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QUASI–MONTE CARLO INTEGRATION OVER Rd

PETER MATHÉ AND GANG WEI

Abstract. In this paper we show that a wide class of integrals over Rd with
a probability weight function can be evaluated using a quasi–Monte Carlo
algorithm based on a proper decomposition of the domain Rd and arranging low
discrepancy points over a series of hierarchical hypercubes. For certain classes
of power/exponential decaying weights the algorithm is of optimal order.

1. Introduction, formulation of the problem

Usually, quasi–Monte Carlo integration is used to evaluate integrals

Intρ(f) :=
∫
f(x)ρ(x) dx,

where it is assumed that ρ is the uniform probability density function on [0, 1]d. In
practical applications, probabilities are more general and are rather given on Rd,
such that preliminary transformations are required to fit the quasi–Monte Carlo
integration setup. This can be done either by a change of variables or by splitting Rd
into subcubes. Change of variables may lead to functions on [0, 1]d with unbounded
variation, even if the initial function had bounded variation.

Thus we propose to decompose

Rd =
m+1⋃
j=0

Ij , Ij := Qj\Qj−1, j = 1, . . . ,m,

Qj =
{
x ∈ Rd, |xl| < 2j , l = 1, . . . , d

}
,

j = 0, 1, . . . ,m,
I0 = Q0, Im+1 = Qcm;

and we rewrite

Intρ(f) =
∫
f(x)ρ(x) dx =

m+1∑
j=0

∫
Ij

f(x)ρ(x) dx.

If ρ is bounded and smooth and if f has bounded variation and is integrable, then
each f(x)ρ(x) has bounded variation over Ij , as can be seen below. The above
decomposition can be used to base quadrature formulas by replacing the integrals
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by quadrature formulas using low-discrepancy points, which results in

(1) Sm,n(f, ρ) :=
m∑
j=0

qj
nj

nj∑
i=1

f(yij)ρ(yij)χIj (yij),

where m + 1 is any number of cubes and n := (n0, . . . , nm), where each nj is the
number of points used within cube Qj, j = 0, . . . ,m, and the χ

Ij
are the indicator

functions. Furthermore,

qj = Volume(Qj) = 2(j+1)d,

yij = −2j1 + 2(j+1) ∗ xij , 0 ≤ j ≤ m, 1 ≤ i ≤ nj ,
Pj = {xij : 1 ≤ i ≤ nj} ⊂ [0, 1)d, 0 ≤ j ≤ m.

The total amount of function evaluations is N =
∑m

j=0 nj . The P ′j ’s are some
low-discrepancy point sets, abbreviated below as QMC point sets, consisting of nj
points, respectively.

Note that the hierarchy of cubes is fixed, except the number m+1 of them. This
number depends on assumptions on the smoothness of the weight function and will
be chosen appropriately.

Also, the point sets Pj , in particular their cardinalities nj , are unspecified at the
moment.

In practical applications we have to design methods working for many functions
f and weights ρ, so we assume that they range within certain sets f ∈ F and
ρ ∈M, respectively. In applications we want to keep the class of integrands large.
Since we want to use QMC points, the appropriate class F will consist of functions,
integrable and of bounded variation. The detailed definition of F is postponed until
Section 2.

Then we address the following problems:

Problem A. Is convergence of Sm,n(f, ρ) to
∫
Rd f(x)ρ(x) dx uniform over f ∈ F

and ρ ∈M?

The answer is “yes” under smoothness assumptions, when M is compact in
L1(Rd, dx); see Theorem 1. On bounded domains, the accuracy of approximation
is determined by the discrepancy of the QMC point set P . Therefore we raise the
following

Problem B. Can the method Sm,n(f, ρ) provide the accuracy for approximation
of
∫
Rd f(x)ρ(x) dx as well as it does on bounded domains?

Again, the answer is “yes” conditional upon the probability density functions in
M being dominated by some power decay function as shown in Theorem 2. The
algorithm used for the constructive proof of the integral approximation theorem
in [9] is similar in spirit to our method (1).

