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ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT
METHOD FOR THE PHASE FIELD MODEL AND

APPROXIMATION OF ITS SHARP INTERFACE LIMITS

XIAOBING FENG AND ANDREAS PROHL

Abstract. We propose and analyze a fully discrete finite element scheme for
the phase field model describing the solidification process in materials science.
The primary goal of this paper is to establish some useful a priori error esti-
mates for the proposed numerical method, in particular, by focusing on the
dependence of the error bounds on the parameter ε, known as the measure of
the interface thickness. Optimal order error bounds are shown for the fully
discrete scheme under some reasonable constraints on the mesh size h and the
time step size k. In particular, it is shown that all error bounds depend on 1

ε
only in some lower polynomial order for small ε. The cruxes of the analysis
are to establish stability estimates for the discrete solutions, to use a spec-
trum estimate result of Chen, and to establish a discrete counterpart of it for
a linearized phase field operator to handle the nonlinear effect. Finally, as
a nontrivial byproduct, the error estimates are used to establish convergence
of the solution of the fully discrete scheme to solutions of the sharp interface
limits of the phase field model under different scaling in its coefficients. The
sharp interface limits include the classical Stefan problem, the generalized Ste-
fan problems with surface tension and surface kinetics, the motion by mean
curvature flow, and the Hele-Shaw model.

1. Introduction

In this paper we shall propose and analyze a fully discrete finite element time-
splitting method for the phase field model

ε α(ε)ϕt − ε∆ϕ+
1
ε
f(ϕ) = s(ε)u in ΩT := Ω× (0, T ),(1.1)

c(ε)ut −∆u = −ϕt in ΩT ,(1.2)
∂u

∂n
=
∂ϕ

∂n
= 0 in ∂ΩT := ∂Ω× (0, T ),(1.3)

ϕ = ϕε0, u = uε0 in Ω× {0},(1.4)

where Ω ⊂ RN (N = 2, 3) is a bounded domain with the smooth boundary ∂Ω;
α(ε), s(ε) and c(ε) are nonnegative functions in ε; ϕε0 and uε0 are initial values which
will be specified later in Section 2; and f is the derivative of a smooth double equal
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well potential taking its global minimum value 0 at ϕ = ±1. A typical example of
f is

(1.5) f(ϕ) := F ′(ϕ) and F (ϕ) =
1
4

(ϕ2 − 1)2.

The existence of bistable states suggests that nonconvex energy is associated with
the model (see the discussion below). We like to remark that nonsmooth potentials
have also been considered in the literature for the phase field model; for that we
refer to [7] and the references therein. We also note that the super-index ε on the
solution (uε, ϕε ) is suppressed for notational brevity.

The phase field model for solidification was introduced by Caginalp [9], Collins
and Levine [19], Fix [28] and Langer [30] to treat phenomena such as crystal growth
and the fusion and joining of materials, which are not captured by the classical
Stefan problem. The model consists of a heat equation (1.2) and a Ginzburg-
Landau/Allen-Cahn equation (1.1) (cf. [4, 22]). Note that the original phase field
model consists of equations (1.1) and (1.2), with α(ε) = O(1), s(ε) = O(1) and
c(ε) = O(1). In the model, u represents the temperature and ϕ is an order parame-
ter which will vary continuously but somehow describes the phase of the material; ϕ
is scaled so that ϕ ≈ 1 represents the liquid phase and ϕ ≈ −1 represents the solid
phase; and α, ε, s and c are, respectively, the relaxation time, a microscopic scale,
a surface tension scale, and the specific heat. We emphasize that the parameter ε
is usually small compared to the characteristic dimensions on the laboratory scale.
The two boundary conditions in (1.3), the outward normal derivatives of u and ϕ,
vanish on ∂Ω and imply no gain or loss of heat energy through the walls of the
container Ω. For more physical background, derivation, and discussion of the phase
field model and related equations, we refer to [2, 5, 6, 9, 19, 27, 28, 30, 32, 34] and
the references therein.

It is known [27] that the phase field model can be formulated as a gradient flow
with the Liapunov energy functional

(1.6) Jε(ϕ, u) :=
∫

Ω

φε(ϕ, u) dx,

where

φε(ϕ, u) :=
1

2α(ε)
|∇ϕ|2 +

1
ε2α(ε)

F (ϕ) +
c(ε)s(ε)
2εα(ε)

u2

in the Hilbert space H−1
0 ×L2, where H−1

0 denotes the mean-zero subspace of H−1,
the dual of the Sobolev space H1. Note that the energy density φε(ϕ, u) is not
convex in ϕ.

In addition to the reason that the phase field model for solidification is widely
accepted as a good model for treating phenomena which are not covered by the clas-
sical Stefan problem, it has also been used as a (computational) model to compute a
wide range of sharp interface problems, including the classical and generalized Ste-
fan problems, the motion by mean curvature flow and the Hele-Shaw model by tak-
ing advantage of the fact that the solution of the phase field model exists at all times
and the singularities of the free boundaries do not pose either numerical or theoreti-
cal difficulties. Furthermore, it could provide sufficient information for the possible
extensions of these free boundary problems beyond any singularities. Indeed, the
connection between the phase field model and the sharp interface problems has
been an extensively studied topic in recent years (cf. [2, 3, 7, 10, 11, 16, 22, 36, 37]
and the references therein). It was first formally shown by Caginalp [10] that, as
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ε ↘ 0, the function u tends to a limit u0, which, together with a free boundary
Γ :=

⋃
0≤t≤T (Γt × {t}), satisfies the following free boundary problem:

c0u0
t −∆u0 = 0 in ΩT \ Γ,(1.7)

∂u0

∂n
= 0 on ∂ΩT ,(1.8)

V =
1
2

[∂u0

∂n

]
Γ

on Γ,(1.9)

u0 = −d0(κΓ − α0V ) on Γ,(1.10)

u0 = u0
0 in Ω× {0},(1.11)

Γ0 = Γ00 when t = 0,(1.12)

where c0, α0, c0 are nonnegative constants independent of ε, V is the normal velocity
of the interface Γ (positive when the motion is directed toward the liquid), κΓ is
the sum of the principal curvatures of the interface (in space), n is the unit outward

normal to either ∂Ω or Γ, [∂u
0

∂n ]Γ := ∂u0
+

∂n −
∂u0
−

∂n denotes the jump of the normal
derivatives of u0 across Γ. Also ϕ → ±1 uniformly in every compact subset of
ΩT \ Γ as ε ↘ 0. Later, the rigorous justification of this limit was successfully
carried out by Caginalp and Chen [11], using a similar methodology to that in [3],
under the assumption that the above free boundary problem has a unique classical
solution. Also, Soner [36] proved the weak convergence of solutions of a phase field
model with ϕ-dependent latent heat to the sharp interface limit in a very general
setting that is applicable even when the sharp interface problem does not have a
classical solution.

We note that when s(ε) = 0 and α(ε) = 1, equation (1.1) decouples from (1.2)
and becomes the Allen-Cahn equation [4]

ϕt −∆ϕ+
1
ε2
f(ϕ) = 0.

Its connection to the motion by mean curvature flow was established by de Mottoni
and Schatzman [20] and to the generalized motion by mean curvature flow by Evans,
Soner and Souganidis [22].

When α(ε) = c(ε) = 0 and s(ε) = 1, equations (1.1) and (1.2) reduce to the
Cahn-Hilliard equation [14]

ϕt + ∆
(
ε∆ϕ− 1

ε
f(ϕ)

)
= 0.

The convergence of the Cahn-Hilliard equation to the Hele-Shaw model [33] was
recently carried out by Alikakos, Bates and Chen [3].

It is clear that the study of the phase field model (1.1)–(1.4) is of great value
for understanding solidification processes, in particular, in the presence of surface
tension and surface kinetics, and for computing a wide range of sharp interface
problems by taking advantage of the fact that the solution of the phase field model
is known to exist for all time (cf. [21]). As pointed out earlier, this is particularly
attractive from the computational point of view. The primary numerical challenge
for solving the phase field model results from the presence of the ε-dependent coeffi-
cients in the equations of the model. Recall that the phase field model approximates
the free boundary problem only when ε becomes very small. On the other hand,
the equations of the model become singularly perturbed heat equations for small ε.



544 XIAOBING FENG AND ANDREAS PROHL

To resolve the solution numerically, one has to use small (space) mesh size h and
(time) step size k, which must be related to the parameter ε.

