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AN ESTIMATE FOR THE NUMBER OF INTEGERS
WITHOUT LARGE PRIME FACTORS

KOJI SUZUKI

Abstract. Ψ(x, y) denotes the number of positive integers ≤ x and free of
prime factors > y. Hildebrand and Tenenbaum provided a good approximation

of Ψ(x, y). However, their method requires the solution α = α(x, y) to the
equation

∑
p≤y log p/(pα−1) = log x, and therefore it needs a large amount of

time for the numerical solution of the above equation for large y. Hildebrand
also showed 1 − ξu/ log y approximates α for 1 ≤ u ≤ y/(2 log y), where u =
(log x)/ log y and ξu is the unique solution to eξu = 1 + uξu. Let E(i) be
defined by E(0) = log u;E(i) = log u+ log(E(i− 1) + 1/u) for i > 0. We show
E(m) approximates ξu, and 1−E(m)/ log y also approximates α, where m =
d(log u+log log y)/ log log ue+1. Using these approximations, we give a simple
method which approximates Ψ(x, y) within a factor 1 + O(1/u + 1/ log y) in

the range (log log x)5/3+ε < log y < (log x)/e, where ε is any positive constant.

1. Introduction

Let Ψ(x, y) be the number of positive integers ≤ x and free of prime factors
> y. Estimates for Ψ(x, y) are very useful for many number-theoretic algorithms
and modern cryptography. The behavior of Ψ(x, y) has been investigated by many
authors ([2], [3], [4], [5], [6], [7], [8], [10], [13]). We see good summaries for the
investigations of Ψ(x, y) in [9] and [11].

Dickman [5] showed that the probability that a random integer between 1 and x
has no prime factors exceeding x1/u (0 < u) approaches the value ρ(u) as x −→∞,
where u = (log x)/ log y and ρ(u) is the unique solution to the following equations:

uρ′(u) + ρ(u− 1) = 0 (1 < u);
ρ(u) = 1 (0 ≤ u ≤ 1).

Hildebrand [7] showed that for any fixed positive number ε, 3 ≤ x, and 1 ≤ u ≤
log x/(log log x)5/3+ε,

Ψ(x, y) = xρ(u)
(

1 +Oε

(
log(u+ 1)

log y

))
holds. The estimate Ψ(x, y) ≈ xρ(u) is, in practice, accurate only for small u.
Hildebrand’s result above shows this fact in theory, and Hunter and Sorenson [10]
gave some experimental data to show this fact.
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Hildebrand and Tenenbaum [8] gave an estimate of Ψ(x, y) which is accurate for
large u. They showed that uniformly for 2 ≤ y ≤ x,

(1.1) Ψ(x, y) = h(x, y, αu)
(

1 +O

(
log y
log x

)
+O

(
log y
y

))
,

where

h(x, y, s) =
xs
∏
p≤y(1− p−s)−1

s
√

2πφ2(s, y)
;

φ2(s, y) =
∑
p≤y

ps(log p)2

(ps − 1)2
,

and αu is the unique solution to the equation

(1.2) −
∑
p≤y

log p
pαu − 1

+ log x = 0.

Hunter and Sorenson [10] provided the following algorithm to evaluate Hildebrand
and Tenenbaum’s approximation.

Algorithm HS [10].
(1) Find all primes ≤ y.
(2) Find α′u satisfying |αu − α′u| < min{0.0001, 1/(ū log x)}, where αu is the

unique solution to (1.2) and ū = min{u, y/ log y}.
(3) Output h(x, y, α′u).

Step (1) can be done by some sieve algorithms (for example, see [1] and [12]) using
O(y/ log log y) operations. Step (2) requires bisection, and it can be performed
using O(y(log log x)/ log y) operations [10]. Hence, the complexity of Algorithm HS
is given by

(1.3) O

(
y

(
log log x

log y
+

1
log log y

))
.