Recently, A. Papageorgiou [7] studied a similar problem, the approximate com-
putation of integrals like Intρ(f), but under the additional assumption that f as
well as ρ depends only on ‖x‖ (isotropic integrals). In this particular situation, the
original integral is reduced to one on the d-dimensional unit cube by coordinate-
wise inversion. The corresponding QMC quadrature is shown to converge at a rate√

log(n)/n.
In this paper the authors propose the numerical scheme (1) using low-discrepan-

cy point sets on nested hypercubes. In Section 2 a class F of admissible integrands
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is extracted. In Section 3 an error analysis is carried out, which yields error bounds,
uniformly for classes M of weight functions, having a certain prescribed decay at
infinity. The number of cubes and the respectively chosen number of low-discrepan-
cy points in each of the cubes will depend on those assumptions on the decay of the
weights at ∞. In Section 4 it is shown how elliptically contoured distributions fit
this setup, in particular multivariate Gaussian densities. In Section 5 we explicitly
discuss the two-dimensional situation, since there the Fibonacci sequence may be
used to design QMC point sets.

We close our study with a potential application to measure coherent risks, as
required to evaluate in mathematical finance.

2. Preliminary analysis: Functions of bounded variation on Rd

The analysis of algorithm (1) requires preparatory material. This extends the
basic approach in the applicability of QMC point sets for integration over the cube.
Our presentation focuses on the introduction of the classF of admissible integrands.
We emphasize which problems occur when scaling domains and cutting to frames,
as is done in algorithm (1). This results in a class F , which is large enough to cover
many situations, but it is not the only possible class.

We refer to [6] for notation and background details concerning usage of QMC
point sets, as well as to [11] for analysis of weakly differentiable functions.

We first recall the notion of ∗-discrepancy. For any given collection P of n points
(xi)

n
i=1 in [0, 1)d the quantity

D∗ (P ) := sup
a∈(0,1]d

∣∣∣∣# {xi, xi ∈ [0, a), i = 1, . . . , n}
n

− a0 · · ·ad−1

∣∣∣∣
denotes the ∗-discrepancy. We know that for any n, low-discrepancy point sets P
consisting of n points can be constructed (see, e.g., [6]) such that

D∗(P ) ≤ C(d) · n−1 logd n.

Such point sets are said to be of low discrepancy. Our analysis will be based on
Koksma-Hlawka type inequalities. This is valid for a certain class of functions on
[0, 1]d, functions of bounded variation in the sense of Hardy and Krause.

Therefore we will briefly review some calculus of weakly differentiable functions,
as is required to formulate the results. If the functions are sufficiently smooth, then
the respective norm is given by

(2) Var(f) :=
∑

∅6=I⊆{1,...,d}

∥∥∥∥ ∂|I|∂xI
f(xI ,1Ic)

∥∥∥∥
1

,

which indicates that coordinates which are not covered by I are set equal to 1. (We
may and do phrase this by saying that the variation is anchored at 1.) Integration
is on coordinates from I, thus on [0, 1)|I|. For such functions g the following variant
of the Koksma-Hlawka Inequality is valid for any point set P ⊂ [0, 1)d:∣∣∣∣∣

∫
[0,1)d

g(x) dx− 1
n

n∑
i=1

g(xi)

∣∣∣∣∣ ≤ Var(g)D∗(P ).

Remark 1. The rôle of the anchor at 1 is rarely discussed. In the derivation of the
Koksma-Hlawka Inequality as in [10], which is based on partial integration, it can
be seen that any anchor coordinate-wise larger than 1 can be used. However, the
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variation norm Var(·) also depends on the anchoring. It is easy to verify that it is
the smallest when dropping the anchor at the “upper right” corner of [0, 1]d.

In our subsequent analysis we restrict ourselves to functions g which are (locally)
integrable and for any I ⊂ {1, . . . , d} the weak derivatives ∂|I|

∂xI
g exist and are

integrable on [0, 1]d. The Koksma-Hlawka Inequality extends to such functions, in
particular it holds that

(3)

∣∣∣∣∣
∫

[0,1]d
g(y)χF (y) dy − 1

n

n∑
i=1

g(yi)χF (yi)