In the past fifteen years, numerical approximations of the phase field model with
a fixed ε have been developed and analyzed by several authors. Caginalp and Lin
[12] and Lin [31] (also see [29]) proposed an explicit finite difference scheme and an
implicit Crank-Nicolson scheme for the original phase field model, the convergence
and error estimates of the schemes were shown under a restriction which is equiv-
alent to α(ε) ≤ c(ε). The restriction excludes some physically interesting cases.
Chen and Hoffmann [17] proposed a fully discrete finite element method which uses
the P1 conforming finite element for space discretization and the backward Euler
method for time discretization. An optimal order error estimate in L∞(J ;L2) was
proved for the fully discrete method. A similar fully discrete finite element method
was analyzed later by Yue [38] for the case of nonsmooth initial data. Caginalp and
Socolovsky [13] proposed a computational method which consists of smoothing a
sharp interface problem within the scaling of the distinguished limits of the phase
field model that preserve physically important parameters. The computations from
single-needle dendritic to faceted crystals are carried out continuously by adjust-
ing the parameters in the method. Recently, Provatas, Goldenfeld and Dantzig
[35] proposed an adaptive finite element algorithm using dynamic data structures,
which enables us to simulate system sizes corresponding to experimental conditions.

We emphasize that the numerical analyses of all papers cited above were de-
veloped for the phase field model with a fixed ε. No special effort and attention
were given to rigorously address issues such as how the mesh sizes h and k depend
on ε and how the error bounds depend on ε. In fact, since those error estimate
results were derived using a Gronwall inequality type argument at the end of the
derivations (cf. [17]), it is not hard to check that all error bounds contain a factor
exp( Tε2 ), which clearly is not very useful when ε is small.

Unlike the numerical works mentioned above, the focus of this paper is on ap-
proximating the solution of the phase field model (1.1)–(1.4) for small ε, which is
the case for the applications we are interested in. The two primary goals of the pa-
per are: (i) to analyze a fully discrete finite element method for the initial-boundary
value problem (1.1)–(1.4) and to establish useful error bounds, which show growth
only in low polynomial orders of 1

ε , for the proposed scheme under some reasonable
constraints on mesh sizes h and k; (ii) to establish the convergence of the fully dis-
crete finite element solution to the solutions of the sharp interface problems which
are the distinguished limits of the phase field model under different scaling in its
coefficients. To our knowledge, such error estimates and convergence results for the
phase field model have not been known in the literature.

We remark that using a similar approach, parallel studies were carried out by
the authors in [23] for the Allen-Cahn equation and the related curvature driven
flows, and in [24, 25] for the Cahn-Hilliard equation and the Hele-Shaw problem.
As pointed out earlier, the former corresponds to s(ε) = 0 and α(ε) = 1 in the
phase field model and the latter is obtained when α(ε) = c(ε) = 0 and s(ε) = 1.
The success of the approach, based on a spectrum estimate for the corresponding
linearized operators, is due to the fact that it does not rely on the maximum and
comparison principles, which are known not to hold for the Cahn-Hilliard equation
and the phase field model. On the other hand, the required spectrum estimate does
hold in each of the three cases, although the application of the estimate in the cases
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of the Cahn-Hilliard equation and the phase field model is rather delicate and com-
plicated. In fact, the analysis of the phase field model (1.1)–(1.2) is more involved
since the model consists of two nonstationary equations, with the second linked to
the first via a time-derivative of ϕ; this coupling requires some new technique (e.g.,
use of the nonstandard test function in Step 2 of the proof of Theorem 3.1) in the
error analysis. We note that such a technique is not needed in [23, 24, 25].

To avoid some complicated technicalities without compromising the main ideas
and results, the analysis of this paper will be carried out for the case of the quartic
potential given in (1.5), although the subsequent analysis and results apply to a
general class of admissible double equal well potentials which satisfy some structural
assumptions as described in [23, 24, 25].

The paper is organized as follows: In Section 2, we shall derive some a priori
estimates for the solution of (1.1)–(1.4). Special attention is given to the dependence
of the solution on ε in various norms. In Section 3, we propose and analyze a fully
discrete (semi-implicit) finite element method (3.1)–(3.2) for the phase field model
(1.1)–(1.4). The method consists of the backward Euler discretization in time and
the P1 conforming finite element discretization in space. Optimal error estimates in
energy norm and a quasi-optimal error estimate in `∞(Jk;L∞) norm are obtained
for the fully discrete solution in Theorems 3.1 and 3.2, where the error constants
depend on 1

ε only in low polynomial orders. As in [23, 24, 25], the spectrum
estimate for the linearized phase field operator (cf. Lemma 2.3) and its discrete
counterpart (cf. Lemma 3.3) play a crucial role in the proofs. Finally, Section 4 is
devoted to establishing the convergence of the fully discrete solution to the solution
of the free boundary problem (1.7)–(1.12) in Theorems 4.2 and 4.3, which rely
on the “polynomial growth-type” of error estimates with respect to ε. Combining
the `∞(Jk;L∞) error estimates from Theorems 3.1 and 3.2 and the convergence
result of [11], we show that the fully discrete numerical solution converges to the
solution (including the free boundary) of the free boundary problem, provided that
the latter admits a global (in time) classical solution.

This paper is a much condensed version of [26], where one can find more details,
and a number of additional results as well as many helpful comments which could
not be included here due to page limitation.

2. Energy estimates for the differential problem

In this section, we derive some energy estimates in various function spaces up
to H1

(
J ;H2(Ω)

)
in terms of negative powers of ε for the solution (ϕ, u ) to the

phase field model (1.1)–(1.4) for given (ϕε0, uε0 ) ∈ [H2(Ω)]2, where J = (0, T ).
Throughout this paper, the standard space, norm and inner product notation are
adopted. Their definitions can be found in [8, 18]. In particular, (·, ·) denotes the
standard inner product on L2(Ω), and Hk(Ω) denotes the Sobolev space of the
functions and their up-to-kth order derivatives which are L2-integrable. Also, C
and C̃ are used to denote generic positive constants which are independent of ε and
the time and space mesh sizes k and h.

In order to trace dependence of the solution on the small parameter ε > 0, we
assume that the initial functions ϕε0 and uε0 satisfy the following assumption.
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General Assumption (GA)
There exist nonnegative ε-independent constants σj for j = 1, . . . , 4 such that

|ϕε0| ≤ 1, in Ω ,(2.1)
Jε(ϕε0, uε0) ≤ C ε−2σ1 ,(2.2)

‖ ε∆ϕε0 −
1
ε
f(ϕε0) + s(ε)uε0 ‖L2 ≤ C ε−σ2 ,(2.3)

‖∇uε0 ‖H` ≤ C ε−σ3+` for ` = 0, 1.(2.4)

We now study the dependence of the solution of (1.1)–(1.4) on the given data of
the problem, in particular on ε. The first lemma is a corollary of Theorem 3.1 of
[11]. It shows boundedness of the first component ϕ of the solution (ϕ, u ) of the
phase field model, provided that the limiting free boundary problem (1.7)–(1.12)
has a global (in time) classical solution.

Lemma 2.1. Let (2.1) hold. Suppose that the free boundary problem (1.7)–(1.12)
has a unique global (in time) classical solution. Then there exists a family of smooth
initial functions {(ϕε0, uε0 )}0<ε≤1 and constants ε0 ∈ (0, 1] and C0 > 0, such that
for all ε ∈ (0, ε0) the solution (ϕ, u ) of the phase field model (1.1)–(1.4) with the
above initial data satisfies

(2.5) ‖ϕ ‖L∞(ΩT ) ≤
3
2
C0 .

Proof. Using a matched asymptotic expansion technique, it was shown in Section 4
of [11] that there exists a family of smooth approximate solutions (ϕεA, u

ε
A ) to the

solution (ϕ, u ) of (1.1)–(1.4) satisfying the assumptions of Theorem 3.1 of [11]. One
condition is ‖ϕεA ‖L∞(ΩT ) ≤ C0 for some C0 > 0. It was then proved in Theorem
3.1 of [11] that (ϕεA, u

ε
A ) is very “close” to (ϕ, u ) in Lp(ΩT ) for some p > 2 (see

(3.3) on page 427 of [11]).
Now (2.5) follows from a regularization argument. The argument goes as follows

in three steps: (i) modify f into f such that f = f in (− 3
2 C0,

3
2 C0) and f is linear

for |ϕ| > 2C0; (ii) it is not hard to show that the solution (ϕ, u) of the phase field
model with the new nonlinearity f satisfies the estimate (2.5) when ε ∈ (0, ε0) for
some small ε0 ∈ (0, 1]; (iii) it follows from the uniqueness of the solution of the
phase field model that u ≡ u. �

Since (1.1)–(1.4) is a gradient flow for the functional (1.6), it is easy to check
that the model satisfies the following energy law:

d

dt
Jε(u(t)) = −‖φt ‖2L2 −

s(ε)
εα(ε)

‖∇u ‖2L2 ,

where Jε(·, ·) is defined by (1.6). Based on this energy law and Lemma 2.1, re-
peatedly using the bootstrapping argument, we can show the following a priori
estimates for the solution of (1.1)–(1.4). For the detailed derivation, see [26].
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Lemma 2.2. Let (ϕε0, u
ε
0 ) satisfy (GA), f(ϕ) = ϕ3 − ϕ, and let Lemma 2.1 hold.

