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THE DIRICHLET PROBLEM ON QUADRATIC SURFACES

SHELDON AXLER, PAMELA GORKIN, AND KARL VOSS

Abstract. We give a fast, exact algorithm for solving Dirichlet problems with
polynomial boundary functions on quadratic surfaces in Rn such as ellipsoids,
elliptic cylinders, and paraboloids. To produce this algorithm, first we show
that every polynomial in Rn can be uniquely written as the sum of a harmonic
function and a polynomial multiple of a quadratic function, thus extending
a theorem of Ernst Fischer. We then use this decomposition to reduce the
Dirichlet problem to a manageable system of linear equations. The algorithm
requires differentiation of the boundary function, but no integration. We also
show that the polynomial solution produced by our algorithm is the unique
polynomial solution, even on unbounded domains such as elliptic cylinders and
paraboloids.

1. Introduction

In this paper we present a fast, exact algorithm for solving Dirichlet problems
with polynomial boundary functions on a quadratic surface in Rn (n ≥ 2). To
illustrate the kind of Dirichlet problem we study, fix b = (b1, . . . , bn) ∈ Rn. For
x = (x1, . . . , xn) ∈ Rn, we will write

‖bx‖2 = b21x
2
1 + · · ·+ b2nx

2
n.

Suppose we are given a polynomial p on Rn. We wish to find a harmonic polynomial
that equals p on the quadratic surface {x ∈ Rn : ‖bx‖2 = 1}.

Even if all the bj are nonzero (so that our quadratic surface is bounded and is,
in particular, an ellipsoid), computing a solution to this Dirichlet problem presents
several difficulties. A standard means of expressing the solution to the Dirichlet
problem for bounded domains involves Green’s function and integration. However,
Green’s function of an ellipsoid does not have a known formula allowing for exact
computations. An alternative approach avoids integration by employing a finite
difference, finite element, or Galerkin-type scheme to approximate the solution,
but again this procedure will not produce an exact solution.

If b1 = b2 = · · · = bn = 1, then our quadratic surface is the unit sphere. In this
case, a fast algorithm for finding exact solutions is presented in [2]. That algorithm
involves differentiation but no integration. The basis of that algorithm is that any
polynomial p of degree m on Rn can be decomposed in the form

p = h+ (‖x‖2 − 1)f,
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where h is a harmonic polynomial of degree at most m and f is a polynomial of
degree at most m − 2. Because h is harmonic and equals p on the unit sphere,
it is the solution to our Dirichlet problem. The algorithm presented in [2] shows
how the polynomials h and f in the decomposition above can be computed via
differentiation from p. Unfortunately these techniques work only on spheres and so
do not provide an algorithm for nonspherical ellipsoids or other quadratic surfaces.

In this paper we solve the Dirichlet problem discussed above, getting solutions for
ellipsoids as well as for elliptic cylinders (for example, {x ∈ R3 : x2

1 +2x2
2 = 1}) and

paraboloids (for example, {x ∈ R3 : x3 = x1 + x2
2}). We will begin by extending

the decomposition above to a collection of quadratic surfaces. We then use this
decomposition to produce a system of linear equations whose solution will give an
exact solution to our Dirichlet problem. We will show how this system of linear
equations has a structure allowing it to be reduced to smaller systems of linear
equations, thus producing a fast algorithm. The algorithm requires differentiation
of the boundary function, but no integration.

Before we turn to these matters, we need to present some background, much of
which appears in [6]. A multi-index is an n-tuple α = (α1, . . . , αn) of nonnegative
integers. The order of α, denoted |α|, is defined by

|α| = α1 + · · ·+ αn.

We let xα denote the monomial x1
α1 . . . xn

αn and Dα denote the differential oper-
ator D1

α1 . . . Dn
αn , where Dj denotes differentiation with respect to xj . If q is a

polynomial on Rn given by q(x) =
∑
α cαx

α, then q(D) is the differential operator
defined by q(D) =

∑
α cαD

α. A polynomial is called homogeneous of degree m if
it is a linear combination of monomials of degree m.

Ernst Fischer proved that given a homogeneous polynomial q on Rn, every ho-
mogeneous polynomial p of degree m can be decomposed uniquely as p = h + qf ,
where h is a homogeneous polynomial of degree m satisfying q(D)h = 0 and f is a
homogeneous polynomial of suitable degree.

In [6] the subject of more general decompositions is discussed. Given two poly-
nomials g and q on Rn, the relevant question is whether an arbitrary polynomial
p can be decomposed as p = h+ qf , where h and f are polynomials, with h satis-
fying g(D)h = 0. Shapiro refers to a pair (g, q) with this property as a generalized
Fischer pair. He asks: Which (g, q) form generalized Fischer pairs? Note that if
g(x) = ‖x‖2, then g(D) is the Laplacian and so this decomposition would require
h to be harmonic. We will provide examples of a robust class of quadratic polyno-
mials q that form a generalized Fischer pair with g(x) = ‖x‖2, and we give explicit
examples of the decomposition via our algorithm.