∣∣∣∣∣ ≤ Var(gχF )D∗(P ),

where Q := {x, 1/4 ≤ xj ≤ 3/4, j = 1, . . . , d} and F := [0, 1]d \ Q. Var(gχF ) is
as in (2), the appropriate measure of variation on F ⊂ [0, 1]d. In this context it is
important to mention the Leibniz formula, which also extends to weak derivatives.
In particular (see, e.g., [11, Ex. 1.5]), we have

(4)
∂|I|

∂xI
(gχF ) =

∑
A∪B=I

(
∂|A|

∂xA
g

)(
∂|B|

∂xB
χF

)
,

where the sum extends over all disjoint unions A ∪ B = I. Evaluating the partial
derivatives ∂|B|

∂xB
χF yields the lengthy but important bound

Var(gχF ) ≤ ‖ ∂
d

dx
g‖1,F +

∑
A 6=∅

∑
εj=±1,

j∈A

‖ ∂
|A|

∂xA
g(xAc , εA)‖1,F(5)

+
∑

∅6=I 6={1,...,d}
‖ ∂
|I|

∂xI
g(xI ,1Ic)‖1,F ,

where ‖ ·‖1,F means restriction of the integration domain to F and εA is a shortcut
for 1/4(2 + εj)j∈A.

Remark 2. Although lengthy, this formula reveals its main features, namely,
(1) that the integration is restricted to F everywhere,
(2) that anchors are dropped only at 1/4, 3/4 and 1 multiples of 1, and
(3) that by cutting to F , we artificially increase the variation due to the jumps.

But, as long as the jumps are “along” the axes, the variation remains finite.

In the construction of (1), integration is on cubes Qj with scaled points yi. A
simple rescaling argument reveals that for any cube Q of the form Q := a+ q[0, 1]d

and subset G := a+ qF it holds that

(6)

∣∣∣∣∣
∫
Q

g(y)χG(y) dy − |Q|
n

n∑
i=1

g(yi)χG(yi)

∣∣∣∣∣ ≤ |Q|Var(gχG)D∗(P ).

Below, this is applied to functions fρχ
Ij

, the respective restrictions of f and ρ onto
frames Ij . Further use of the Leibniz formula yields

(7) Var(fρχ
Ij

) ≤ 2d(Var(fχ
Ij

) + ‖fχ
Ij
‖1)C(ρχ

Ij
),

where

(8) C(ρχG) := max
{

sup
x∈G

∣∣∣∣ ∂|I|∂xI
ρ(x)

∣∣∣∣ , I ⊆ {1, . . . , d}} .
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This leads to the following definition of the class F = F(V ) of admissible integrands:
A weakly integrable function f belongs to F , if for all m and decompositions of Rd
into frames I0, . . . , Im the quantity

(9) ‖f‖∞ +
m∑
j=0

(
Var(fχIj ) + ‖fχIj ‖1

)
≤ V <∞

is bounded.

Remark 3. Since the decompositions are disjoint,
∑m
j=0 ‖fχIj ‖1 actually adds up

to ‖f‖1. This cannot be done for the first summands, since the computation of
Var(fχ

Ij
) involves anchors at different locations, depending on j; see Remark 2

above. This makes the definition of F tied to the decomposition. An easily verifiable
sufficient condition, which is not tied to these decompositions, is provided by the
subset F̄(C,R) ⊂ F , defined to contain weakly differentiable functions f for which

(10)
∣∣∣∣ ∂|A|∂xA

f(x)
∣∣∣∣ ≤ C 1

‖x‖|A|∞
, for ‖x‖∞ ≥ R,

for appropriate constants C and R.

Remark 4. If a function vanishes outside the unit cube Q0, then the quantity in (9)
reduces to ‖f‖∞+ Var(f) + ‖f‖1. Therefore, it covers the situation of functions of
bounded variation in the sense of Hardy and Krause on the unit cube.

As already stressed in Remark 2, algorithm (1) requires that the artificially
introduced jump sizes decay fast enough.

3. Error bounds

In this section we investigate the potential quality of schemes (1), based on QMC
point set. First we shall establish that for relatively compact subsets M of weight
functions, convergence is uniform.

In a second step we derive the speed of convergence, provided we have some
specified decay of the weights.

