximity of large extrema of $|Z(t)|$ to the points $t_{k}:=\frac{2 k \pi}{\log 2}, k \in \mathbb{N}$. This indeed appears to be the case - each of the interzero intervals containing an ILE of \mathcal{Z}_{1} also contains such a point. Furthermore, in all cases, $\left|Z\left(t_{k}\right)\right|$ exceeds 47% of the maximum value of $|Z(t)|$ in the same interzero interval, and on average, it exceeds 91% of that value.
2.3. Search for ILE for $10^{6}<t \leq 10^{9}$. The regularity in the location of ILE in \mathcal{Z}_{1} suggests that many large $|Z(t)|$ are located in the interzero intervals containing a point t_{k} and a relatively large $\left|Z\left(t_{k}\right)\right|$. The search for ILE in $\mathcal{T}_{2}:=\left(10^{6}, 10^{9}\right]$ was performed as follows:
(1) $Z\left(t_{k}\right)$ was computed;
(2) if $\left|Z\left(t_{k}\right)\right|$ exceeded 20% of the largest ILE for smaller t, the local extremum was computed;
(3) if $|Z(t)|$ at the extremum exceeded the largest ILE for smaller t, it was added to the list \mathcal{Z}_{2}.
None of the ILE in \mathcal{T}_{1} would have been missed by this algorithm. In total, the list \mathcal{Z}_{2} consists of 43 extrema, and they are given in the Appendix.

Section 4.2 sketches an argument for another regular pattern in the location of large extrema of $|Z(t)|$. Denoting by d_{p} the absolute deviation of $\frac{k \log p}{\log 2}$ (p prime) from an integer, a large $\left|Z\left(t_{k}\right)\right|$ is likely if $d_{3}, d_{5}, d_{7}, \ldots$, are relatively small. The list \mathcal{Z}_{2} provides a sample of d_{p} for 43 ILE in \mathcal{T}_{2}. The increase of d_{p} with p in \mathcal{Z}_{2} is rather rapid; thus mean $\left(d_{3}\right)=0.0281 \ldots, \max \left(d_{3}\right)=0.0861 \ldots$, and $\operatorname{mean}\left(d_{47}\right)=0.1581 \ldots, \max \left(d_{47}\right)=0.4966 \ldots$.
2.4. Search for ILE for $10^{9}<t \leq 10^{13}$. Since in \mathcal{Z}_{2} the d_{p} for small p are small, ILE near t_{k} with large d_{p} are unlikely. The ranges of permitted d_{p} were chosen on the basis of their respective values in \mathcal{Z}_{2}, and the search for ILE in $\mathcal{T}_{3}:=\left(10^{9}, 10^{13}\right]$ was performed as follows:
(1) the values of $d_{p}, 3 \leq p \leq 17$, were checked to be within prescribed ranges: $d_{3} \leq 0.10, d_{5} \leq 0.15, d_{7} \leq 0.20, d_{11} \leq 0.25, d_{13} \leq 0.28, d_{17} \leq 0.30 ;$

[^1](2) if the value of k qualified, $Z\left(t_{k}\right)$ was computed;
(3) if $\left|Z\left(t_{k}\right)\right|$ exceeded 20% of the largest ILE for smaller t, the local extremum was computed;
(4) if $|Z(t)|$ at the extremum exceeded the largest ILE for smaller t, it was added to the list \mathcal{Z}_{3}.
None of the ILE found in \mathcal{T}_{2} would have been missed with this choice of bounds on d_{3}, \ldots, d_{17}. In total, the list \mathcal{Z}_{3} consists of 62 extrema, and they are given in the Appendix.