Hunter and Sorenson also showed that Newton’s method can improve the com-
plexity of step (2) in Algorithm HS. To prove quadratic convergence for Newton’s
method, one needs a preliminary search by bisection for obtaining a suitable start-
ing point, and it costs O(y(log((log x)/ū)/ log y)) operations. Then, if log x ≤ y, the
total running time of this algorithm is dropped to O(y/ log log y), and if log x > y,
it corresponds to (1.3). Although Newton’s method can reduce the running time
of step (2), one can only prove quadratic convergence.

In this paper, we give an estimate of αu,

α̂u = 1− E(m)
log y

; m =
⌈

log u+ log log y
log log u

⌉
+ 1,

where

(1.4) E(i) =


log u for i = 0;

log u+ log (E(i− 1) + 1/u) for i > 0.

The above E(m) provides an approximation of ξu, where ξu is the unique solution
to the equation

eξu = 1 + uξu,
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and E(m) can be used in some other estimate formulas for Ψ(x, y) (for example,
see Section 2 of [9]). We prove that the error term of our estimate for αu is
O(1/(u(log y)2)) for x→∞, in the range

(1.5) (log log x)5/3+ε < log y < (log x)/e,

where ε is any fixed positive number. Furthermore, using this estimate, we show
that in the above range

(1.6) Ψ(x, y) = h(x, y, α̂u)
(

1 +O

(
1
u

+
1

log y

))
,

when x tends to infinity. Using (1.6), we can compute the estimates of Ψ(x, y)
without the numerical solution of the equation (1.2). Our algorithm for computing
the estimate for Ψ(x, y) is described as follows.

Algorithm Modified HT.
(1) Find all primes ≤ y.
(2) Set E(0) = log u and m = d(log u+ log log y)/ log log ue+ 1.
(3) Compute E(m) using (1.4).
(4) Set α̂u = 1− E(m)/ log y.
(5) Output h(x, y, α̂u).

Calculating α̂u takes time proportional to m = O(log y) in the range (1.5). There-
fore the total running time is dominated by step (1), and the complexity of Algo-
rithm Modified HT is given by

O

(
y

log log y

)
.

In the range (1.5), the above complexity is the same as (1.3). However, since
Algorithm Modified HT does not require Newton’s method or bisection, it provides
a practical improvement on Algorithm HS. Moreover, if all primes up to y are
precomputed, the complexity of our new algorithm is

O

(
y

log y

)
.

Then, compared with the conventional algorithms, our new algorithm provides some
advantages in rapidly computing multiple values of Ψ(x, y′) for different values of
x and y′ < y after precomputing all primes ≤ y.

The structure of this paper is as follows. In Section 2 we give our estimates
for ξu and αu, and using these estimates we provide our approximation to Ψ(x, y).
In Section 3 we give numerical results for showing that Algorithm Modified HT
provides an accurate approximation to Ψ(x, y) and is faster than Algorithm HS.

2. Estimate for Ψ(x, y)

Hildebrand and Tenenbaum [8, formula (7.8)] showed that for sufficiently large
x,

(2.1) αu = 1− ξu
log y

+O

(
1

u(log y)2

)
+O(exp(−(log y)3/5−ε0)),

in the range (log x)1+ε0 < y ≤ x, where ε0 is any positive constant and ξu is the
unique solution of the equation

eξu = 1 + uξu.
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Then, we have

(2.2) ξu = log u+ log
(
ξu +

1
u

)
.

Using (2.1), in our range, we can obtain the following lemma, which provides a
simpler formula to estimate αu.

Lemma 2.1. For sufficiently large x, we have

(2.3) αu = 1− ξu
log y

+O

(
1

u(log y)2

)
,

in the range log y > (log log x)5/3+ε, where ε is any fixed positive number.

Proof. We first see that since y > (log x)(log log x)2/3+ε
, we have y →∞ for x→∞.

Let ε′ be a number such that

0 < ε′ <
3
5
ε,

and ε0 be a number such that

ε0 =
3
5

(
1− 1 + ε′

1 + 3ε/5

)
> 0.