The basic error decomposition is presented in

Proposition 1. For any m and n = (n0, . . . , nm) the following bound holds true
for any function from F(V ) and point sets Pj used in cube Qj:

|Intρ(f)− Sm,n(f, ρ)|(11)

≤ 2dV max
0≤j≤m

{
qjD

∗(Pj)C(ρχ
Ij

)
}

+
∫
Qcm

|f(x)ρ(x)| dx,

where qj is the volume of Qj and D∗(Pj) is the discrepancy.
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Proof. Using the estimates derived in Section 2, we conclude

|Intρ(f)− Sm,n(f, ρ)| =

∣∣∣∣∣∣
∫
Rd
fρ dy −

m∑
j=0

qj
nj

nj∑
i=1

f(yij)ρ(yij)χIj (yij)

∣∣∣∣∣∣
≤

m∑
j=0

|
∫
Qj

fρχIj dx−
qj
nj

nj∑
i=1

f(yij)ρ(yij)χIj (yij)|+
∫
Qcm

|fρ| dy

≤
m∑
j=0

qjD
∗(Pj)Var(fρχ

Ij
) +

∫
Qcm

|fρ| dx(12)

≤ 2d
m∑
j=0

qjD
∗(Pj)C(ρχ

Ij
)
(

Var(fχ
Ij

) + ‖fχ
Ij
‖1
)

+
∫
Qcm

|fρ| dx(13)

= 2d max
0≤j≤m

{qjD∗(Pj)C(ρχ
Ij

)}
m∑
j=0

(
Var(fχ

Ij
) + ‖fχ

Ij
‖1
)

+
∫
Qcm

|fρ| dx

≤ 2dV max
0≤j≤m

{qjD∗(Pj)C(ρχ
Ij

)}+
∫
Qcm

|fρ| dx.

Above, we made use of (6) to derive (12) and (7) to get (13), respectively. �
3.1. Uniformity of approximation for compact sets of weights. Here we
will discuss Problem A.

The following theorem asserts that we can approximate Intρ(f) uniformly by
methods of type (1), if the weight functions belong to a set, compact in L1(Rd, dx).
For convenience we recall that as a consequence of the Weyl criterion of compactness
for a certain class M ⊂ L1(Rd, dx) we have that for all ε > 0 there is a bounded
set A such that

∫
Ac ρ(x) dx ≤ ε, uniformly for ρ ∈M; see [2, Chaper 4.20].

Theorem 1. Suppose that M is relatively compact in L1(Rd, dx). If

(14) sup
ρ∈M
{C(ρ) + ‖ρ‖∞} <∞,

then there are a sequence m(N) and numbers nj = nj(N), j = 0, . . . ,m(N),
satisfying N =

∑m(N)
j=0 nj, such that for any family of low-discrepancy point sets

{Pj, j = 0, 1, 2, . . . ,m(N)} consisting of nj points, we have convergence

sup
f∈F

sup
ρ∈M

|Intρ(f)− Sm,n(f, ρ)| → 0, as N →∞.

Proof. We first use the basic error estimate (11) to see that the assertion is true, if

max
0≤j≤m

{
qjD

∗(Pj)C(ρχ
Ij

)
}
→ 0(15)

and ∫
Qcm

ρ(x) dx→ 0(16)

uniformly for ρ ∈ M. By assumption (14), for any given m the left-hand side
in (15) can be made as small as desired by choosing the number of points in Pj
large enough. The remainder term in (16) can be made small, uniformly in ρ by
choosing m large enough. This is a consequence of compactness ofM, as explained
above. �
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3.2. Weights with prescribed decay at infinity. In this section we formulate
the main result about the rate of convergence for method (1) by a proper choice of
the parameters, uniformly for f ∈ F and weights from a certain classMs(R). This
will result in a quantitative version of Theorem 1.

A weight ρ belongs to Ms(R), where s > 0 is fixed, if all derivatives ∂|I|

∂xI
ρ, I ⊂

{1, . . . , d} exist, are uniformly bounded and obey for t ≥ 1 the estimate

(17) sup
‖x‖>t

∣∣∣∣ ∂|I|∂xI
ρ(x)

∣∣∣∣ ≤ Rt−s,
where ‖ · ‖ is the Euclidean one for definiteness. In Section 4 we will establish that
certain sets of elliptically contoured distributions are covered. So far we just stick
to this technical definition. It is easy to verify that for s > d the classes Ms(R)
are relatively compact in L1(Rd, dx). In particular the following estimate will be
useful.