3. Results and discussion

Let

$$
a(t):=\frac{\log |Z(t)|}{\log t} \quad \text { and } \quad b(t):=\frac{\log |Z(t)| \sqrt{\log \log t}}{\sqrt{\log t}}
$$

Denoting $\lim \sup _{t \rightarrow \infty} a(t)=A$ and $\lim \sup _{t \rightarrow \infty} b(t)=B$, we have $0 \leq A \leq \frac{89}{570}$ by the theorem of Huxley, and $\frac{3}{4} \leq B \leq \infty$ by the theorem of Balasubramanian and Ramachandra. At sufficiently large t, where large $|Z(t)|$ start to reflect the actual order of $Z(t)$, the values of $a(t)$ and $b(t)$ at ILE should start to approach the true values of A and B, respectively.

Figure 1 shows the values of $a(t)$ and $b(t)$ for ILE in $\mathcal{Z}_{1} \cup \mathcal{Z}_{2} \cup \mathcal{Z}_{3}$, excluding $|Z(0)|$, and for $\left|Z\left(4.257 \ldots \times 10^{15}\right)\right|=855.3 \ldots$ in the vicinity of a point located by Odlyzko [5]. The values of $a(t)$ at ILE seem to delineate a monotonically decreasing asymptote for $t>10^{3}$, but these a-values are too large to suggest a stronger upper bound of A than the value $\frac{89}{570}=0.1561 \ldots$ imposed by the theorem of Huxley. On the other hand, the values of $b(t)$ at ILE seem to delineate a monotonically increasing asymptote for all t, exceeding for $t>10^{2}$ the lower bound of B imposed by the theorem of Balasubramanian and Ramachandra. Close to the upper bound of the investigated t-range, we have $b(t)>2$, and the asymptotic increase of $b(t)$ seems to continue, which suggests that

$$
Z(t)=\Omega\left(t^{2 / \sqrt{\log t \log \log t}}\right)
$$

It seems likely that the extension of the range of ILE to larger t would allow to strengthen this tentative estimate.

Figure 1.

4. Patterns in the location of large extrema

4.1. Proximity of $\frac{t \log 2}{2 \pi}$ to \mathbb{N}. As described in Section 2.2 , of the subzero interval and the 55 interzero intervals containing ILE in \mathcal{Z}_{1}, each also contains a point $t_{k}:=\frac{2 k \pi}{\log 2}$. Plausible arguments for this can be derived from at least two starting points.
Argument A. From the well-known formula

$$
\zeta(\sigma+i t)=\frac{1}{\left(1-2^{1-\sigma-i t}\right)} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{\sigma+i t}} \quad \text { for } \sigma>0
$$

we have

$$
|Z(t)|=(3-2 \sqrt{2} \cos (t \log 2))^{-1 / 2}\left|\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{1 / 2+i t}}\right|
$$

Large $\left|Z\left(t_{k}\right)\right|$ can then be explained by periodicity of $(3-2 \sqrt{2} \cos (t \log 2))^{-1 / 2}$, with maxima of $\sqrt{2}+1$ at $t=\frac{2 k \pi}{\log 2}$ and minima of $\sqrt{2}-1$ at $t=\frac{(2 k-1) \pi}{\log 2}$.
Argument B. We invoke the main sum in the Riemann-Siegel formula

$$
Z_{0}(t)=2 \sum_{1 \leq n \leq \sqrt{\frac{t}{2 \pi}}} \frac{\cos (\vartheta(t)-t \log n)}{\sqrt{n}}
$$

where $\vartheta(t)$ is the Riemann-Siegel theta function. At the points $t=t_{k}$ we have $\cos \left(\vartheta\left(t_{k}\right)-t_{k} \log n\right)=\cos \vartheta\left(t_{k}\right)$ for summands with $n=2^{m}, m \in\{0\} \cup \mathbb{N}$, which therefore reinforce each other (i.e., have the same sign), and

$$
Z_{0}\left(t_{k}\right)=2 \cos \vartheta\left(t_{k}\right) \sum_{\substack{1 \leq n \leq \sqrt{\frac{t}{m}}, n=2^{m}}} \frac{1}{\sqrt{n}}+2 \sum_{\substack{3 \leq n \leq \sqrt{\frac{t}{2 \pi}} \\ n \neq 2^{m}}} \frac{\cos \left(\vartheta\left(t_{k}\right)-t_{k} \log n\right)}{\sqrt{n}}
$$