Some of the surfaces that we consider are unbounded (for example, the elliptic
cylinders and paraboloids mentioned above). Thus unique solutions to Dirichlet
problems on these surfaces, even in the class of polynomials, are neither automatic
nor expected. For example, the set of harmonic polynomials that vanish on the
hyperplane {x ∈ Rn : xn = 0} is not trivial. However, we will show that for the
quadratic surfaces we consider, polynomial solutions to the Dirichlet problem with
polynomial boundary functions are unique.

The paper is organized as follows: In Section 2 we begin by presenting Fischer’s
lemma and the corresponding decomposition theorem. We then extend these re-
sults to cover a wider class of generalized Fischer pairs. These generalized Fischer
pairs are then used to solve the Dirichlet problem. We prove that the polynomial
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produced by this technique is the unique polynomial solving the Dirichlet prob-
lem, even when our quadratic surface is unbounded. In Section 3 we describe a
fast algorithm for computing the solution to the Dirichlet problem promised by the
results in Section 2. In Section 4 we present some examples, computed using our
algorithm, of solutions to Dirichlet problems on ellipsoids. The Appendix contains
a differentiation formula needed by our algorithm.

2. Fischer’s Lemma and the Dirichlet problem

In this section, we state and prove our generalization of Fischer’s results. Then
we prove the decomposition theorem that solves the Dirichlet problem. Then we
show that even when our quadratic surfaces are unbounded, the solution given by
our decomposition theorem is the only polynomial solution.

We begin by stating Fischer’s results, which are nicely restated and proved in [3];
also see [4]. Fix an integer n ≥ 2. We will always use m to denote a nonnegative
integer. Let Pm denote the vector space of polynomials (with real coefficients) of
degree at most m on Rn. For convenience, we define Pk to be {0} for k < 0. As
usual, ∆ denotes the Laplacian.

Lemma 2.1 (Fischer’s Lemma). Suppose b = (b1, . . . , bn), where each bj 6= 0.
Define L : Pm → Pm by

L(f) = ∆
(
(‖bx‖2 − 1)f

)
.

Then L is a linear, degree-preserving, bijection of Pm onto itself.

Fischer’s Lemma leads to Fischer’s Decomposition Theorem, which gives a solu-
tion to the Dirichlet problem for ellipsoids.

Theorem 2.2 (Fischer’s Decomposition Theorem). Suppose b = (b1, . . . , bn), where
each bj 6= 0. Let p ∈ Pm. Then there exists a unique harmonic polynomial h ∈ Pm
such that

p = h+ (‖bx‖2 − 1)f
for some f ∈ Pm−2.

Let E = {x ∈ Rn : ‖bx‖2 < 1}. Then h is the unique continuous function on Ē
that is harmonic on E and equals p on the ellipsoid ∂E.

We will need the following generalization of Corollary 5.3 of [1].

Lemma 2.3. If b = (b1, . . . , bn), where each bj 6= 0, then no nonzero polynomial
multiple of ‖bx‖2 is harmonic.

Proof. Suppose, to the contrary, that p is a nonzero polynomial of degree m such
that ‖bx‖2p is harmonic. Let E be as in the theorem above, which states that there
exists a harmonic polynomial h ∈ Pm such that h equals p on the ellipsoid ∂E. But
‖bx‖2p is also a harmonic polynomial that equals p on ∂E. Because ‖bx‖2p has
degree m+ 2, the polynomials ‖bx‖2p and h cannot be equal. But this contradicts
the uniqueness of solutions to the Dirichlet problem on bounded domains. �

In order to generate new generalized Fischer pairs, let q be a quadratic (degree 2)
polynomial on Rn. We want to look at the map on Pm defined by

L(f) = ∆(qf).

Our goal is to identify choices of q for which L is a bijection of Pm onto Pm. This
leads us to the definition of a nonhyperbolic quadratic.



640 SHELDON AXLER, PAMELA GORKIN, AND KARL VOSS

Definition 2.4. A nonhyperbolic quadratic is a polynomial q on Rn of the form
n∑
j=1

b2jx
2
j +

n∑
j=1

cjxj + d,

where at least one bj 6= 0.

Note that the next theorem, which gives the desired bijectivity, implies that no
nonzero polynomial multiple of a nonhyperbolic quadratic is harmonic, generalizing
Lemma 2.3. This result does not hold for arbitrary quadratic polynomials. In fact,
even for a nonharmonic quadratic polynomial, a nonzero polynomial multiple might
be harmonic. For example, x2

1−3x2
2 is not harmonic, but (x2

1−3x2
2)x1 is harmonic.

Theorem 2.5. Let q be a nonhyperbolic quadratic. Define L : Pm → Pm by

L(f) = ∆(qf).

Then L is a linear bijection of Pm onto Pm.