Then, in the range log y > (log log x)5/3+ε,

(log y)3/5−ε0 > (log log x)1+ε′ ,

for sufficiently large y. Since log log y = o((log y)3/5−ε0), we have

(log y)3/5−ε0 − log log y >
(

(log y)3/5−ε0
) 1

1+ε′
> log log x,

for sufficiently large x. Hence,

(log y)3/5−ε0 > log log x+ log log y = log u+ 2 log log y.

This implies that

exp
{
−(log y)3/5−ε0

}
<

1
u(log y)2

.

From the above equation and (2.1), we obtain the proof of this lemma. �

For u > e, i ≥ 0, we define E(i) by (1.4). We also define vu for u > e as follows:

vu = ξu +
1
u
.

The following lemma shows that E(i) approximates ξu (see Remark 2.4 for a geo-
metric interpretation for explaining E(i) converges to ξu). This estimate for ξu
is utilized in the proof of Theorem 2.3, which is for providing our algorithm to
approximate Ψ(x, y).

Lemma 2.2. For u > e, n ≥ 1,

(2.4) 0 < ξu − E(n) <
1

(log u)n−1
.
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Proof. We define zu(n) for u > e, n ≥ 0 as

zu(n) = E(n) +
1
u
.

It is clear that for u > e, n ≥ 0,

(2.5) zu(n) > log u > 1.

We also define ws,u(n) for u > e, s ≥ 1, n ≥ 0 as follows:

ws,u(0) = s;

ws,u(n) = 1 +
1

zu(n− 1)
logws,u(n− 1) for n ≥ 1.

Note that zu(n) 6= 0 from (2.5), and ws,u(n) ≥ 1 for s ≥ 1. We define rs,u(n) for
u > e, s ≥ 1, n ≥ 0 as follows:

rs,u(n) = zu(n) + logws,u(n).

Then, for n ≥ 1, we have

(2.6) rs,u(n) = log u+
1
u

+ log rs,u(n− 1).

Hence, from (2.5), we have for n ≥ 1,

rvu,u(n)− r1,u(n) = logwvu,u(n) = log
(

1 +
1

zu(n− 1)
logwvu,u(n− 1)

)
≤ 1

zu(n− 1)
logwvu,u(n− 1)

<
1

log u
logwvu,u(n− 1)

...

<
1

(log u)n
logwvu,u(0) =

log
(
ξu + 1

u

)
(log u)n

.

Since for u > e

e2 log u > 2u logu+ 1,
we have 2 log u > ξu for u > e. Therefore, for u > e and n ≥ 1,

(2.7) rvu,u(n)− r1,u(n) <
log
(
2 logu+ 1

u

)
(log u)n

<
1

(log u)n−1
.

Next, we show that, for n ≥ 0,

(2.8) rvu,u(n) = vu.

From (2.2), we have

rvu,u(0) = log u+
1
u

+ log
(
ξu +

1
u

)
= vu.

Assuming rvu,u(n) = vu, then, from (2.2) and (2.6), we have

rvu,u(n+ 1) = log u+
1
u

+ log rvu,u(n) = log u+
1
u

+ log
(
ξu +

1
u

)
= vu.

Therefore, the equation (2.8) holds for n ≥ 0.
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From the definitions of rs,u(n) and zu(n), it is clear that

r1,u(n) = E(n) +
1
u
.

Hence, from (2.7), (2.8), and the above equation, we have for n ≥ 1

ξu − E(n) = rvu,u(n)− r1,u(n) <
1

(log u)n−1
.

On the other hand, since wvu,u > 1 for u > e,

ξu − E(n) = rvu,u(n)− r1,u(n) = logwvu,u(n) > 0

holds. This completes the proof of Lemma 2.2. �
Finally, we give our main result. By the following theorem and (1.1), we can

obtain a method which approximates Ψ(x, y) within a factor 1 +O(1/u+ 1/ log y).

Theorem 2.3. For sufficiently large x,

h(x, y, α̂u) = h(x, y, αu)
(

1 +O

(
1

log y

))
,

in the range (log log x)5/3+ε < log y < (log x)/e, where ε is any fixed positive number
and

α̂u = 1− E(m)
log y

; m =
⌈

log u+ log log y
log log u

⌉
+ 1.