4.2. Proximity of $k \frac{\log p}{\log 2}$ to \mathbb{N}. For $\left\{t_{k(3)}\right\} \subset\left\{t_{k}\right\}$, for which $\frac{k \log 3}{\log 2} \approx l \in \mathbb{N}$, we have $\frac{2 k \pi}{\log 2} \approx \frac{2 l \pi}{\log 3}$, so $\cos \left(\vartheta\left(t_{k}\right)-t_{k} \log n\right) \approx \cos \vartheta\left(t_{k}\right)$ for summands with $n=3^{m}$ and $n=2^{m} 3^{m^{\prime}}$, with $m, m^{\prime} \in \mathbb{N}$, and these summands are also mutually reinforcing. Denoting $\left\{t_{k(3,5)}\right\} \subset\left\{t_{k(3)}\right\}$, for which $\frac{k \log 5}{\log 2}$ is also close to an integer, mutual reinforcement also occurs for summands with $n=5^{m}, n=2^{m} 5^{m^{\prime}}, n=3^{m} 5^{m^{\prime}}$, and $n=2^{m} 3^{m^{\prime}} 5^{m^{\prime \prime}}$. Thus, $\left\{t_{k(3,5,7)}\right\},\left\{t_{k(3,5,7,11)}\right\}, \ldots$ are subsets of points t_{k} at which large $|Z(t)|$ are increasingly likely.
4.3. Proximity of $\frac{\vartheta(t)}{\pi}$ to \mathbb{N}. The Riemann-Siegel formula provides another hint about the location of large values of $|Z(t)|$. The mutually reinforcing terms (see Section 4.2) are proportional to $|\cos \vartheta(t)|$, which is the largest if t corresponds to a Gram point (a point $t=g_{m}>7$ such that $\vartheta\left(g_{m}\right)=m \pi, m \in\{-1,0\} \cup \mathbb{N}$). In fact, for each of the 105 ILE in $\mathcal{Z}_{2} \cup \mathcal{Z}_{3}$, either at the closest Gram point below t_{k}, or at the closest Gram point above $t_{k},\left|Z\left(g_{m}\right)\right|$ exceeds 99.2% of the value at the local extremum $\sqrt{2}$ Among the t_{k} that qualify both by proximity of $\frac{k \log p}{\log 2}$ to integers and by a large $\left|Z\left(t_{k}\right)\right|$, further selection of the candidates for ILE can thus be made by computing $|Z(t)|$ at the two Gram points closest to t_{k}.

[^2]
4.4. Partial Riemann-Siegel sums at large $|Z(t)|$. Let

$$
{ }_{r} Z_{0}(t):=2 \sum_{1 \leq n \leq m} \frac{\cos (\vartheta(t)-t \log n)}{\sqrt{n}}, \quad \text { where } m=\left[\left(\frac{t}{2 \pi}\right)^{1 /(2+r)}\right]
$$

so that $Z_{0}(t) \equiv{ }_{0} Z_{0}(t)$. For 61 of the 62 ILE in \mathcal{Z}_{3}, the value of ${ }_{1} Z_{0}$ at the corresponding point t_{k} exceeds 9.0% of the value of Z at the extremum. Furthermore, for all 62 ILE in \mathcal{Z}_{3}, the value of ${ }_{1} Z_{0}$ (resp. ${ }_{2} Z_{0}$) at one of the two Gram points closest to t_{k} exceeds 39.5% (resp. 19.6%) of the value of Z at the extremum. In all these cases, the sign of ${ }_{r} Z_{0}$ at the considered point equals the sign of Z at the extremum. Thus, evaluation of ${ }_{1} Z_{0}$ at points t_{k} and of either ${ }_{1} Z_{0}$ or ${ }_{2} Z_{0}$ at Gram points could be used for elimination of unlikely ILE candidates, significantly reducing the number of complete Z-evaluations.