Lemma 1. There is C̃(d) such that

(18) sup
ρ∈Ms(R)

∫
‖x‖>t

|ρ(x)| dx ≤ C̃(d)Rmax
{

1,
1

s− d

}
td−s, t ≥ 1.

Proof. For t ≥ 1 and ρ ∈Ms(R) we can bound∫
‖x‖>t

|ρ(x)| dx =
∞∑
j=0

∫
2j t<‖x‖≤2j+1t

|ρ(x)| dx

≤ R
∞∑
j=0

∫
2jt<‖x‖≤2j+1t

(
2jt
)−s

dx

≤ R
∞∑
j=0

(
2jt
)−s (

2j+1t
)d ∫

‖x‖≤1

dx.

The last integral above can be bounded by 6 independent of the dimension d, such
that we finally arrive at

sup
ρ∈Ms(R)

∫
‖x‖>t

|ρ(x)| dx ≤ 6R2dtd−s
∞∑
j=0

(
2d−s

)j
,

from which it is easy to accomplish the proof with C̃(d) = 12 · 2d. �

Based on this estimate, we can identify m for which the remainder
supρ∈M

∫
Qcm

ρ(x) dx outside cubes of length 2m+1 has prescribed size.

Corollary 1. Given N large enough, we let m := m(N) = d 1
s−d log2 Ne. Then

(19)
∫
Qcm

|ρ(x)| dµ(x) ≤ C̃(d)Rmax
{

1,
1

s− d

}
d(d−s)/2 1

N
.

This follows just by observing that Qm ⊂
{

x, ‖x‖ ≤
√
d2m

}
and inserting the

respective value of m into the estimate (18).
We turn to the main result.
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Theorem 2. Let m := m(N) = d 1
s−d log2Ne and choose

(20) nj = dN 2−j(s−d)∑m
j=0 2−j(s−d)

e, j = 0, . . . ,m.

The overall number of points used by (1) is bounded by CN , for some constant C,
depending only on s and d.

For any low-discrepancy point sets {Pj , j = 0, 1, 2, . . . ,m} consisting of nj
points, we have

(21) sup
f∈F

sup
ρ∈Ms(R)

|Intρ(f)− Sm,n(f, ρ)| ≤ C(V,R, s, d) N−1 logdN.

Proof. The overall number of points will not equal N , due to the ceiling for the nj.
But it can be bounded by N + m ≤ C(s, d)N . Furthermore, by the above choice
of m, Corollary 1 asserts that we can bound the remainder by∫

Qcm

|fρ| dx ≤ C 1
N
,

for some constant C = C(V,R, s, d).
It remains to bound max0≤j≤m{C(ρχ

Ij
)qjD∗(Pj)}. First, the denominator

in (20) is bounded from above by a constant depending on s, d. By the definition
of Ms(R) we have C(ρχIj ) ≤ R2−js. By the choice of m and since qj = 2(j+1)d,
we arrive at

C(ρχ
Ij

)qjD∗(Pj) ≤ C(d)2(j+1)dR · 2−js 1
nj

logd nj ≤ C(R, s, d)
1
N

logdN.

Hence we have

|Intρ(f)− Sm,n(f, ρ)| ≤ V
{
C(s, d,R)

1
N

logdN + C(V,R, s, d)
1
N

}
.

This completes the proof. �

Remark 5. As already mentioned in the Introduction, method (1) is of optimal
order by the above choice of parameters, since the rate in (21) cannot be beaten
even on finite domains; see Remark 4.

Remark 6. As can be seen from Figure 2 (in Section 5), the hierarchical QMC
point sets are stacked adaptively to the radial behaviour of the weight, such that
the error bound order is optimized to N−1 logdN . It can be shown readily that
this order cannot be achieved, when only one cube is used instead of the hierarchy
structure.