Proof. From Lemma 2.2, for u = (log x)/ log y > e,

0 < ξu − E(m) <
1

u log y
.

Hence, from Lemma 2.1, we have in the range (log logx)5/3+ε < log y < (log x)/e,

α̂u = αu +O

(
1

u(log y)2

)
,

for sufficiently large x. In the same manner as Lemma 5 of [10], we can obtain the
proof of Theorem 2.3. �
Remark 2.4. The referee pointed out that the following geometric interpretation
allows us to easily understand why E(i) approaches ξu. The curves for eX and
1 + uX intersect at 0 and at ξu, and these two curves make a closed area. As i
increases, E(i) = log(1+uE(i−1)) progressively gets closer from E(0) = log u to ξu
in this closed area. This illustrates that for sufficiently large i, E(i) approximates
ξu.

3. Numerical results

In this section, we compare Algorithm Modified HT with Algorithm HS. We
implemented both algorithms in C++ programs. To find all primes ≤ y in step
(1) of both algorithms, we used Atkin and Bernstein’s sieve method [1], which uses
O(y/ log log y) operations and y1/2+o(1) bits of memory. In step (2) of Algorithm
HS, we used Newton’s method for finding an estimate of αu. Instead of a value
given by a preliminary search by bisection, we used α0 := log(1 + y/(5 logx))/ log y
as a starting point. Although by the use of this starting point we could not prove
quadratic convergence in theory, Newton’s method converged very well after only
a few iterations in practice.
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Table 1. Estimates of αu and Ψ(x, y) by h function for x = 2320

y Algorithm αu Ψ(x, y) TIME(milliseconds)
220 HS with NM 0.694720 2.87E75 90

Modified HT 0.694926 2.87E75 30
221 HS with NM 0.713551 7.10E76 170

Modified HT 0.713768 7.11E76 40
222 HS with NM 0.730496 1.25E78 290

Modified HT 0.730717 1.26E78 70
223 HS with NM 0.745816 1.67E79 590

Modified HT 0.746038 1.68E79 140
224 HS with NM 0.759726 1.74E80 1101

Modified HT 0.759944 1.75E80 270
225 HS with NM 0.772407 1.46E81 2133

Modified HT 0.772618 1.47E81 520
226 HS with NM 0.784003 1.02E82 4075

Modified HT 0.784209 1.02E82 991
227 HS with NM 0.794646 6.03E82 7801

Modified HT 0.794846 6.04E82 1932
228 HS with NM 0.804443 3.07E83 15001

Modified HT 0.804632 3.08E83 3725
229 HS with NM 0.813488 1.37E84 28901

Modified HT 0.813671 1.37E84 7220
230 HS with NM 0.821861 5.48E84 62800

Modified HT 0.822038 5.49E84 14070

Table 1 lists the estimates of αu and Ψ(x, y) with x = 2320 and y ranging from
220 up to 230 and the running times of both algorithms. This table shows that the
estimate calculated by Algorithm Modified HT is accurate and this algorithm is
faster than Algorithm HS with Newton’s method. In the table, “TIME” denotes the
total amount of CPU time (milliseconds), and “HS with NM” denotes Algorithm HS
with Newton’s method. All calculations were performed using a PC with Pentium
IV 1.8GHz and 523Mbyte memory.

Remark 3.1. The reader may have the question of whether a larger value for m than
in Theorem 2.3 can improve the accuracy of our estimate for Ψ(x, y). The use of a
larger value for m improves the accuracy slightly, not significantly. For the values of
x and y used in calculating the data in Table 1, m = d(log u+log log y)/ log log ue+1
is 7 or 8. Our calculation with m = 1000 showed that both the error of our estimate
for αu and that for Ψ(x, y) decreased by only about 2%. This implies that if m
is set as defined in Theorem 2.3, E(m) accurately approximates ξu and that the
major contribution to the error of our estimate comes from the error term of (2.3).