5. Prospects for further progress

The analysis of the order of $Z(t)$ by means of the functions $a(t)$ and $b(t)$ is based on the rigorously established results, $Z(t)=O\left(t^{A}\right)$ and $Z(t)=\Omega\left(t^{B / \sqrt{\log t \log \log t}}\right)$, and as such might be viewed as rather conservative. It would be tempting to evaluate a stronger Ω-conjecture than the one tested through $b(t)$, e.g., by considering the function $g(t):=\log |Z(t)| / \sqrt{\log t}$ to test the conjecture $Z(t)=\Omega\left(t^{G / \sqrt{\log t}}\right)$ for some $G>0$. However, the results of such a procedure could be misleading, as we have no knowledge of the multiplicative constant involved in the order of $Z(t)$. For example, the values of $|Z(t)|$ at ILE agree rather well (with the correlation coefficient $R=0.9994$ for ILE with $t>10^{3}$) with the estimate $|Z(t)|=0.0199 t^{3.36 / \sqrt{\log t \log \log t}}$. If this were actually the case, then $g(t)$ at ILE would increase up to $t \approx 10^{89}$, and in any computationally accessible t-range one would be led to the wrong conclusion that $G>0$. In other words, while $g(t)$ at ILE increases for $t \leq 10^{13}$ and exceeds the value of 1 , there is no guarantee that $\lim \sup _{t \rightarrow \infty} g(t)>0$.

One might also be tempted to extrapolate. That is, if the functional forms of the asymptotes that the values of $a(t)$ and $b(t)$ at ILE seem to outline were identified correctly, say as $a_{S}(t)$ and $b_{S}(t)$, the respective limits as $t \rightarrow \infty$ would yield estimates of A and B. Yet, without any theoretical indications with respect to what the functions $a_{S}(t)$ and $b_{S}(t)$ should be, such an identification would amount to guessing, and it is unclear how one could assess its correctness. For example, the values of $a(t)$ at ILE agree reasonably well ($R=0.9985$ for ILE with $t>10^{3}$) with the power-decay function $a_{S}(t)=0.149+0.255 t^{-0.0528}$, which would suggest that $Z(t)=\Omega\left(t^{0.149}\right)$. This estimate would contradict Lindelöf's (and hence Riemann's) hypothesis, and while it also agrees well with the data for $t<10^{13}$, for sufficiently large t it is destined to run into a complete disagreement with the estimate of $|Z(t)|$ at ILE given in the previous paragraph.

It is sometimes supposed that if any violations of Riemann's hypothesis exist, they could be located close to very large values of $|Z(t)|$. There are no such violations in the vicinity of the 162 ILE determined in this study.

The computations presented in this paper took approximately nine months using a personal computer. At the time of writing, the most powerful supercomputers could have handled this task at least one thousand times faster. It is unlikely that a supercomputer would be dedicated somewhere to the search for further ILE, but this search could also be distributed among a number of personal computers,
with the rate of advancement proportional to the total computing power of the computers involved ${ }^{3}$ In addition, the search could be accelerated by selecting ILE candidates through partial Riemann-Siegel sums (Section 4.4) and by computing the extrema using the Odlyzko-Schönhage algorithm [6].

Appendix

	t	$Z(t)$
$\overline{\mathcal{Z}_{1}}$	0.000000	-1.460
2	10.212075	-1.552
3	17.882582	2.341
4	27.735883	2.847
5	35.392730	2.942
6	45.636113	-3.665
7	63.060428	-4.167
8	90.723857	4.477
9	108.986791	5.193
10	171.759106	-4.980
11	199.651794	6.063
12	245.532580	6.069
13	280.810364	-7.003
14	371.545466	7.570
15	480.401432	-8.250
16	652.212123	9.158
17	897.836383	9.406
18	1069.360643	9.851
19	1178.449084	10.355
20	1378.316536	-10.468
21	1550.029928	11.077
22	1967.268238	11.271
23	2030.520469	11.730
24	2447.635780	13.371
25	3099.906368	13.479
26	3825.816853	-13.497
27	3997.707224	-13.575
28	4478.096605	-14.755
29	6726.121510	-15.612
30	6925.621938	-15.955
31	8475.812323	-16.252
32	8647.210888	16.391
33	9173.716528	16.506
34	10025.578053	16.906
35	10677.929307	-17.237
36	11204.207758	17.337