Then, the solution of (1.1)–(1.4) satisfies the following estimates:

(i) ess sup
[0,∞]

{ ε
2
‖∇ϕ ‖2L2 +

1
ε
‖F (ϕ) ‖L1 +

s(ε)c(ε)
2

‖ u ‖2L2

}
+
∫ ∞

0

[
ε α(ε) ‖ϕt(s) ‖2L2 +

s(ε)
2
‖∇u(s) ‖2L2

]
ds ≤ εα(ε)Jε(ϕε0, uε0) ,

(ii) ess sup
[0,∞]

{
c(ε)‖∇u ‖2L2

}
+
∫ ∞

0

[ c(ε)2

2
‖ ut(s) ‖2L2 + ‖∆u(s) ‖2L2

]
ds

≤ Jε(ϕε0, uε0) + C
[
1 + c(ε)

]
ε−2σ3 ,

(iii)
∫ ∞

0

‖∆ϕ(s) ‖2L2 ds ≤
[α(ε)
ε2

+ εs(ε)α(ε)
]
Jε(ϕε0, uε0) ,

(iv) ess sup
[0,∞]

{
α(ε)‖ϕt ‖2L2

}
+
∫ ∞

0

‖∇ϕt(s) ‖2L2 ds ≤ B1 ,

(v) ess sup
[0,∞]

‖∆ϕ ‖2L2 ≤ B2 ,

(vi)
∫ ∞

0

‖ϕtt(s) ‖2H−1 ds ≤ B3 ,

(vii) ess sup
[0,∞]

{
c(ε) ‖ ut ‖2L2

}
+
∫ ∞

0

‖∇ut ‖2L2 ds ≤ B4 ,

(viii) ess sup
[0,∞]

‖∆u ‖2L2 ≤ B5 ,

(ix)
∫ ∞

0

‖ utt ‖2H−1 ds ≤ B6 ,

where Bi ≡ Bi(ε; c(ε), s(ε), α(ε)) for i = 1, . . . , 6 are defined as follows:

B1 :=
[ 2
ε2

+
s(ε)2

c(ε)2

] (
Jε(ϕε0, uε0) + C ε−2σ3

)
+

C

α(ε)
ε−2(σ2+1) ,

B2 := C
[
1 +

α(ε)s(ε)2

c(ε)2
+
s(ε)2

c(ε)
+
α(ε)
ε

]
ε2 min{−σ2,−σ3}−2 ,

B3 :=
B1

α(ε)2
+

s(ε)2

ε2α(ε)2c(ε)2

{
Jε(ϕε0, uε0) + C

[
1 + c(ε)

]
ε−2σ3

}
+

1
ε4α(ε)2

{
Jε(ϕε0, uε0)

}
,

B4 := B3 +
Jε(ϕε0, uε0)
c(ε)2

+
C[1 + c(ε)]
c(ε)2

ε−2σ3 +
1

2c(ε)

[
ε−2σ4 +

ε−2(σ2+1)

α(ε)2

]
,

B5 := c(ε)B4 +
B1

α(ε)
, B6 :=

1
c(ε)2

[
B4 + B3

]
.

In addition, if

(2.6) lim
s→0+

‖∇ϕt(s) ‖L2 ≤ Cε−ξ1 , lim
s→0+

‖∇ut(s) ‖L2 ≤ Cε−ξ2 ,
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for some ξ1, ξ2 ≥ 0, then it also holds that

(x)
∫ ∞

0

‖ϕtt(s) ‖2L2 ds+ ess sup
[0,∞]

‖∇ϕt ‖2L2 +
ε2

α(ε)

∫ ∞
0

‖∆ϕt(s) ‖2L2 ds ≤ B7 ,

(xi) c(ε)
∫ ∞

0

‖ utt(s) ‖2L2 ds+ ess sup
[0,∞]

‖∇ut ‖2L2

+
[
1 + c(ε)

] ∫ ∞
0

‖∆ut(s) ‖2L2 ds ≤ B8 ,

where

B7 :=
C Jε(ϕε0, uε0)
ε4α(ε)

+
s(ε)2

ε2α(ε)c(ε)2

{
Jε(ϕε0, uε0) + C

[
1 + c(ε)

]
ε−2σ3

}
,

B8 :=
1
c(ε)
B7 + ε−2ξ2 .

We conclude this section by citing the following result of [15, 11] on a low bound
estimate of the (generalized) spectrum of the linearized phase field operator LPF
with respect to the operator NPF ,

(2.7) LPF :=

 −ε∆− 1
εf
′(ϕ)I Θ

I −∆

 , NPF :=

 α(ε)εI −s(ε)I

Θ c(ε)I

 ,

where I and Θ denote the identity and zero operators, and ϕ is the solution of the
phase field model (1.1)–(1.4).

This estimate plays a crucial role in our error analysis.

Lemma 2.3. Suppose the assumptions of Lemma 2.1 hold. Let λPF denote the
smallest (generalized) eigenvalue of the eigenvalue problem

LPF
(
ψ
w

)
= λNPF

(
ψ
w

)
.

Then there exist 0 < ε0 << 1 and another postive, ε-independent constant C0 such
that λPF satisfies λPF ≥ −C0 for ε ∈ (0, ε0). Equivalently,

(2.8) λPF = inf
ψ∈H1(Ω)
w∈H2(Ω)

ε‖∇ψ ‖2L2 + ε−1 (f ′(ϕ)ψ, ψ) + s(ε)
c(ε)‖∆w − ψ ‖2L2

εα(ε)‖ψ ‖2L2 + s(ε)‖∇w ‖2L2

≥ −C0 ,

for ε ∈ (0, ε0), where ϕ denotes the first component of the solution vector (ϕ, u ) to
the phase field model (1.1)–(1.4).

Proof. The estimate (2.8) was established by X. Chen in [15] for any ϕ which
satisfies some special profile (cf. (1.10) on page 1374 and Theorem 1.1 on page
1375 of [15]). It was shown in [11] that the first component ϕ of the solution vector
(ϕ, u ) to the phase field model (1.1)–(1.4) indeed satisfies the required profile (cf.
Theroem 3.1 of [11]) for sufficiently small ε. The conclusion of the lemma then
follows from combining these two results. �
Remark 2.1. Since the proof of (2.8) is based on the convergence result of [11], which
says that the solution of the phase field model (1.1)–(1.4) for a certain class of initial
conditions converges to the classical solution of the free boundary problem (1.7)–
(1.12) as ε → 0, hence, the proof suggests that the validity of (2.8) also depends
on the choice of the initial conditions. As far as we know, it is an open question
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whether estimate (2.8) holds for “general” initial data (see Remark 2.3 of [11] for
more discussions). This is the reason why the subsequent main results of this paper
are established under the same initial condition constraint.

3. Error analysis for a fully discrete finite element approximation

Let Th be a quasi-uniform triangulation of Ω such that Ω =
⋃
K∈Th K (K ∈ Th

are tetrahedrons in the case N = 3). Here h := maxK∈Th hK denotes the mesh size
of Th; see [8, 18] for further details. Let Vh be the finite element subspace of H1(Ω)
associated with Th and consisting of continuous and piecewise linear functions on
Th, that is,

Vh :=
{
vh ∈ C(Ω) : vh

∣∣
K
∈ P1(K), ∀K ∈ Th

}
.

In this section, we shall establish stability and convergence properties for the
following fully discrete finite element scheme: Find ( Φm, Um ) ∈ [Vh]2 for m = 1, 2,
. . . ,M satisfying

εα(ε)
(
dtΦm, ηh

)
+ ε
(
∇Φm,∇ηh

)
+

1
ε

(
f(Φm), ηh

)
= s(ε)

(
Um,µ, ηh

)
,(3.1)

c(ε)
(
dtU

m, vh
)

+
(
∇Um,∇vh

)
= −

(
dtΦm, vh

)
,(3.2)

for all ( ηh, vh ) ∈ [Vh]2, together with some starting value ( Φ0, U0 ) ∈ [Vh]2, where
Um,µ := µUm + (1− µ)Um−1 for µ = 0, 1.

Due to page limitations, in this section we only consider the semi-implicit case
µ = 0, and we refer to [26] for the analysis for the fully implicit case µ = 1. Clearly,
when µ = 0, the iterates ( Φm, Um ) are computed in succession at each iteration
step, which allows for the immediate use of existing computer codes for solving the
Allen-Cahn equation and the heat equation, respectively.