4. Elliptically contoured distributions as weights

As an important class of weight functions we introduce the following
M(s,B,Λ0,Λ1), determined by the following restrictions: The weights ρ(x) are
elliptically contoured probability density functions

ρ(x) = |Σ|− 1
2 g

(
1
2
x′Σ−1x

)
,

where Σ is positive definite with eigenvalues bounded as

(22) ∞ > Λd1 ≥ |Σ| ≥ Λd0 > 0,



QUASI–MONTE CARLO INTEGRATION OVER Rd 835

and g ∈ Cd(R+) is bounded, decreasing and, apart from a neighbourhood of 0,
takes the power decaying form:

g(y) = By−
s
2 , y > ε0 > 0.

Remark 7. These restrictions are quite natural in the following sense. The distri-
bution with ECD pdf ρ has covariance matrix proportional to Σ. So if there is no
lower bound for the eigenvalues of Σ, then the weight function could be close to
singular. In that situation the problem should be preconditioned before any algo-
rithm is applicable or meaningful. On the other hand, if there is no upper bound for
the eigenvalues of Σ, the huge variance of the distribution would make the weight
function meaningless or just impossible to bound the cut-off error so as to practice
the QMC scheme in a bounded domain.

Again, there is another natural implicit restriction: s > d. This is because
after the spherical transformation the radial pdf is proportional to rd−s−1, which
is integrable iff s > d.

In this section we aim at showing that M(s,B,Λ0,Λ1) ⊂ Ms(R) for R large
enough, such that the results from Section 3 hold true. The required smoothness
is easily derived from the smoothness of g. So it remains to show that the decay is
as in (17). This is done in

Theorem 3. There is a constant A, depending only on the parameters (Λ0,Λ1, d, s),
such that uniformly for I ⊂ {1, 2, . . . , d} we have

sup
‖x‖>t

|| ∂
|I|

∂xI
ρ(x)||∞ ≤ At−s, t ≥ 1,

To this end we need to address some properties of the elliptically contoured
distributions. For simplicity we introduce the notations:

Σ−1 = (Sij)d × d,

L
(0)
ij = Sij , i, j = 1, 2, . . . , d,

L
(1)
i =

d∑
j=0

Sijxj , i = 1, 2, . . . , d,

L
(k)
i1,...,ik

=
k∏

h=1

L
(1)
ih
, {i1, . . . , ik} ⊂ {1, 2, . . . , d}.

Lemma 2. For any 0 ≤ k ≤ d,

∂kρ

∂x1 · · · ∂xk
= |Σ|− 1

2

b k2 c∑
i=0

∑
Pk2i

g(k−i)L
(0)
(l1,l2) · · ·L

(0)
(l2i−1,l2i)

L
(d−2i)
Lk\{l1,...,l2i},

where Pk2i is all the possible partitions of Lk = {1, 2, . . . , k} into i pairs {(l1, l2), . . . ,
(l2i−1, l2i)} and a remainder subset.

Proof. The formula is obtained by elementary induction and the basic fact that
the partitions of Lk+1 into i pairs and a remainder subset can be characterized by
whether the particular element k + 1 is in a pair set or in the remainder set. Thus
the partitions can be related to Lk recursively. �
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Proof of Theorem 3. First we notice that

|L(0)
ij | = |Sij | (the ij(th) element of Σ−1)

≤ Λ−1
0 ;

|L(1)
i | = |

d∑
j=0

Sijxj | ≤ (
d∑
j=0

S2
ij)

1
2 ||x||

≤ (dΛ−2
0 )

1
2 ||x|| =

√
dΛ−1

0 ||x||;
|L(k)
{1,2,...,k}| ≤ d

k
2 Λ−k0 ||x||k.

Another fact is that, apart from a neighbourhood of 0, for 0 ≤ k ≤ d,

g(y) = B(y)−
s
2 ,

g(k)(y) = B(−1/2)ks(s+ 2) · · · [s+ 2(k − 1)]y−
s
2−k,

g

(
1
2
r2

)
= B2

s
2 r−s,

g(k)

(
||x||2
2Λ1

)
= (−1/2)kB2

s
2 s(s+ 2) · · · [s+ 2(k − 1)]||x||−s−2kΛ

s
2 +k
1 .