	t	$Z(t)$
37	12645.135236	-18.006
38	13125.470242	18.091
39	14303.975890	19.817
40	22299.074877	21.059
41	24329.633861	21.434
42	30774.966419	23.228
43	50626.478383	23.747
44	55104.583439	-24.830
45	63751.863162	-26.073
46	74956.025038	-27.694
47	77403.722067	28.216
48	105731.032300	28.853
49	130060.556256	31.415
50	152359.757336	32.671
51	260538.282724	34.161
52	314464.228643	34.516
53	328768.228899	-36.689
54	521928.541866	36.739
55	534573.688201	-40.991
56	865898.755362	-42.392
57	929650.688269	-43.107
58	1024177.378756	44.063
59	1345367.802772	-47.593
60	1923053.135018	-48.350
61	2186410.518907	-50.879
62	2939652.714358	53.233
63	3268420.883436	-55.204
64	3345824.546021	55.767
65	5419578.489302	-58.425
66	6155416.653707	61.038
67	9850232.528074	-62.448
68	9969615.203761	62.793
69	11026769.624984	-65.674
70	12372137.487612	-67.952
71	15236834.026567	-68.116
72	15457423.712975	74.268

[^3]ORDER OF $\zeta\left(\frac{1}{2}+i t\right)$

	t	$Z(t)$
73	28642802.916415	-75.213
74	28660206.960842	75.625
75	30694257.761606	79.679
76	37002034.097306	-80.035
77	42792359.891727	-80.513
78	46747714.116054	-82.469
79	53325356.508449	-84.321
80	60090302.842436	84.715
81	81792403.155463	85.761
82	82985411.177787	-86.254
83	87568424.951600	91.882
84	99273480.761352	-91.989
85	102805259.027575	92.643
86	119015924.891142	92.654
87	124570459.059572	95.158
88	144327207.118141	-95.326
89	151614082.016804	97.031
90	173723252.257957	-101.319
91	178900422.227382	103.906
92	244946055.644911	108.011
93	298271412.198149	108.187
94	363991205.176448	-114.451
95	418878041.160027	-118.153
96	607838127.431023	118.447
97	631240860.404037	119.782
98	673297382.192693	124.043
99	868556070.995988	128.017
100	900138526.590236	-128.993
$\overline{\mathcal{Z}}_{3} 101$	1189754916.313216	-130.488
102	1253191043.688385	133.120
103	1387123309.986048	148.728
104	2287261836.552282	149.404
105	3238682014.814266	149.611
106	3443895116.936669	-152.488
107	4209002696.395103	155.270
108	4266153346.590529	157.986
109	4945603697.701426	-160.578
110	5230260126.511580	-164.581
111	5272517912.850547	170.199
112	7181324522.908048	-171.458
113	7965404181.305970	-176.842
114	11166740191.846172	180.227
115	12251628740.237935	181.884
116	13066290725.695175	183.530
117	18168214001.673350	190.187
118	19018488753.002784	192.635