For the error analysis, we need to introduce the elliptic projection operator
Ph : H1(Ω)→ Vh,

(∇[ψ − Phψ],∇vh) = 0 ∀vh ∈ Vh ,(3.3)
(ψ − Phψ, 1) = 0 .(3.4)

It is well known that Ph has the following approximation properties [8, 18]:

‖ψ − Phψ ‖L2 + h‖∇(ψ − Phψ) ‖L2 ≤ Ch2‖ψ‖H2 ∀ψ ∈ H2(Ω),(3.5)

‖ψ − Phψ ‖L∞ ≤ Ch
4−N

2 | lnh| 3−N2 ‖ψ‖H2 ∀ψ ∈ H2(Ω),(3.6)
‖(ψ − Phψ)t‖L2(J;L2) ≤ Ch2‖ψt‖L2(J;H2) ∀ψ ∈ H1(J ;H2),(3.7)

‖(ψ − Phψ)t‖L2(J;H−1) ≤ Ch2‖ψ‖∗ ∀ψ ∈W,(3.8)

where

W = {w ;w ∈ H1(J ;H1), ‖w ‖∗ <∞},

‖w ‖∗ =

‖w ‖2H1(J;H1) +
N∑

i,j=1

‖ ∂xj∂xiwt ‖2L2(J;H−1)

 1
2

.

We note that a short proof of (3.6) can be found in [23].
To be used in later analysis, we also define the discrete (negative) Laplace oper-

ator −∆h : Vh ∪H1(Ω) −→ Vh by

(3.9) (−∆hψ, ηh) = (∇ψ,∇ηh) ∀ηh ∈ Vh ∩H1(Ω).

We now state a basic stability result for the fully discrete scheme.
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Lemma 3.1. Let f(ϕ) = ϕ3−ϕ and c(ε) ≥ c0 > 0. The solution {( Φm, Um )}Mm=0

of (3.1)–(3.2) satisfies for values k < min{α(ε)2ε4, c(ε)2

s(ε)2ε2 },

max
0≤m≤M

{
ε ‖∇Φm ‖2L2 +

1
ε
‖F (Φm) ‖L1 + s(ε)c(ε) ‖Um ‖2L2

}
+k

M∑
m=0

{
ε
(
α(ε)−

√
k

ε2

)
‖ dtΦm ‖2L2 +

s(ε)
2
‖∇Um ‖2L2 +

εk

2
‖∇dtΦm ‖2L2

+
k

2ε
‖ dt
(
|Φm |2 − 1

)
‖2L2 +

ks(ε)[c(ε)− εs(ε)
√
k]

2
‖ dtUm ‖2L2

}
≤ εα(ε)Jε(ϕε0, uε0) .

Proof. We first rewrite f(Φm) as follows:

f(Φm) =
1
2
(
|Φm |2 − 1

)([
Φm + Φm−1

]
+ kdtΦm

)
.

Multiplying the equation by dtΦm gives
1
2ε
(
f(Φm), dtΦm

)
=

1
2ε
(
|Φm |2 − 1, dt(|Φm |2 − 1)

)
+
k

2ε
(
|Φm |2 − 1, | dtΦm |2

)
(3.10)

≥ 1
2ε

(|Φm |2 − 1± (|Φm−1 |2 − 1), dt(|Φm |2 − 1))− k

2ε
‖ dtΦm ‖2L2

≥ 1
2ε
dt‖ |Φm |2 − 1 ‖2L2 +

k

2ε
‖ dt(|Φm |2 − 1) ‖2L2 −

k

2ε
‖ dtΦm ‖2L2 .

We now test (3.1) with dtΦm and (3.2) with s(ε)Um. Adding the resulting equations
leads to

εα(ε) ‖ dtΦm ‖2L2 +
ε

2
dt‖∇Φm ‖2L2 +

εk

2
‖∇dtΦm ‖2L2

+
1
2ε
dt‖ |Φm |2 − 1 ‖2L2 +

k

2ε
‖ dt(|Φm |2 − 1) ‖2L2

+
c(ε)s(ε)

2
dt‖Um ‖2L2 +

kc(ε)s(ε)
2

‖ dtUm ‖2L2 + s(ε) ‖∇Um ‖2L2(3.11)

≤ k

2ε
‖ dtΦm ‖2L2 − s(ε)k (dtUm, dtΦm)

≤
√
k

ε
‖ dtΦm ‖2L2 +

k
3
2 εs(ε)2

2
‖ dtUm ‖2L2 .

The assertion follows from summing (3.11) over m from 0 to M . �
Lemma 3.2. Let f(ϕ) = ϕ3 − ϕ. Under the mesh constraint of Lemma 3.1, the
solution {Um}Mm=0 of (3.1)–(3.2) also satisfies the following stability estimate:

max
1≤m≤M

{
εα(ε)‖ dtΦm ‖2L2 + s(ε)‖∇Um ‖2L2

}
+ k

M∑
m=1

{
εα(ε)k

8
‖ d2

tΦ
m ‖2L2

+ε‖∇dtΦm ‖2L2 + c(ε)s(ε)‖ dtUm ‖2L2 +
s(ε)k

2
‖∇dtUm ‖2L2

}
≤ C

{α(ε)
[
1 + s(ε)2ε3

]
ε

Jε(ϕε0, uε0) + s(ε)ε−2σ3

}
.
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Proof. First, take ηh = dtΦm after applying the difference operator dt to (3.1)
and vh = s(ε)dtUm in (3.2). Then add the resulting equations. The assertion
immediately follows from taking summation over m, using Lemma 3.1 and the
following inequalities:(

dtf(Φm), dtΦm
)

=
(
f ′(ξ), |dtΦm|2

)
≥ −‖ dtΦm ‖2L2 ,∣∣s(ε)k(d2

tU
m, dtΦm

)∣∣ ≤ εα(ε)k
8
‖ d2

tU
m ‖2L2 +

8s(ε)2k

εα(ε)
‖ dtΦm ‖2L2 .

�

In order to establish error bounds that depend on low order polynomials of 1
ε ,

we need a discrete version of the spectral estimate of Lemma 2.3. To that end, we
define

C1 = max
|ξ|≤2C0

|f ′′(ξ)|,(3.12)

and C2 is the smallest positive ε-independent constant such that

ess sup
J
‖ϕ− Phϕ ‖L∞ ≤ C2 h

4−N
2 | lnh | 3−N2 ess sup

J
‖ϕ ‖H2(3.13)

≤ C2 h
4−N

2 | lnh | 3−N2 B
1
2
2 .

Lemma 3.3. Suppose that the assumptions of Lemmas 2.1–2.3 hold and that C0

and ε0 are the same as there. Then for ε ∈ (0, ε0] it holds that

λhPF ≡ inf
ψ∈H1(Ω)
w∈H2(Ω)

{
ε ‖∇ψ ‖2L2

εα(ε)‖ψ ‖2L2 + s(ε)‖∇w ‖2L2

+
1
ε (f ′(Phϕ)ψ, ψ) + s(ε)

c(ε)‖∆w − ψ ‖2L2

εα(ε)‖ψ ‖2L2 + s(ε)‖∇w ‖2L2

 ≥ −2C0 ,(3.14)

provided that h satisfies

(3.15) h
4−N

2 | lnh | 3−N2 ≤
(
C1 C2 B

1
2
2

)−1

C0 α(ε)ε2.

In the above, ϕ denotes the first component of the solution vector (ϕ, u ) to the
phase field model (1.1)–(1.4).

Proof. From the definition of C1 and C2, we immediately have

ess sup
J
‖Phϕ ‖L∞ ≤ ess sup

J

{
‖ϕ ‖L∞ + ‖ϕ− Phϕ ‖L∞

}
≤ 4

3
ess sup

J
‖ϕ ‖L∞ ≤ 2C0,

provided that h satisfies (3.15).
By the Mean Value Theorem,

ess sup
J
‖ f ′
(
Phϕ

)
− f ′

(
ϕ
)
‖L∞ ≤ sup

| ξ |≤2C0

| f ′′(ξ) | ess sup
J
‖ϕ− Phϕ ‖L∞

≤ C1 C2 h
4−N

2 | lnh | 3−N2 B
1
2
2(3.16)

≤ C0 α(ε)ε2 .
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Using the inequality a ≥ b− | a− b | and (3.16), we get

(3.17) f ′(Phϕ) ≥ f ′(ϕ)− | f ′(Phϕ)− f ′(ϕ) | ≥ f ′(ϕ)− C0α(ε)ε2 .

Substituting (3.17) into the definition of λhPF , we get

λhPF ≥ inf
ψ∈H1(Ω)
w∈H2(Ω)

ε‖∇ψ ‖2L2 + 1
ε

(
f ′(ϕ)ψ, ψ

)
+ s(ε)

c(ε)‖∆w − ψ ‖2L2

εα(ε)‖ψ ‖2L2 + s(ε)‖∇w ‖2L2

− C0α(ε) ε‖ψ ‖2L2

εα(ε)‖ψ ‖2L2 + s(ε)‖∇w ‖2L2

}
≥ −2C0 .