Proof. Clearly L is a linear map of Pm into Pm. Since Pm is finite dimensional, we
need only show that L is injective. So suppose that this is not true. Then there
exists f ∈ Pm, f 6= 0, such that L(f) = 0. Without loss of generality, we may
suppose that f is of degree m (otherwise, replace m by a lower integer). We can
write f = fm + fm−1, where fm is homogeneous of degree m and fm−1 ∈ Pm−1.
Write q = q2 + q1, where q2 is homogeneous degree 2 (so q2(x) =

∑n
j=1 b

2
jx

2
j in the

notation above) and q1 ∈ P1. Because ∆(qf) = 0, we know that

∆(q2fm + q2fm−1 + q1f) = 0.

Thus
∆(q2fm) = 0,

because the other terms have lower degrees. We will now show that this implies
that fm = 0, which is a contradiction.

Note that we have reduced our theorem to the case where q = q2. Reordering
the variables (if some of the bj = 0), we see that it suffices to prove our theorem in
the case when q(x) =

∑r
j=1 b

2
jx

2
j , where 1 ≤ r ≤ n and b1, . . . , br are all nonzero.

To simplify notation, we will also replace fm in the previous paragraph with f . So
again we have the assumption that ∆(qf) = 0 and we want to prove that f = 0,
but now we have a special form for q.

If r = n, our desired conclusion that f = 0 follows from Lemma 2.3. So suppose
r < n. Let k denote the degree of f thought of as a polynomial in xr+1, . . . , xn
(temporarily think of x1, . . . , xr as constants to define k). Write

(2.6) f = p+ g,

where p is the part of f that is homogeneous of degree k in the variables xr+1, . . . , xn
and g is the remaining part of f , consisting of lower degree terms in the variables
xr+1, . . . , xn.

Using the product formula for the Laplacian, which states that

(2.7) ∆(qp) = p∆q + q∆p+ 2∇q · ∇p,
we obtain from (2.6) the equation

∆(qf) = p∆q + q∆p+ 2∇q · ∇p+ ∆(qg).
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Consider the degree, as a polynomial in xr+1, . . . , xn, of each term on the right side
of this equation. Because ∆q is a positive constant, this degree is k for the first
term. Because q is independent of the variables xr+1, . . . , xn, the second and third
terms have degree (as a function of xr+1, . . . , xn) less than k. Because the degree of
g (as a function of xr+1, . . . , xn) is less than k and q is independent of xr+1, . . . , xn,
the degree of the fourth term is less than k.

Thus the only part of the right side of the equation above with degree k (as
a function of xr+1, . . . , xn) is the first term, p∆q. The left side of the equation
is 0, so p∆q = 0. Hence p = 0. But p was the part of f of highest degree in
xr+1, . . . , xn. Hence f is independent of xr+1, . . . , xn. Thus we can think of the
equation ∆(qf) = 0 as taking place in Rr. Lemma 2.3 now implies that f = 0, as
desired. �

We now apply Theorem 2.5 to obtain the general decomposition theorem.

Theorem 2.8. Suppose p ∈ Pm. Let q be a nonhyperbolic quadratic. Then there
exists a unique harmonic polynomial h ∈ Pm such that

p = h+ qf

for some f ∈ Pm−2.

Proof. Note that ∆p ∈ Pm−2. Thus by Theorem 2.5, there exists f ∈ Pm−2 such
that ∆(qf) = ∆p. Let h = p − qf . Then h is harmonic polynomial in Pm and
p = h+ qf , as desired.

To prove the uniqueness part of this theorem, suppose also that h̃ is a harmonic
polynomial in Pm and that p = h̃+ qf̃ for some f̃ ∈ Pm−2. Then

h− h̃ = q(f̃ − f).

The left side of the equation above is harmonic, and hence ∆
(
q(f̃ − f)

)
= 0.

Theorem 2.5 now implies that f̃ − f = 0, which implies that h̃ = h, as desired. �

If p ∈ Pm and q is a nonhyperbolic quadratic, we can consider the following
Dirichlet problem: find a harmonic polynomial h ∈ Pm such that h equals p on
the set {x ∈ Rn : q(x) = 0}. Clearly the h produced by the theorem above solves
this Dirichlet problem. Of course, {x ∈ Rn : q(x) = 0} could be the empty set
or a single point. Because q(x) → ∞ as |x| → ∞, the existence of a point in Rn

where q is negative is a convenient condition to ensure that {x ∈ Rn : q(x) = 0} is a
nondegenerate quadratic surface. For example, using the notation of Definition 2.4,
{x ∈ Rn : q(x) = 0} will be a nondegenerate quadratic surface if

d <
∑

{j:bj 6=0}

c2j
4b2j

or if cj 6= 0 for some j with bj = 0.
We now turn to the question of whether the polynomial h produced by The-

orem 2.8 is the unique polynomial solution to the Dirichlet problem discussed in
the paragraph above. The following lemma will help us answer this uniqueness
question. If we were working in Cn instead of Rn, then Hilbert’s Nullstellensatz
could be used to provide information about when a polynomial h vanishing on the
zero set of another polynomial q is a polynomial multiple of q. A theorem called
the Real Nullstellensatz (see, for example, [5], Chapter 3, Theorem 3.3) provides
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some information about polynomials on Rn vanishing on the zero set of another
polynomial. However, we do not see how the Real Nullstellensatz can be used to
prove the lemma below, so we have provided a proof without using such machinery.