So the term among {||x||kg(k)(||x||2/(2Λ1)) : k = 0, 1, 2, . . . , d} with the slowest
decaying power is g itself, namely, ||x||−s. Thus from Lemma 2 we see that∣∣∣∣ ∂kρ

∂x1 · · ·∂xk

∣∣∣∣ ≤ |Σ|− 1
2

b k2 c∑
i=0

∑
Pk2i

|g(k−i)||L(0)
(l1,l2) · · ·L

(0)
(l2i−1,l2i)

L
(d−2i)
Lk\{l1,...,l2i}|

≤ Λ−
d
2

0 ||Pk2i||b
k + 1

2
c max

0≤i≤b ks c

∣∣∣∣g(k−i)
(
||x||2
2Λ1

)∣∣∣∣ d k−2i
2 Λ−(k−i)

0 ||x||(k−2i)

≤ A||x||−s.
Here A depends upon only the parameters (Λ0,Λ1, d, s). �

4.1. Multivariate normal distributions. Probably most important is the case
of multivariate normal distributions. Let us introduce N (Λ0,Λ1), the class of all
multivariate normal distributions with covariances Σ obeying (22). Plainly, this
class belongs to Ms(R) for every s > d and appropriate R. Thus the convergence
rate presented in Theorem 2 can be achieved. But, due to the rapid decay of the
weight, this goal can be achieved with fewer cubes in the hierarchy. We formulate
this in

Corollary 2. Let m := b 1
2 log logNc and nj := dN e−22j−1∑

m
j=0 e

−22j−1 e, j = 0, . . . ,m.

Then there is C such that

sup
f∈F

sup
ρ∈N (Λ0,Λ1)

|Intρ(f)− Sm,n(f, ρ)| ≤ C N−1 logdN.

Remark 8. When restricted to normal weight functions, we have fewer boxes m =
1
2 log logN+O(1) as compared with 1

s−d logN+O(1) for the general situations. Also
the choices of nj for each hypercube are evaluated as the portion of the partial sum
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of exponential terms rather than in power terms as shown in the proof of Theorem 2.
It should also be mentioned that for the normal weight integral we may even choose
to use only one hypercube Qm to apply the QMC algorithm. The error bound would
then have the convergence order of N−1 logd+d

2 N , an interesting comparison with
the hierarchical algorithm suggested by Theorem 2; see also Remark 6.

5. d = 2: Fibonacci numbers

In two dimensions we can specify the algorithm using the Fibonacci sequence
(F (j))∞j=1, generated by F (j + 2) := F (j + 1) + F (j), j = 1, . . . , with initial
conditions F (1) = F (2) = 1, hence (1, 1, 2, 3, 5, 8, 13, . . .).

Indeed, a look at the determination of the numbers nj of points used in the cubes
Qj reveals that the quotients behave like

(23)
nj
nj+1

∼ 2s−d,

where base 2 results from the prescribed growth of the widths of the cubes by
steps 2. If this is replaced by some w > 1, the relation (23) has to be replaced
by nj

nj+1
∼ ws−d. In two spatial dimensions we can employ this to design our

algorithm using Fibonacci points. Namely, if we let γ := 1
2 (1+

√
5) and choose w :=

γ1/(s−2), then the number of points to be chosen in cube Qj is to satisfy nj/nj+1 ∼
γ. This is convenient, since successive Fibonacci numbers F (j), F (j + 1) satisfy
F (j + 1)/F (j)→ γ as j →∞. Convergence is rapid, and a good approximation is
already obtained for j ≥ 10.

Moreover, how to construct low-discrepancy points in two dimensions with ex-
actly F (j) points is well known. As shown in Hua and Wang [3], given j > 1, the
following point set {(xi, yi), i = 0, . . . , F (j)}, given, for i = 1, 2, . . . , F (j), by

x(i) = (2 ∗ i− 1)/(2 ∗ F (j)),
y(i) = [2 ∗ (i ∗ F (j − 1) mod F (j))− 1]/(2 ∗ F (j)),

has asymptotically the optimal discrepancy of order 1
F (j) logF (j).