The proof is completed. �

We now state our first set of error estimates for the fully discrete scheme (3.1)–
(3.2), which will be shown by using some nonstandard test functions. To reduce
some technicalities, we will only present the derivation of error bounds for the case
ϕtt ∈ L2(J ;L2) and utt ∈ L2(J ;L2), and we will leave the derivation for the case
ϕtt ∈ L2(J ;H−1) and utt ∈ L2(J ;H−1) to interested readers (cf. [26]).

Theorem 3.1. Let {( Φm, Um )}Mm=0 solve (3.1)–(3.2) on a quasi-uniform time
mesh Jk := {tm}Mm=0 of size O(k) and a quasi-uniform space mesh Th of size O(h).
Suppose (GA) and (2.6) hold, and suppose the free boundary problem (1.7)–(1.12)
has a unique classical solution. Then under the following mesh and starting value
constraints

(1) k ≤ min{1, α(ε)2} ×

min
{
ε4,

c(ε)2

α(ε)s(ε)2ε2
, ε

N+12
8
[
α(ε)

]N−4
8
[
B1 +

B2

α(ε)

]−N8 [Jε(ϕε0, uε0)
]N−4

8
}
,

(2) h
4−N

2 | lnh| 3−N2 ≤ C0 α(ε)ε2
(
C1(ε)C2B

1
2
2

)−1

,

(3) ζ(ε)k2 + η(ε)h4 ≤ ε−1
[
α(ε)

]N−12
4−N B−

N
4−N

2 ,

(4) ‖Φ0 − ϕε0 ‖L2 ≤ C h2‖ϕε0 ‖H2 ,

(5) ‖U0 − uε0 ‖L2 ≤ Ch2‖ uε0 ‖H2 ,

for N = 2, 3, the solution of (3.1)–(3.2) satisfies the error estimates

(i) max
0≤m≤M

√
εα(ε) ‖ϕ(tm)− Φm ‖L2 ≤ C

[
ρ1(ε)

1
2h2 + η(ε)

1
2h2 + ζ(ε)

1
2 k
]
,

(ii)
{
c(ε)s(ε) k

M∑
m=0

‖ u(tm)− Um ‖2L2

} 1
2 ≤ C

[
ρ2(ε)

1
2h2 + η(ε)

1
2 h2 + ζ(ε)

1
2 k
]
,

(iii) max
0≤m≤M

∥∥∥∥∥∥ k
m∑
j=0

∇
(
u(tm)− Um

) ∥∥∥∥∥∥
L2

≤ C
[
ρ3(ε)

1
2 h+ η(ε)

1
2h2 + ζ(ε)

1
2 k
]
,
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(iv)
{
ε3α(ε)k

M∑
m=1

‖∇
(
ϕ(tm)− Φm

)
‖2L2

} 1
2 ≤ C

[
ρ4(ε)

1
2 h+ η(ε)

1
2 h2 + ζ(ε)

1
2 k
]
,

(v)
√
εα(ε) max

0≤m≤M
‖ϕ(tm)− Φm ‖L∞

≤ C
{
ρ1(ε)

1
2h

4−N
2 | lnh| 3−N2 +

[
η(ε)

1
2h2 + ζ(ε)

1
2 k
]
h−

N
2

}
,

where ρi(ε), ζ(ε) and η(ε) are defined by

ρ1(ε) = εα(ε)B2 ,

ρ2(ε) = c(ε)s(ε)
{
Jε(ϕε0, uε0) + [1 + c(ε)]ε−2σ

}
,

ρ3(ε) = Jε(ϕε0, uε0) + [1 + c(ε)]ε−2σ ,

ρ4(ε) = ε3α(ε)
[α(ε)
ε2

+ εs(ε)c(ε)
]
Jε(ϕε0, uε0) ,

η(ε) =
[2ε2s(ε)2 + c(ε)2

ε3c(ε)2α(ε)
+

s(ε)
ε2c(ε)α(ε)

][α(ε)
ε2

+ εs(ε)α(ε)
]
Jε(ϕε0, uε0)(3.18)

+
s(ε)[2εs(ε) + c(ε)α(ε)]

ε2α(ε)

{
ε−2σ4 + Jε(ϕε0, uε0) + [1 + c(ε)] ε−2σ3

}
+
s(ε)2

{
Jε(ϕε0, uε0) + C [1 + c(ε)] ε−2σ3

}
εα(ε)

+
α(ε)2 B7

ε

+
s(ε)[2εs(ε) + c(ε)] ε−2(σ2+1)

ε2c(ε)2α(ε)
+
B

3
2
2

ε

{
1 +

[
B2 +

B1

α(ε)

]N
8 B−

N
8

2

}
h

4−N
2 ;

ζ(ε) =
[
εα(ε) +

s(ε)
ε2c(ε)α(ε)

]
B7 +

s(ε)2k

εα(ε)

{
Jε(ϕε0, uε0) + [1 + c(ε)] ε−2σ3

c(ε)2
(3.19)

+
[1 + s(ε)2ε3]Jε(ϕε0, uε0) + s(ε)ε−2σ3+1

c(ε)s(ε)ε

}
+

s(ε)
ε2α(ε)

B8 ;

Proof. The proof is divided into four steps. The first step estimates the consistency
error of the scheme; the second and third steps deal with the error due to the
nonlinear term f(ϕ) and how to bound it in terms of some low order polynomial in
1
ε , with the help of the stability estimates of Lemmas 3.1 and 3.2 and the spectral
estimates of Lemma 3.3; the final step employs an inductive argument to handle
the super-quadratic (cubic) term in (f(a)− f(b), a− b).

Step 1. We decompose the global errors Emϕ := ϕ(tm)−Φm and Emu := u(tm)−
Um into

(3.20) Emϕ := Θm
ϕ + Υm

ϕ , Emu := Θm
u + Υm

u ,

where

Θm
ϕ := ϕ(tm)− Phϕ(tm) , Υm

ϕ = Phϕ(tm)− Φm ,

Θm
u := u(tm)− Phu(tm) , Υm

u = Phu(tm)− Um .
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Then the error equations are given by

εα(ε)
(
dtΥm

ϕ , ηh
)

+ ε (∇Υm
ϕ ,∇ηh) +

1
ε

(
f(Phϕ(tm))− f(Φm), ηh

)
= −εα(ε) (dtΘm

ϕ , ηh) + s(ε) (Θm−1
u + Υm

u , ηh)(3.21)

+ks(ε)(dtu(tm), ηh)− s(ε)k(dtΥm
u , ηh)

−1
ε

(
f(ϕ(tm))− f(Phϕ(tm)), ηh

)
+ εα(ε)(Rmϕ , ηh) .

c(ε)
(
dtΥm

u , vh
)

+
(
∇Υm

u ,∇vh
)

= −
(
dtΥm

ϕ + dtΘm
ϕ , vh

)
− c(ε)

(
dtΘm

u , vh
)

+
(
c(ε)Rmu +Rmϕ , vh

)
,(3.22)

for all ( ηh, vh ) ∈ [Vh]2, where

(3.23) Rmu = −1
k

∫ tm+1

tm

(s− tm)utt(s) ds , Rmϕ = −1
k

∫ tm+1

tm

(s− tm)ϕtt(s) ds .

Using Schwartz’s inequality, we have

k
∑̀
m=0

‖Rmϕ ‖2L2 ≤ C k2 B7 , k
∑̀
m=0

‖Rmu ‖2L2 ≤
Ck2

c(ε)
B8 .(3.24)

Step 2. In the sequel, it turns out that the most crucial term to handle is
s(ε)(Υm

u , ηh) in (3.21). Dealing with it requires a preparatory step: first, replacing
the super-index m in (3.22) by j and then summing the resulting equation over
1 ≤ j ≤ m yields

c(ε)
(
Υm
u , vh

)
+ (∇Gmu ,∇vh) = −(Θm

ϕ + Υm
ϕ , vh)− c(ε)

(
Θm
u , vh

)
+ c(ε)

(
E0
u, vh

)
+(E0

ϕ, vh) +
(
k

m∑
j=1

{
c(ε)Rju +Rjϕ

}
, vh

)
,(3.25)

where

G0
u = 0 and Gmu = k

m∑
j=1

Υj
u.