	t	$Z(t)$
119	21559062801.941668	-192.996
120	22412382038.812786	-196.059
121	23165396411.338070	196.477
122	25985505104.438565	-197.606
123	27279224693.810314	204.462
124	27331684151.577735	209.054
125	31051083602.364182	213.898
126	38688523992.011831	224.263
127	62792807608.657779	-228.392
128	79881740253.040389	233.330
129	102108905446.095547	240.103
130	108903432915.370254	242.415
131	124855728535.680010	-246.885
132	131443859639.685072	251.267
133	133159989048.388546	251.576
134	165822762086.732367	-254.192
135	170165889140.424800	-256.095
136	192604855973.407448	258.354
137	197804421842.227818	-262.702
138	243860776768.360133	-271.338
139	297280771283.496679	-276.661
140	326473979757.428188	-289.781
141	461305748544.638105	292.784
142	472692195365.796730	-293.833
143	479489261691.339254	293.845
144	514119669706.650653	295.026
145	576555893019.852818	295.375
146	643049954739.247192	-297.567
147	669980906189.791285	301.088
148	722931694992.231828	309.299
149	812980259631.147353	-334.401
150	1459387308608.408274	349.779
151	1765497206246.212277	354.787
152	2515593134489.563683	-361.066
153	2589877332690.841810	370.395
154	3210707929490.468401	375.250
155	4154422573264.686997	-376.393
156	4778933265685.642359	379.550
157	5695465916337.181354	388.067
158	6586779209214.248987	-403.914
159	7709188977559.148583	405.312
160	8743721888758.038535	415.783
161	9090142088295.475463	416.329
16	9918400224732.229613	-441.106
	7232978148261.797669	855.364

Acknowledgments

I would like to thank Dr. Jan van de Lune (Hallum, The Netherlands), Prof. Roger Heath-Brown FRS (Oxford University), and Prof. Andrew M. Odlyzko (University of Minnesota) for many instructive discussions and suggestions.

References

[1] R. Balasubramanian and K. Ramachandra, On the frequency of Titchmarsh's phenomenon for $\zeta(s)$. III, Proc. Ind. Acad. Sci. 86A (1977), 341-351. MR 58:21968
[2] H. M. Edwards, Riemann's Zeta Function, Academic Press, 1974, pp. 176-177. MR 57:5922
[3] M. N. Huxley, Exponential sums and the Riemann zeta function. IV, Proc. Lond. Math. Soc. 66 (1993), 1-40. MR 93j:11056
[4] E. Lindelöf, Quelques remarques sur la croissance de la fonction $\zeta(s)$, Bull. Sci. Math. 32 (1908), 341-356.
[5] A. M. Odlyzko, The 10^{20}-th zero of the Riemann zeta function and 175 million of its neighbors, http://www.dtc.umn.edu/~odlyzko/unpublished/index.html
[6] A. M. Odlyzko and A. Schönhage, Fast algorithms for multiple evaluations of the Riemann zeta function, Trans. Am. Math. Soc. 309 (1988), 797-809. MR 89j:11083
[7] J. B. Rosser, J. M. Yohe, and L. Schoenfeld, Rigorous computation and the zeros of the Riemann zeta-function, Proc. IFIP Congress 1968, North-Holland, 1969, pp. 70-76. MR 41:2892
[8] E. C. Titchmarsh and D. R. Heath-Brown, The Theory of the Riemann Zeta-function, 2nd ed., Oxford University Press, 1986, p. 354. MR 88c:11049
[9] S. Wedeniwski, ZetaGrid-Verification of the Riemann hypothesis, http://www.zetagrid.net/ zeta/index.html

Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia

E-mail address: tadej.kotnik@fe.uni-lj.si

[^0]: Received by the editor April 24, 2002 and, in revised form, October 21, 2002.
 2000 Mathematics Subject Classification. Primary 11M06, 11Y60; Secondary 11Y35, 65A05.
 Key words and phrases. Riemann's zeta function, critical line, Lindelöf's hypothesis.

[^1]: ${ }^{1}$ The list of zeros, accurate to $\pm 10^{-9}$, was kindly provided by Dr. Andrew M. Odlyzko.

[^2]: ${ }^{2}$ Of the two Gram points closest to t_{k}, it is not always the one closer to t_{k} at which $|Z(t)|$ is large (e.g., for $k=954$, the closest Gram point is $t=g_{8571}$, yet $|Z(t)|$ is larger at $t=g_{8570}$).

[^3]: ${ }^{3}$ This strategy is being applied efficiently in an ongoing computation of the zeros of Riemann's zeta function, which has so far shown that Riemann's hypothesis holds for $|t|<3 \times 10^{10} \quad 9$.