Lemma 2.9. Suppose q is a nonhyperbolic quadratic that is negative at some point
of Rn. If h is a polynomial on Rn such that h(x) = 0 whenever q(x) = 0, then h
is a polynomial multiple of q.

Proof. We will prove this lemma by induction on the dimension n.
To get started, suppose n = 1 and that q(x) = b2x2 + cx + d, where b 6= 0,

is a nonhyperbolic quadratic that is negative at some point of R. Suppose h is a
polynomial on R such that h(x) = 0 whenever q(x) = 0. Because q is negative at
some point of R and q(x)→∞ as x→∞, we see that q has precisely two distinct
zeros. The polynomial h vanishes on both these zeros, and thus h is a polynomial
multiple of the quadratic polynomial q, as desired.

Now suppose that the lemma holds in dimension n−1. Let q be a nonhyperbolic
quadratic that is negative at some point of Rn. Relabelling coordinates, if necessary,
we can assume that

q(x) =
n∑
j=1

b2jx
2
j +

n∑
j=1

cjxj + d,

where bj 6= 0 for some j ∈ {1, . . . , n− 1}. Let y denote a typical point of Rn−1 and
let z denote a typical point of R; thus (y, z) denotes a typical point of Rn.

Suppose h is a polynomial on Rn of degree m such that h(x) = 0 whenever
q(x) = 0. We need to show that h is a polynomial multiple of q.

For z ∈ R such that q(y, z) is negative for some y ∈ Rn−1, define a nonhyperbolic
quadratic qz on Rn−1 by

qz(y) = q(y, z),
and define a polynomial hz on Rn−1 of degree at most m by

hz(y) = h(y, z).

Then hz(y) = 0 whenever qz(y) = 0, and thus by our induction hypothesis there is
a polynomial fz on Rn−1 such that

(2.10) hz(y) = fz(y)qz(y)

for all y ∈ Rn−1. Clearly fz has degree at most m− 2.
For y ∈ Rn−1 such that q(y, z) is negative for some z ∈ R, define a polynomial

qy on R by
qy(z) = q(y, z),

and define a polynomial hy on R of degree at most m by

hy(z) = h(y, z).

Then hy(z) = 0 whenever qy(z) = 0. We claim that there is a polynomial gy on R
such that

(2.11) hy(z) = gy(z)qy(z)

for all z ∈ R. If bn 6= 0, then qy is a nonhyperbolic quadratic on R and the claim
follows from the dimension 1 case that was proved at the beginning of this proof. If
bn = 0 but cn 6= 0, then qy is a polynomial on R of degree 1 and the claim follows
easily. Finally, if bn = 0 and cn = 0, then qy is a negative constant, in which case
the claim is trivially true. In any case, we see that gy has degree at most m.
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Let Ω = {(y, z) ∈ Rn : q(y, z) < 0}. Combining (2.10) and (2.11), we see that

h(y, z) = fz(y)q(y, z) = gy(z)q(y, z)

for all (y, z) ∈ Ω. Thus we can define a function p on Ω by

p(y, z) = fz(y) = gy(z).

Because

p(y, z) =
h(y, z)
q(y, z)

for all (y, z) ∈ Ω, we see that p is real-analytic on Ω.
Suppose α = (α1, . . . , αn) is a multi-index of order greater than 2m. Then either

α1 + · · ·+ αn−1 > m− 1 or αn > m+ 1.

This implies that Dαp(y, z) = 0 for all (y, z) ∈ Ω. Because all sufficiently high-
order partial derivatives of p equal 0 on the open set Ω, we conclude that p is a
polynomial on Ω. Hence we can think of p as a polynomial defined everywhere
on Rn.

Finally, because h(y, z) = p(y, z)q(y, z) for all (y, z) ∈ Ω, and because polynomi-
als that agree on a nonempty open subset of Rn must agree everywhere, we have
h = pq. Thus h is a polynomial multiple of q, as desired. �

Now we can combine the previous lemma and Theorem 2.5 to prove the desired
uniqueness result. Of course in the ellipsoidal case (where each bj 6= 0, in the
notation of Definition 2.4) uniqueness follows easily from the boundedness of the
surface, but we want to consider also elliptic cylinders and paraboloids. Note that
the uniqueness result in the theorem below fails on some nondegenerate quadratic
surfaces, so the hypothesis that q is nonhyperbolic cannot be deleted. For example,
on the quadratic surface defined by {x ∈ Rn : x2

1 − 3x2
2 − 1 = 0}, any solution to

a Dirichlet problem can be used to produce another solution by adding to it the
harmonic polynomial (x2

1 − 3x2
2 − 1)x1, which vanishes on the quadratic surface in

question.
To obtain uniqueness results on half-spaces, even in the class of polynomial

solutions, a growth condition on the solutions is needed (see [7]). However, the
theorem below shows that we have unique polynomial solutions on our quadratic
surfaces without the requirement of a growth condition.