Set vh = Υm
ϕ in (3.25) and substitute it into the right-hand side of (3.21) with

ηh = Υm
ϕ . We get

εα(ε)
2

[
dt‖Υm

ϕ ‖2L2 + k ‖ dtΥm
ϕ ‖2L2

]
+ ε ‖∇Υm

ϕ ‖2L2

+
1
ε

(
f(Phϕ(tm))− f(Φm),Υm

ϕ

)
+
s(ε)
c(ε)

[
‖Υm

ϕ ‖2L2 + (∇Gmu ,∇Υm
ϕ )
]

= −εα(ε) (dtΘm
ϕ ,Υ

m
ϕ ) + s(ε)

(
Θm−1
u ,Υm

ϕ

)
− s(ε)
c(ε)

(
Θm
ϕ ,Υ

m
ϕ

)
(3.26)

−s(ε) (Θm
u ,Υ

m
ϕ ) + s(ε)

(
E0
u,Υ

m
ϕ

)
+
s(ε)
c(ε)

(
E0
ϕ,Υ

m
ϕ

)
+εα(ε)

(
Rmϕ ,Υm

ϕ

)
+
s(ε)
c(ε)

(
k

m∑
j=0

[
c(ε)Rju +Rjϕ

]
,Υm

ϕ

)
−1
ε

(
f(ϕ(tm))− f(Phϕ(tm)),Υm

ϕ

)
+ks(ε)(dtu(tm),Υm

ϕ )− ks(ε)(dtΥm
u ,Υ

m
ϕ ) .
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In order to control the last term on the left-hand side of (3.26), we choose
vh = − s(ε)c(ε) ∆hG

m
u in (3.25) and obtain

s(ε)
(
Υm
u ,−∆hG

m
u

)
+
s(ε)
c(ε)

[
‖∆hG

m
u ‖2L2 −

(
Υm
ϕ ,∆hG

m
u

)]
(3.27)

=
s(ε)
c(ε)

(
Θm
ϕ ,∆hG

m
u

)
+ s(ε)

[(
Θm
u ,∆hG

m
u

)
−
(
E0
u,∆hG

m
u

)]
−s(ε)
c(ε)

(
E0
ϕ,∆hG

m
u

)
+
s(ε)
c(ε)

(
k

m∑
j=1

[
c(ε)Rju +Rjϕ

]
,∆hG

m
u

)
.

Notice that Υm
u = dtG

m
u ; hence the first term can be written as

s(ε)
(
Υm
u ,−∆hG

m
u

)
=
s(ε)

2

[
dt‖∇Gmu ‖2L2 + k ‖∇dtGmu ‖2L2

]
.

Next, observe that∣∣∣1
ε

(
f(ϕ(tm))− f(Phϕ(tm)),Υm

ϕ

)∣∣∣ =
∣∣∣1
ε

(
f ′(ξ)Θm

ϕ ,Υ
m
ϕ

)∣∣∣(3.28)

≤ εα(ε)
4
‖Υm

ϕ ‖2L2 +
C

ε3α(ε)
‖Θm

ϕ ‖2L2 ,

where we have used the fact that ϕ and Phϕ are bounded (cf. Lemma 2.1 and the
first line of the proof of Lemma 3.3). Moreover, using the identity

f(a)− f(b) = (a− b)
[
f ′(a) + (a− b)2 − 3(a− b)a

]
∀ a, b ∈ R ,

we get (
f(Phϕ(tm))− f(Φm),Υm

ϕ

)
(3.29)

≥
(
f ′(Phϕ(tm)), (Υm

ϕ )2
)

+ ‖Υm
ϕ ‖4L4 − C ‖Υm

ϕ ‖3L3 .

Now, adding (3.26) and (3.27) and combining with (3.28) and (3.29) results in

εα(ε)
2

dt‖Υm
ϕ ‖2L2 +

s(ε)
2
dt‖∇Gmu ‖2L2 +

εα(ε) k
2
‖ dtΥm

ϕ ‖2L2

+
s(ε) k

2
‖∇Υm

u ‖2L2 +
1
ε
‖Υm

ϕ ‖4L4 + ε ‖∇Υm
ϕ ‖2L2

+
1
ε

(
f ′(Phϕ(tm)), (Υm

ϕ )2
)

+
s(ε)
c(ε)
‖Υm

ϕ −∆hG
m
u ‖2L2

≤ εα(ε)
[
(dtΘm

ϕ ,Υ
m
ϕ ) +

(
Rmϕ ,Υm

ϕ

)]
+ s(ε)

(
Θm−1
u ,Υm

ϕ

)
+s(ε)

[(
E0
u,Υ

m
ϕ

)
− (Θm

u ,Υ
m
ϕ )
]

+
s(ε)
c(ε)

[(
E0
ϕ,Υ

m
ϕ

)
−
(
Θm
ϕ ,Υ

m
ϕ

)]
(3.30)

+
s(ε)
c(ε)

[(
k

m∑
j=0

[
c(ε)Rju +Rjϕ

]
,Υm

ϕ −∆hG
m
u

)
+
(
Θm
ϕ ,∆hG

m
u ±Υm

ϕ

)]
+s(ε)

[(
Θm
u ,∆hG

m
u ±Υm

ϕ

)
−
(
E0
u,∆hG

m
u ±Υm

ϕ

)]
−s(ε)
c(ε)

(
E0
ϕ,∆hG

m
u ±Υm

ϕ

)
+ ks(ε)(dtu(tm),Υm

ϕ )

−s(ε)k(dtΥm
u ,Υ

m
ϕ ) +

εα(ε)
4
‖Υm

ϕ ‖2L2 +
C

ε3α(ε)
‖Θm

ϕ ‖2L2 +
C

ε
‖Υm

ϕ ‖3L3 .
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Using Young’s inequality, the right-hand side of (3.30), denoted by Sm1 , can be
bounded by (after taking summation over m)

∣∣∣k ∑̀
m=1

Sm1

∣∣∣ ≤ C [ η1(ε)h4 + ζ(ε)k2
]

+ k
∑̀
m=1

{ε2α(ε)s(ε)
2c(ε)

‖Υm
ϕ −∆hG

m
u ‖2L2(3.31)

+
εα(ε)

2
‖Υm

ϕ ‖2L2 +
C

ε
‖Υm

ϕ ‖3L3

}
,

where ζ(ε) is defined by (3.19) and η1(ε) has the form

η1(ε) =
[2ε2s(ε)2 + c(ε)2

ε3c(ε)2α(ε)
+

s(ε)
ε2c(ε)α(ε)

][α(ε)
ε2

+ εs(ε)α(ε)
]
Jε(ϕε0, uε0)(3.32)

+
s(ε)[2εs(ε) + c(ε)α(ε)]

ε2α(ε)

{
ε−2σ4 + Jε(ϕε0, uε0) + [1 + c(ε)] ε−2σ3

}
+
s(ε)2

{
Jε(ϕε0, uε0) + C [1 + c(ε)] ε−2σ3

}
εα(ε)

+
α(ε)2 B̃7

ε

+
s(ε)[2εs(ε) + c(ε)] ε−2(σ2+1)

ε2c(ε)2α(ε)
.

Substituting (3.31) into (3.30) after taking summation over m leads to

εα(ε)
2
‖Υ`

ϕ ‖2L2 +
s(ε)

2
‖∇G`u ‖2L2 + k

∑̀
m=1

{εα(ε) k
2
‖ dtΥm

ϕ ‖2L2

+
s(ε) k

2
‖∇Υm

u ‖2L2 +
1
ε
‖Υm

ϕ ‖4L4 + ε ‖∇Υm
ϕ ‖2L2(3.33)

+
1
ε

(
f ′(Phϕ(tm)), (Υm

ϕ )2
)

+
s(ε)
c(ε)

[
1− ε2α(ε)

2
]
‖Υm

ϕ −∆hG
m
u ‖2L2

}
≤ C

[
η1(ε)h4 + ζ(ε)k2

]
+ k

∑̀
m=0

{εα(ε)
2
‖Υm

ϕ ‖2L2 +
C

ε
‖Υm

ϕ ‖3L3

}
.

Step 3. Two terms in (3.33) remain to be bounded, namely, the first term on the
third line and the last term on the right-hand side. In the following, we will bound
the first one from below using the discrete spectrum estimate (3.14), and we will
bound the second from above using a spatial-temporal decomposition technique.

First, notice that ∆h, not ∆, appears in (3.33); in order to use (3.14), we need
a preparatory step. Let Fλ[ · ] denote the convolution operator with a mollifier as
defined in [1]—it is well known that for any v ∈ Hr(Ω) (r ≥ 0), Fλ[v] ∈ C∞0 (RN )
converges to v in the Hr norm as λ↘ 0; in particular, for any δ > 0 there exists a
λ(δ) > 0 such that for 0 < λ < λ(δ)

‖ v −Fλ[v] ‖Hr ≤ δ‖ v ‖Hr ∀v ∈ Hr (r ≥ 0).

Now using the identity

‖Υm
ϕ −∆hG

m
u ‖2L2(3.34)

= ‖Υm
ϕ −∆Fλ[Gmu ] ‖2L2 +

(
∆Fλ[Gmu ]−∆hG

m
u ,Υ

m
ϕ −∆hG

m
u

)
+
(
∆Fλ[Gmu ]−∆hG

m
u ,Υ

m
ϕ −∆Fλ[Gmu ]

)
,
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we conclude that there exists λ(ε) > 0 such that for λ < λ(ε)

‖Υm
ϕ −∆hG

m
u ‖2L2 ≥ ‖Υm

ϕ −∆Fλ[Gmu ] ‖2L2(3.35)

−ε
2α(ε)s(ε)

4c(ε)
‖Υm

ϕ −∆hG
m
u ‖2L2 −

s(ε)
2
‖∇Gmu ‖2L2 −

ε3α(ε)
4
‖∇Υm

ϕ ‖2L2 .