Summarizing,
(1) we first fix a certain initial volume V 2;
(2) we choose m according to Theorem 2 and let the cubes Qj , j = 0, . . . ,m,

be chosen with widths wj := γj/(s−2)V, j = 0, . . . ,m;
(3) we then discard an initial segment of length l from the Fibonacci sequence

and let nj := F (l+m− j), j = 0, . . . ,m, i.e., in reverse order (if l is large
enough (l ≥ 10), then nj/nj+1 ≈ γ with high accuracy);

(4) we use algorithm (1) with the above parameters and low-discrepancy points
based on the Fibonacci numbers.

We exhibit this approach in the following examples.
We consider the ECD family with probability density function

ρ(x, y) :=
1
|Σ| 12

g

(
1
2

(x, y)Σ−1(x, y)′
)
, Σ > 0,

where

g

(
1
2
r2

)
:=

s− 2
4π

(
1 +

1
2
r2

)− s2
, s > 2.
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Figure 1 shows the situation with s = 4, Σ =
[
4 0
0 1

]
and Σ =

[
4.0 1.9
1.9 1.0

]
,

respectively. Particularly we evaluate the following integral as a demonstration:

I =
∫
R2

(
1 + (x, y)Σ−1(x, y)′

)−1 1
|Σ| 12

g

(
1
2

(x, y)Σ−1(x, y)′
)
dx dy,

where s = 4.
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Figure 1. A family of ECD densities.
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Figure 2. Numerical example of the hierarchical QMC scheme.

The exact value of I is 2 log 2−1. By taking V = 20, l = 10 and m = 6, 7, . . . , 21,
respectively, we obtained the empirical convergence rates shown in Figure 2. The
correlation effect is obvious when the total number of QMC points is small but
would not hinder the optimality of our algorithm in general.

6. Evaluation of coherent risks

There is some “by-product”, which actually motivated the present study. Let us
consider for nonnegative f the quantities

(24) LM(f) := sup {−Intρ(f) : ρ ∈M} .
If we analogously let

(25) Lm,n(f) := sup {−Sm,n(f, ρ) : ρ ∈M} ,
then the triangle inequality implies

(26) |LM(f)− Lm,n(f)| ≤ sup {|Intρ(f)− Sm,n(f, ρ)| , ρ ∈ M } .
In this context Theorem 1 translates to

Corollary 3. For relatively compact M there are a sequence m(N) and numbers
nj = nj(N), j = 0, . . . ,m(N), satisfying N =

∑m(N)
j=0 nj, such that for any family

of QMC point sets {Pj , j = 0, 1, 2, . . . ,m(N)} consisting of nj points, we have

|LM(f)− Lm,n(f)| → 0 as N →∞.
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We emphasize that in contrast to the evaluation of LM, the evaluation of Lm,n
is actually an optimization over a finite set of points. Indeed, the discretization
LM to Lm,n can be seen as moving from continuous weights ρ to discrete mixtures∑
i∈J ciρ(yi). Since Lm,n is an optimization problem with linear target function,

its maximal value is attained at some extreme point of {ρ(yi)} , i ∈ J . This shows
that the computation of Lm,n reduces to a linear program.

The quantity LM(f) forms a coherent risk measure for f , if f is assumed to
be a nonnegative uniformly bounded function on (Rd,B(Rd)). More generally,
coherent risk measure can be characterized by convex, σ(ba, L∞)-closed subsets
M of bounded finitely additive measures on (Rd,B(Rd)); see, e.g., [1, Thm. 2.2].
There are various widely accepted examples for coherent risk measures, discussed
in [1] and we also refer to [5], among them the case of point distributions, where
M⊂ {δω, ω ∈ Ω} can be identified with a convex polyhedron in Rd, such that the
computation of (24) reduces to a linear program.

For these “accepted” risk measures there is always a different representation,
which makes its approximate computation easier than solving the optimization
problem. There is however a scenario where this setup appears naturally: Suppose
that we have to evaluate a portfolio, say f , but we are not sure about the distribu-
tion ρ of the underlying risk, such that we want to know how stable any computed
value is with respect to the prior. Then LM(f) may be understood as a confidence
bound.

Within this context we can establish that for subsetsM compact in L1(Rd, dx),
coherent risk measures can be approximated with arbitrary accuracy by quantities
Lm,n(f), which leads to a finite dimensional optimization procedure; see Corol-
lary 3. For further applications to mathematical finance, we refer to A. Papageor-
giou [8].
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