Theorem 2.12. Suppose q is a nonhyperbolic quadratic that is negative at some
point of Rn. If p ∈ Pm, then there is a unique harmonic polynomial h that equals
p on {x ∈ Rn : q(x) = 0}. Furthermore,

h = p− qf
for some f ∈ Pm−2.

Proof. Take h and f as in Theorem 2.8. Then h is a harmonic polynomial that
equals p on {x ∈ Rn : q(x) = 0}; furthermore f ∈ Pm−2 and h = p− qf .

To prove uniqueness, suppose h̃ is also a harmonic polynomial that equals p on
{x ∈ Rn : q(x) = 0}. Then h̃− h equals 0 on {x ∈ Rn : q(x) = 0}. By Lemma 2.9,
h̃− h is a polynomial multiple of q. However, Theorem 2.5 implies that no nonzero
polynomial multiple of q is harmonic. Thus h̃−h = 0 and hence h̃ = h, completing
the proof of uniqueness. �
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3. Algorithm

In this section, we will turn the results of the previous section into a compu-
tationally useful algorithm for solving the Dirichlet problem. Every polynomial
is a sum of homogeneous polynomials, and thus to solve Dirichlet problems with
polynomial boundary functions it suffices to do so for homogeneous polynomials.

Let Hm denote the vector space of polynomials on Rn that are homogeneuos
of degree m (the polynomial 0 is homogeneous of every degree, so 0 ∈ Hm). Sup-
pose q is a nonhyperbolic quadratic and p ∈ Hm+2. We use the decomposition in
Theorem 2.8 to write p = h+ qf , where h is a harmonic polynomial in Pm+2 and
f ∈ Pm. Breaking each polynomial into its homogeneous components, we obtain

p =
m+2∑
j=0

hj + (q2 + q1 + q0)
m∑
j=0

fj ,

where each hj is harmonic. We can break the equation above into homogeneuous
equations by degree to obtain the system

p = hm+2 + q2fm,

−q1fm = hm+1 + q2fm−1,

−q0fm − q1fm−1 = hm + q2fm−2,

...(3.1)
−q0f2 − q1f1 = h2 + q2f0,

−q0f1 − q1f0 = h1,

−q0f0 = h0.

Here p and q2, q1, q0 are known and we need to compute hm+2, . . . , h0 and fm, . . . , f0.
Our plan of attack is to use the first equation to find fm, which will then give us
both hm+2 and the left side of the next equation. We can repeat the procedure with
the second equation to find fm−1, which will give us both hm+1 and the left side of
the next equation. We continue this process until we have found hj for each j. Then
h =

∑m+2
j=0 hj is the harmonic function that agrees with p on {x ∈ Rn : q(x) = 0}.

Thus, we turn our attention to equations of the form

(3.2) p = h+ q2f

where p is a known homogeneous polynomial, q2 is the highest degree part of a
known nonhyperbolic quadratic, h is an unknown harmonic polynomial homoge-
neous of degree deg(p), and f is an unknown polynomial homogeneous of degree
deg(p)−2. Note that all the equations in the system above are of this form (except
the last two equations, which are trivial to solve for h1 and h0). Hence an algorithm
for finding the solution to (3.2) will give us an algorithm for solving our Dirichlet
problem.

To solve equation (3.2), eliminate h by taking the Laplacian of both sides, getting

(3.3) ∆p = ∆(q2f).

Now our problem has been reduced to finding f ∈ Hm satisfying the equation
above, where p ∈ Hm+2 and q2(x) = b21x

2
1 + · · ·+ b2nx

2
n are known, with at least one

bj 6= 0. Note that Theorem 2.5 implies that (3.3) has a unique solution f ∈ Hm.
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The algorithm we introduce for finding f involves repeated differentiation of (3.3).
Because f ∈ Hm, we will know f once we know the constants Dαf for every multi-
index α of order m. We need one more piece of notation before finding the constants
Dαf . For 1 ≤ j ≤ n, let ej denote the multi-index whose jth-coordinate equals 1
and whose other coordinates equal 0.

For α a multi-index of order m, apply the differential operator Dα to both sides
of (3.3), getting

Dα(∆p) = Dα
(
∆(q2f)

)
(3.4)

= ∆
(
Dα(q2f)

)
= ∆

(
q2D

αf +
n∑
j=1

2αjb2jxjD
α−ejf +

n∑
j=1

αj(αj − 1)b2jD
α−2ejf

)
,

where the last equality comes from Proposition A.2 in our Appendix and the explicit
form of q2. BecauseDαf is a constant, the Laplacian of the first term in parentheses
above equals 2‖b‖2Dαf . Because Dα−ejf has degree 1, the Laplacian of the second
term in parentheses above can be easily computed using the product formula for
the Laplacian (2.7), and the last equation becomes

(3.5) Dα(∆p) =
(
2‖b‖2 + 4

n∑
j=1

αjb
2
j

)
Dαf +

n∑
j=1

[
αj(αj − 1)b2j

n∑
k=1

(Dα+2ek−2ejf)
]
.