To see (3.35), we deal with the last two terms in (3.34) separately. Taking into
account that Υm

ϕ −∆hG
m
u ∈ Vh, we first conclude that for an appropriately chosen

δ̃1 = δ̃1(δ) > 0,(
∆Fλ[Gmu ]−∆hG

m
u ,Υ

m
ϕ −∆hG

m
u

)
=
(
∇
[
Fλ[Gmu ]−Gmu

]
,∇
[
Υm
ϕ −∆hG

m
u

])
≤ δ̃1 ‖∇Gmu ‖L2 ‖∇

[
Υm
ϕ −∆hG

m
u

]
‖L2 .

For the second term, we proceed independently for every K ∈ Th, and we benefit
from the fact that (∆Gmu )

∣∣
K

= 0. In the following, we choose δ̃2 = δ̃2(δ) > 0
appropriately such that∑

K∈Th

(
∆Fλ[Gmu ]−∆hG

m
u ,Υ

m
ϕ −∆Fλ[Gmu ]

)
K

=
∑
K∈Th

[(
∆Fλ[Gmu ]−∆hG

m
u ,Υ

m
ϕ

)
K

+
(
∆Fλ[Gmu ]−∆hG

m
u ,∆

[
Gmu −Fλ[Gmu ]

])
K

]
≤
(
∇
[
Gmu −Fλ[Gmu ]

]
,∇Υm

ϕ

)
+ δ̃2

∑
K∈Th

‖∆Fλ[Gmu ]−∆hG
m
u ‖L2(K) ‖Gmu ‖H2(K)

≤ 2δ ‖∇Gmu ‖L2 ‖∇Υm
ϕ ‖L2 .

Above, we used the following fact, which is valid for all ϕh ∈ Vh,∑
K∈Th

‖∆hϕh ‖2L2(K) = −
∑
K∈Th

(∇∆hϕh,∇ϕh)K

≤ C
∑
K∈Th

h−1
K ‖∆hϕh ‖L2(K) ‖∇ϕh ‖L2(K);

hence, ‖∆hϕh ‖L2 ≤ minK∈Th h
−1
K ‖∇ϕh ‖L2. In addition, we also utilized the

following estimate

‖∆Fλ[Gmu ] ‖L2(K) ≤
(
1 + δ̃2

)
‖Gmu ‖H2(K) ≤ δ‖Gmu ‖H1(K) ,

thanks to an inverse inequality. These arguments establish (3.35).
Next, it follows from (3.14) that there exists λ0 > 0 such that for λ < λ0,

[1− ε2α(ε)]
{
ε‖Υm

ϕ ‖2L2 +
1
ε

(
f(Phϕ(tm)), (Υm

ϕ )2
)

+
s(ε)
c(ε)
‖Υm

ϕ −∆Fλ[Gmu ] ‖2L2

}
≥ −2C0

{
εα(ε)‖Υm

ϕ ‖2L2 + s(ε)‖∇Fλ[Gmu ] ‖2L2

}
(3.36)

≥ −4C0

{
εα(ε)‖Υm

ϕ ‖2L2 + s(ε)‖∇Gmu ‖2L2

}
.
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Substituting (3.35) and (3.36) into (3.33) gives

εα(ε)
2
‖Υ`

ϕ ‖2L2 +
s(ε)

2
‖∇G`u ‖2L2 + k

∑̀
m=1

{εα(ε) k
2
‖ dtΥm

ϕ ‖2L2

+
s(ε) k

2
‖∇Υm

u ‖2L2 +
1
ε
‖Υm

ϕ ‖4L4 +
ε3α(ε)

4
‖∇Υm

ϕ ‖2L2(3.37)

+
ε2α(ε)s(ε)

4c(ε)
‖Υm

ϕ −∆hG
m
u ‖2L2

}
≤ C

[
η1(ε)h4 + ζ(ε)k2

]
+ k

∑̀
m=0

{εα(ε)[C + 8C0]
2

‖Υm
ϕ ‖2L2

+
s(ε)[1 + 8C0]

2
‖∇Gmu ‖2L2 +

C

ε
‖Υm

ϕ ‖3L3

}
,

where η(ε) and ζ(ε) are defined by (3.19) and (3.18), respectively.
Finally, we apply a spatial-temporal decomposition argument to bound the last

term of (3.37). For this purpose, we make a shift in the super-index and use the
triangle inequality to get

(3.38) ‖Emϕ ‖3L3 ≤
∑
K∈Th

[
k3 ‖ dtEmϕ ‖3L3(K) + ‖Em−1

ϕ ‖3L3(K)

]
.

For each term of the second sum on the right-hand side of (3.38), we interpolate
L3(K) between L2(K) and H2(K),

‖Em−1
ϕ ‖3L3(K) ≤ C

(
‖∆Em−1

ϕ ‖
N
4
L2(K) ‖E

m−1
ϕ ‖

12−N
4

L2(K) + ‖Em−1
ϕ ‖3L2(K)

)
≤ C ‖Em−1

ϕ ‖
12−N

4
L2(K)

(
‖∆Em−1

ϕ ‖
N
4
L2(K) + ‖Em−1

ϕ ‖
N
4
L2(K)

)
(3.39)

≤ C ‖Em−1
ϕ ‖

12−N
4

L2(K) B
N
8

2 .

The last step follows from (v) of Lemma 2.2 and Lemma 3.1.
Similarly, we can bound the first sum on the right-hand side of (3.38) as

k3 ‖ dtEmϕ ‖3L3(K) ≤ Ck3
(
‖∆dtEmϕ ‖

N
4
L2(K) ‖ dtE

m
ϕ ‖

12−N
4

L2(K) + ‖ dtEmϕ ‖3L2(K)

)
≤ Ck3 ‖ dtEmϕ ‖

12−N
4

L2(K)

(
‖∆dtEmϕ ‖

N
4
L2(K) + ‖ dtEmϕ ‖

N
4
L2(K)

)
(3.40)

≤ C
[
B2 +

B1

α(ε)

]N
8
k

12−N
4 ‖ dtEmϕ ‖

12−N
4

L2(K).

Summing (3.39) and (3.40) over all K ∈ Th and using the convexity of the
function g(s) = sr for r > 1 and s ≥ 0 then leads to

(3.41) ‖Emϕ ‖3L3 ≤ C ‖Em−1
ϕ ‖

12−N
4

L2 B
N
8

2 + C
[
B2 +

B1

α(ε)

]N
8
k

12−N
4 ‖ dtEmϕ ‖

12−N
4

L2 .
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Because of (3.20) and Lemma 2.2, the above estimate leads to

‖Υm
ϕ ‖3L3 ≤ C

{
‖Υm−1

ϕ ‖
12−N

4
L2 B

N
8

2 +
[
B2 +

B1

α(ε)

]N
8
k

12−N
4 ‖ dtΥm

ϕ ‖
12−N

4
L2

+‖Θm−1
ϕ ‖

12−N
4

L2 B
N
8

2 +
[
B2 +

B1

α(ε)

]N
8
k

12−N
4 ‖ dtΘm

ϕ ‖
12−N

4
L2

+‖Θm
ϕ ‖3L3

}
≤ C

{
‖Θm−1

ϕ ‖
12−N

4
L2 B

N
8

2 + ‖Θm
ϕ ‖3L3 + ‖Υm−1

ϕ ‖
12−N

4
L2 B

N
8

2

+C
[
B2 +

B1

α(ε)

]N
8
k2
(
‖Υm

ϕ ‖L2 + ‖Υm−1
ϕ ‖L2

) 4−N
4 ‖ dtΥm

ϕ ‖2L2

}
+C
[
B2 +

B1

α(ε)

]N
8
[
‖Θm

ϕ ‖
12−N

4
L2 + ‖Θm−1

ϕ ‖
12−N

4
L2

]
.

Summing over m from 1 to ` and using (3.5)–(3.8), Lemmas 2.2 and 3.1, we get

k

ε

∑̀
m=1

‖Υm
ϕ ‖3L3(3.42)

≤ C B
3
2
2

ε

{
1 +

[
B2 +

B1

α(ε)

]N
8 B−

N
8

2

}
h

12−N
2

+C
B
N
8

2 k

ε

∑̀
m=1

‖Υm−1
ϕ ‖

12−N
4

L2

+
C

ε

[
B2 +

B1

α(ε)

]N
8 [
α(ε)Jε(ϕε0, uε0)

] 4−N
8 k3

∑̀
m=1

‖ dtΥm
ϕ ‖2L2 .