Remark 3.2. Recently, J. P. Sorenson [14] proposed a new method to speed up
Hildebrand and Tenenbaum’s algorithm. His algorithm is based on the validity of
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the Riemann Hypothesis and has a running time of

O

(
√
y

(
log log x

log y
+

1
log log y

))
operations. Sorenson’s result is as follows: under the validity of the Riemann
Hypothesis, for δ > 0 such that 1 > s ≥ 1/2 + δ, and sufficiently large z such that
2 ≤ z ≤ y,

hs(x, y, z, αu,z) = h(x, y, αu)
(

1 +O

(
1
u

+
1

log y

))
,

where

hs(x, y, z, s) =
xsa(s, y, z)

s
√

2πc(s, y, z)
;

a(s, y, z) =

∏
p≤z

(1− p−s)−1

 exp

blog y/sc∑
k=1

li(y1−ks)− li(z1−ks)
k

 ;

c(s, y, z) =
∑
p≤z

ps(log p)2

(ps − 1)2
+

z log z
s(zs − 1)

− y log y
s(ys − 1)

+
blog y/sc∑
k=1

1
s(1− ks)2

(
(1− ks) log y − ks

yks−1
− (1− ks) log z − ks

zks−1

)
,

and αu,z is the solution to the equation

(3.1)
∑
p≤z

log p
ps − 1

+
blog y/sc∑
k=1

y1−ks − z1−ks

1− ks = log x.

Substituting α̂u for αu,z, we can speed up Sorenson’s algorithm. Let ε be any fixed
positive number. Using α̂u of Theorem 2.3, we can obtain

Ψ(x, y) = hs(x, y, z, α̂u)
(

1 +O

(
1
u

+
1

log y

))
in the range where both Sorenson’s assumption and the assumption (log logx)5/3+ε

< log y < (log x)/e hold. Then, although the complexity of this new algorithm is
O(
√
y/ log log y), in that range this complexity is the same as that of Sorenson’s

algorithm.
We implemented both algorithms in C++ programs. To obtain the numerical

solution to the equation (3.1), required in Sorenson’s original algorithm, we used
Newton’s method and a starting point α0 := log(1 + y/(5 logx))/ log y. Following
the setting of parameters in [14], we set z to 5

√
y.

In Table 2, we give the estimates for αu and Ψ(x, y) with x = 2320 and y
ranging from 245 up to 255 and the running times of both algorithms. In the table,
“S with NW” denotes Sorenson’s original algorithm with Newton’s method, and
“Modified S” denotes the modified Sorenson algorithm with α̂u. This table shows
that the estimates by our new algorithm agree well with those by Sorenson’s original
algorithm, and our algorithm is faster than Sorenson’s.
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Table 2. Estimates of αu and Ψ(x, y) by hs function for x = 2320

y Algorithm αu Ψ(x, y) TIME(milliseconds)
245 S with NM 0.898767 1.38E90 2203

Modified S 0.898886 1.38E90 741
246 S with NM 0.901916 2.26E90 2944

Modified S 0.902032 2.27E90 971
247 S with NW 0.904913 3.62E90 4186

Modified S 0.905027 3.63E90 1371
248 S with NW 0.907769 5.67E90 5788

Modified S 0.907881 5.68E90 1862
249 S with NW 0.910492 8.67E90 8001

Modified S 0.910602 8.69E90 2623
250 S with NW 0.913091 1.30E91 10865

Modified S 0.913199 1.30E91 3585
251 S with NW 0.915575 1.91E91 15482

Modified S 0.915568 1.91E91 4987
252 S with NW 0.917949 2.76E91 21190

Modified S 0.918053 2.76E91 6960
253 S with NW 0.920222 3.92E91 29672

Modified S 0.920323 3.92E91 9603
254 S with NW 0.922398 5.48E91 40658

Modified S 0.922498 5.49E91 13559
255 S with NW 0.924484 7.55E91 57332

Modified S 0.924583 7.56E91 18546
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