Note that multi-index α+ 2ek− 2ej in the equation above has order m. Thus as
α ranges over all multi-indices of order m, (3.5) gives us a system of linear equations
in the unknowns {Dαf}. This system of equations can be solved using Gaussian
elimination, giving us f and thus solving our Dirichlet problem.

Any solution to the system of equations (3.5) in the unknowns {Dαf} gives a
function f ∈ Hm satisfying (3.4) for all multi-indices α of order m, which implies
that f satisfies ∆p = ∆(q2f). However, we already know from Theorem 2.5 that
there is a unique f ∈ Hm satisfying ∆p = ∆(q2f). Thus the system of equations
(3.5) in the unknowns {Dαf} has a unique solution.

The number of operations needed to compute the solution to a system of s linear
equations in s unknowns is on the order of (2/3)s3. Thus we can expect that solving
the system (3.5) will take on the order of

(3.6)
2(m+ n− 1)!3

3m!3(n− 1)!3

operations (the formula for the number of multi-indices of order m can be found,
for example, on page 78 of [1]). However, a careful look at the system (3.5) shows
that we can do much better.

For a fixed multi-index α, the multi-indices that appear in (3.5) all have the
form α + 2ek − 2ej. This leads us to define an equivalence relation on the set of
multi-indices of order m by declaring that two multi-indices α and β are equivalent
if αi ≡ βi (mod 2) for each i = 1, . . . , n. This equivalence relation breaks the set of
multi-indices of order m into equivalence classes, and the system of equations (3.5)
breaks into corresponding systems of equations. Hence instead of solving one large
system of equations, we can solve several smaller systems of equations, which leads
to considerable computational savings, as we will soon see.
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If m is larger than n, then we have 2n−1 equivalence classes, corresponding to
a choice of even or odd entry in the first n − 1 coordinates of a multi-index (the
parity of the last coordinate is forced by the condition that the coordinates add up
to m). As m increases, the number of elements in each of these 2n−1 equivalence
classes divided by the total number of multi-indices of order m approaches 1/2n−1.
Thus instead of solving one large system of

(
m+n−1

m

)
equations in the same number

of variables, we can solve 2n−1 systems of equations, each system containing on the
order of

(
m+n−1

m

)
/2n−1 equations and variables. This computation requires on the

order of

(3.7) 2n−1 2(m+ n− 1)!3

3(2n−1)3m!3(n− 1)!3

operations.
The ratio of (3.6) to (3.7) is 22n−2. Thus breaking our system of equations into

smaller systems of equations using our equivalence relation reduces the number of
operations by a factor of 22n−2. For example, if n = 6, then this technique should
reduce computation time by a factor of over 1000. This savings is needed even for
moderate size m and n, because the system of equations (3.5) grows large rapidly.

Usually we can do even better than reducing computations by a factor of 22n−2.
Suppose, for example, that p(x) = x20

1 x
7
2. Then ∆p = 42x20

1 x
5
2 + 380x18

1 x
7
2.

Note that the left side of (3.5) equals 0 for all multi-indices of order 25 except
(20, 5, 0, . . . , 0) and (18, 7, 0, . . . , 0). In other words, in only one of our equivalence
classes (the equivalence class consisting of those multi-indices of order 25 whose
first coordinate is even, second coordinate is odd, and coordinates 3 through n are
even) is the left side of (3.5) anything other than 0. When the left side of every
equation in an equivalence class is 0, there is no need to perform Gaussian elimina-
tion to solve the system of equations in that equivalence class, because obviously
all the unknowns equal 0 (recall that the system (3.5) has a unique solution). Thus
in the example at hand, instead of solving 2n−1 smaller systems of equations, we
need only solve one smaller system of equations.

As can be seen from the reasoning in the previous paragraph, if p is a monomial,
then our computation time is reduced, through the use of our equivalence classes,
by another factor of 2n−1. Thus if p is a monomial, then computation time through
the use of equivalence classes is reduced by a factor of 23n−3. For example, if n = 6,
then this technique should reduce computation time by a factor of over 32,000.

The full strength of the reduction discussed above by a factor of 23n−3, as opposed
to a reduction by a factor of 22n−2, holds only for ellipsoids and elliptic cylinders.
For ellipsoids and elliptic cylinders we can assume (perhaps after a translation) that
each cj in Definition 2.4 equals 0, which gives q1 = 0 in the system (3.1). However, if
q1 6= 0, then multiplication by q1, when solving the second and successive equations
in the system (3.1), can lead to nonzero left sides in equations in the system (3.5)
other than the equations in the equivalence class corresponding to the exponents
in the monomial p.

4. Examples

The algorithm outlined in the previous section has been implemented by the
authors in Mathematica and in MATLAB. The Mathematica version produces exact
solutions, in considerably less time than we believed possible when we started this
project. Even with simple boundary polynomials in low dimensions, solutions to
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Dirichlet problems on nonhyperbolic quadratic surfaces tend to involve fractions
with large numerators and denominators, as we will see in the examples presented
below. Our Mathematica software can use floating point arithmetic to produce
only decimal approximations to the exact solutions, with even faster times than
when working with exact rational arithmetic. Our MATLAB implementation of
the algorithm works only in floating point arithmetic, again quickly producing
decimal approximations to the exact solutions.

Our Mathematica implementation of the algorithm is available on the first au-
thor’s web site; our MATLAB implementation of the algorithm is available on the
third author’s web site. The appropriate web addresses are listed at the end of
this paper; within those web sites look for information about this paper to find
the software. Although our software is available without charge, its use requires
Mathematica or MATLAB. The examples presented below were generated by our
Mathematica implementation of the algorithm.

Our first example will be in dimension 3 with a boundary function of degree 7.
Here, as elsewhere throughout this section, all fractions are given in reduced form.

Example 4.1. Suppose p(x1, x2, x3) = x4
1x

3
2 and

q(x1, x2, x3) = 2x2
1 + 3x2

2 + 4x2
3 − 1.

Then the following function is harmonic on R3 and agrees with p on the ellipsoid
{x ∈ R3 : q(x) = 0}:

x4
1x

3
2 + (2x2

1 + 3x2
2 + 4x2

3 − 1)
( 97950

20144813
x5

2 −
2524856930

100139865423
x2

1x2

− 3423451
60434439

x4
1x2 −

148091
33379955141

x3
2 −

2306686
20144813

x2
1x

3
2 −

701980831
500699327115

x2

+
32326712

7703066571
x2x

2
3 +

3712712
60434439

x2
1x2x

2
3 +

53836
20144813

x3
2x

2
3 −

236464
60434439

x2x
4
3

)
.

The function above obviously equals x4
1x

3
2 on the ellipsoid in question. Thus

to verify that the function above is indeed the solution to our Dirichlet problem,
it is only necessary to verify that the Laplacian of the function above equals 0;
Mathematica can easily perform this calculation.

Note that, as expected from our discussion in the previous section, every ex-
ponent of each xj in the solution above has the same parity as in the boundary
function. Specifically, in the solution above, the exponents of x1, x3, and x4 are
even and the exponent of x2 is odd, thus following the pattern of the boundary
function x4

1x
3
2.

Our Mathematica implementation of the algorithm can handle quadratic surfaces
defined with symbols as well as concrete numbers. This capability is illustrated in
our second example, which takes place in dimension 4 with a boundary function of
degree 7.

Example 4.2. Suppose p(x1, x2, x3, x4) = x3
1x

2
2x3x4 and

q(x1, x2, x3, x4) = cx2
1 + 3x2

2 + 4x2
3 + 5x2

4 − 1.
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Then the following function is harmonic on R4 and agrees with p on the ellipsoid
{x ∈ R4 : q(x) = 0}:
x3

1x
2
2x3x4

+
cx2

1 + 3x2
2 + 4x2

3 + 5x2
4 − 1

788400 + 367920c+ 48712c2 + 2520c3 + 45c4
(

4(50 + 3c)(36 + 5c)x1x
3
3x4

− 12(2190 + 281c+ 9c2)x3
1x3x4 −

(82800 + 21868c+ 1764c2 + 45c3)
3(10 + c)

x1x3x4

− (50400 + 21118c+ 1845c2 + 45c3)x1x
2
2x3x4 + 5(46 + 3c)(36 + 5c)x1x3x

3
4

)
.

We now return to dimension 3 but increase the degree of the boundary function
to 10.

Example 4.3. The harmonic polynomial that equals x10
1 on the ellipsoid

{x ∈ R3 : 2x2
1 + 3x2

2 + 4x2
3 − 1 = 0}

has value
500945213823452554440546462385400584789

397263369506735959801289842040922215251461
at the origin.

Of course, the value at the origin of the solution to this Dirichlet problem is
simply the constant term in the polynomial that gives the solution. In the example
above, we have given only the constant term because displaying the entire solution
would require more than a page.

The example above illustrates the difference between the sphere and ellipsoids.
The solution to the Dirichlet problem on the unit sphere in R3 with boundary
function x10

1 has value 1/11 at the origin, and the largest integer appearing in the
numerator or denominator of the coefficients of any term of the solution is 46189.
In contrast, if the ellipsoid {x ∈ R3 : 2x2

1 + 3x2
2 + 4x2

3 − 1 = 0} replaces the unit
sphere, then the value of the solution at the origin is given by the fraction in the
example above, and the coefficients of the other terms of the solution have similarly
huge numerators and denominators.

We conclude this section by giving some data about the speed of our algorithm.
The times given below are CPU times used by the Mathematica implementation of
our software on a Windows desktop computer with a 1.7 GHz Intel Pentium 4 chip.

Examples 4.1 and 4.2 each took about 0.04 seconds. To produce Example 4.3,
we found the solution to the Dirichlet problem with boundary function x10

1 on the
ellipsoid {x ∈ R3 : 2x2

1 + 3x2
2 + 4x2

3 − 1 = 0}; this took less than 0.2 seconds. On
the same ellipsoid, solving the Dirichlet problem with boundary function x20

1 takes
55 seconds. Changing the boundary function to x25

1 increases the solution time to
10 minutes, 5 seconds. Finally, changing the boundary function to x30

1 (still on the
same ellipsoid) increases the solution time to 2 hours, 29 minutes, 32 seconds.

The long solution times reported in the paragraph above arise because of the
huge overhead associated with exact manipulation of the gigantic numerators and
denominators that appear in the solutions to these high-degree problems. For exam-
ple, most of the numerators and denominators are larger than 10200 for the Dirichlet
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problem above with boundary value x20
1 , rising to over 10450 for the Dirichlet prob-

lem above with boundary value x25
1 .

However, our algorithm is fast even for high-degree boundary functions if we use
Mathematica’s floating point arithmetic instead of exact rational arithmetic. For
example, if we ask the Mathematica implementation of our algorithm to use floating
point arithmetic to solve the Dirichlet problem mentioned above with boundary
function x30

1 , then the computation time is reduced from almost 2.5 hours to find
the exact solution to just 8.9 seconds to find a very good decimal approximation of
the solution.

Appendix

The purpose of this appendix is to prove the differentiation formula given by
Proposition A.2, which was used in the derivation of our algorithm in Section 3.

We begin with the following lemma, which gives a formula for differentiating the
product of a linear function and a polynomial.

Lemma A.1. Suppose f is a polynomial on Rn and α is a multi-index. Then

Dα(gf) = gDαf +
n∑
j=1

αj(Djg)(Dα−ejf)

for every g ∈ P1.

Proof. Fix g ∈ P1. We will prove our desired result by induction on |α|. To get
started, note that the desired result is obviously true when |α| = 0.

Now suppose that |α| > 0 and that the desired result holds for all multi-indices
of smaller order. Choose k such that αk > 0. Then

Dα(gf) = Dα−ekDk(gf)

= Dα−ek
(
gDkf + (Dkg)f

)
= Dα−ek(gDkf) + (Dkg)(Dα−ekf),

where the last equation holds because Dkg is constant. Applying our induction
hypothesis to evaluate Dα−ek(gDkf) now gives

Dα(gf) = gDαf +
n∑
j=1

αj(Djg)(Dα−ejf),

completing the proof. �

The next proposition, which gives a formula for differentiating the product of a
quadratic polynomial and another polynomial, was used in deriving the system of
equations (3.5).

Proposition A.2. Suppose f is a polynomial on Rn and α is a multi-index. Then

Dα(qf) = qDαf +
n∑
j=1

αj(Djq)(Dα−ejf) +
1
2

n∑
j=1

αj(αj − 1)(D2
j q)(D

α−2ej f)

for every nonhyperbolic quadratic q.
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Proof. Fix a nonhyperbolic quadratic q. We will prove our desired result by in-
duction on |α|. To get started, note that the desired result is obviously true when
|α| = 0.

Now suppose that |α| > 0 and that the desired result holds for all multi-indices
of smaller order. Choose k such that αk > 0. Then

Dα(qf) = Dα−ekDk(qf)

= Dα−ek (qDkf) +Dα−ek
(
(Dkq)f

)
.(A.3)

Using Lemma A.1 to evaluate the last term (applicable because Dkq ∈ P1) gives

(A.4) Dα−ek
(
(Dkq)f

)
= (Dkq)(Dα−ekf) + (αk − 1)(D2

kq)(D
α−2ekf),

where we have used the fact that DjDkq = 0 whenever j 6= k. Using our induction
hypothesis to evaluate the first term on the right side of (A.3) and using (A.4) to
evaluate the second term on the right side of (A.3) now gives

Dα(qf) = qDαf +
n∑
j=1

αj(Djq)(Dα−ejf) +
1
2

n∑
j=1

αj(αj − 1)(D2
j q)(D

α−2ejf),

completing the proof. �

Added after posting

Theorem 2.5 is correct as stated, but its proof as given earlier in this paper
contains an error. We thank Eduardo Osorio for pointing out the error in the
original proof. To obtain a correct proof of Theorem 2.5, replace the last two
paragraphs of the proof with the following.

Let ∆r and ∆̃r denote the differential operators defined by

∆r =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
r

and ∆̃r =
∂2

∂x2
r+1

+ · · ·+ ∂2

∂x2
n

.

Then
0 = ∆(qf) = ∆r(qp) + ∆r(qg) + ∆̃r(qf).

As a polynomial in xr+1, . . . , xn, the first term in the last expression above is
homogeneous of degree k, while the other two terms have degree less than k as
polynomials in xr+1, . . . , xn. Thus ∆r(qp) = 0. Thus for each fixed xr+1, . . . , xn,
Lemma 2.3 implies that p(x1, . . . , xr, xr+1, . . . , xn) = 0 for all x1, . . . , xr. Hence
p = 0. But p was the part of f of highest degree in xr+1, . . . , xn. Hence f is
independent of xr+1, . . . , xn. Thus we can think of the equation ∆(qf) = 0 as
taking place in Rr. Lemma 2.3 now implies that f = 0, as desired.
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