The last term of (3.42) can be absorbed by the corresponding term on the left-hand
side of (3.37) if k satisfies

(3.43)
C

ε

[
B2 +

B1

α(ε)

]N
8 [
α(ε)Jε(ϕε0, uε0)

] 4−N
8 k ≤ εα(ε)

8
.

Hence, it follows from (3.37),(3.42) and (3.43) that

εα(ε)
2
‖Υ`

ϕ ‖2L2 +
s(ε)

2
‖∇G`u ‖2L2 + k

∑̀
m=1

{εα(ε) k
2
‖ dtΥm

ϕ ‖2L2

+
s(ε) k

2
‖∇Υm

u ‖2L2 +
1
ε
‖Υm

ϕ ‖4L4 +
ε3α(ε)

4
‖∇Υm

ϕ ‖2L2(3.44)

+
ε2α(ε)s(ε)

4c(ε)
‖Υm

ϕ −∆hG
m
u ‖2L2

}
≤ C

[
η(ε)h4 + ζ(ε)k2

]
+ (C + 8C0)

{
εα(ε) k

∑̀
m=0

‖Υm
ϕ ‖2L2

+s(ε) k
∑̀
m=0

‖∇Gmu ‖2L2

}
+
CB

N
8

2

ε
k
∑̀
m=0

‖Υm−1
ϕ ‖

12−N
4

L2 .

We note that the super-quadratic power in the last term allows us to control this
error contribution by an inductive argument.
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Step 4. The details of the induction argument can be found in the proof of
Theorem 3.1 of [26]. Here we only point out that this time the inductive argument
leads to

max
0≤m≤`

{εα(ε)
2
‖Υm

ϕ ‖2L2 +
s(ε)

2
‖∇G`u ‖2L2

}
+ k

∑̀
m=1

{εα(ε) k
2
‖ dtΥm

ϕ ‖2L2

+
s(ε) k

2
‖∇Υm

u ‖2L2 +
1
ε
‖Υm

ϕ ‖4L4 +
ε3α(ε)

4
‖∇Υm

ϕ ‖2L2(3.45)

+
ε2α(ε)s(ε)

4c(ε)
‖Υm

ϕ −∆hG
m
u ‖2L2

}
≤ C

[
η(ε)h4 + ζ(ε)k2

]
,

provided that

(3.46) η(ε)h4 + ζ(ε)k2 ≤ ε−1
[
α(ε)]

N−12
4−N B−

N
4−N

2 .

Finally, the assertions (i)–(iv) follow from (3.45), (3.5), (3.7) and applying the
triangle inequality to Emu = Θm

u + Υm
u and Emϕ = Θm

ϕ + Υm
ϕ . The assertion (v)

follows from applying the inverse inequality bounding the L∞ norm in terms of the
L2 norm, using (3.45) and (3.6). �

Remark 3.1. (a) The estimates in (i)–(iv) are optimal in both h and k, and the one
in (v) is quasi-optimal.

(b) The proof clearly shows how the three mesh conditions arise. Condition (1)
is for the stability of the fully discrete scheme; condition (2) is required for having
the discrete spectrum estimate (see Lemma 3.3); finally condition (3) is caused by
the super-quadratic nonlinearity of f (see Step 3 of the proof).

(c) Clearly, the L2-projections Φ0 = Qhϕ
ε
0 and U0 = Qhu

ε
0 are valid choices for

the starting values.

Theorem 3.2. Under the assumptions and mesh constraints of Theorem 3.1, there
exists h0 > 0 and k0 > 0 (or there exists ε1 > 0) such that the following error
estimates hold for h < h0 and k < k0 (or for ε < ε1)

(i) max
0≤m≤M

‖Φm ‖L∞ ≤ 2C0 ,

(ii) max
0≤m≤M

√
εc(ε)α(ε) ‖ u(tm)− Um ‖L2 ≤ C

[
δ1(ε)

1
2 h2 + ˆ̂η(ε)

1
2h2 + ˆ̂

ζ(ε)
1
2 k
]
,

(iii)
√
εc(ε)s(ε) max

0≤m≤M
‖ u(tm)− Um ‖L∞

≤ C
{
δ1(ε)

1
2h

4−N
2 | lnh| 3−N2 +

[ ˆ̂η(ε)
1
2 h2 + ˆ̂

ζ(ε)
1
2 k
]
h−

N
2

}
,

(iv) max
0≤m≤M

√
ε‖∇

(
ϕ(tm)− Φm

)
‖L2 ≤ C

[
δ2(ε)

1
2h+ ˆ̂η(ε)

1
2h2 + ˆ̂

ζ(ε)
1
2 k
]
,

(v)
{
εα(ε) k

M∑
m=1

‖ dt
(
ϕ(tm)− Φm

)
‖L2

} 1
2 ≤ C

[
δ3(ε)

1
2h2 + ˆ̂η(ε)

1
2 h2 + ˆ̂

ζ(ε)
1
2 k
]
,

(vi)
{
ε k

M∑
m=1

k‖ dt∇
(
ϕ(tm)− Φm

)
‖2L2

} 1
2 ≤ C

[
δ4(ε)

1
2 h+ ˆ̂η(ε)

1
2h2 + ˆ̂

ζ(ε)
1
2 k
]
,

(vii) max
0≤m≤M

‖∇
(
u(tm)− Um

)
‖L2 ≤ C

[
δ5(ε)

1
2h+ ˆ̂η(ε)

1
2 h2 + ˆ̂

ζ(ε)
1
2 k
]
,
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(viii)
{
c(ε) k

M∑
m=1

‖ dt
(
u(tm)− Um

)
‖L2

} 1
2 ≤ C

[
δ6(ε)

1
2h2 + ˆ̂η(ε)

1
2 h2 + ˆ̂

ζ(ε)
1
2 k
]
,

(ix)
{
k

M∑
m=1

k‖ dt∇
(
u(tm)− Um

)
‖2L2

} 1
2 ≤ C

[
δ7(ε)

1
2h+ ˆ̂η(ε)

1
2h2 + ˆ̂

ζ(ε)
1
2 k
]
,

where

δ1(ε) = εc(ε)α(ε)B5, δ2(ε) = εB2, δ3(ε) =
α(ε)2 B7

ε
,

δ4(ε) =
α(ε)k B7

ε
, δ5(ε) = B5, δ6(ε) =

c(ε)B8

1 + c(ε)
, δ7(ε) =

k B8

1 + c(ε)
.

ˆ̂η(ε) =
α(ε)2

ε
B7 +

s(ε)2[ρ2(ε) + η(ε)]
εc(ε)α(ε)2

+
ρ1(ε) + η(ε)
ε3α(ε)

,(3.47)

ˆ̂
ζ(ε) = εα(ε)B7 +

Jε(ϕε0, uε0) + [1 + c(ε)]ε−2σ3

c(ε)2
+

ζ(ε)
ε3α(ε)2

+
s(ε)2ζ(ε)
εc(ε)α(ε)2

.(3.48)

Proof. The estimate (v) of Theorem 3.1 implies that there exist h0 > 0 and k0 > 0
(equivalently, there exists ε1 > 0), such that

(3.49) max
0≤m≤M

‖ϕ(tm)− Φm ‖L∞ ≤
C0

2

for h < h0 and k < k0 (or ε < ε1), where C0 > 0 is defined in Lemma 2.1. The
assertion (i) then follows immediately from (2.5) and (3.49).

To show assertion (ii), taking ηh = −Υm
u and vh = εα(ε)Υm

u in (3.21) and (3.22),
respectively, and adding the resulting equations yields

εc(ε)α(ε)
2

[
dt‖Υm

u ‖2L2 + k‖ dtΥm
u ‖2L2

]
+ εα(ε)‖∇Υm

u ‖2L2(3.50)

= εα(ε)c(ε)
[(
Rmu ,Υm

u

)
−
(
dtΘm

u ,Υ
m
u

)]
+ ε
(
∇Υm

ϕ ,∇Υm
u

)
−s(ε)

(
Em−1
u ,Υm

u

)
− s(ε)k

(
dtu(tm),Υm

u

)
− 1
ε

(
f(ϕ(tm))− f(Φm),Υm

u

)
.

Summing the equation over m from 1 to `’s (≤M), then using Schwarz’s inequality,
(2.5), assertion (i) above, (i)–(iv) of Theorem 3.1 and (3.24) to bound the right-hand
side, we get

εc(ε)α(ε)
2

‖Υ`
u ‖2L2 + k

M∑
m=1

[ εc(ε)α(ε)k
2

‖ dtΥm
u ‖2L2 +

εα(ε)
2
‖∇Υm

u ‖2L2

]
(3.51)

≤ C
[
η̂(ε)h4 + ζ̂(ε)k2

]
+ εc(ε)α(ε) k

M∑
m=1

‖Υm
u ‖2L2 ,

where ζ̂(ε) and η̂(ε) are defined by (3.47) and (3.48), respectively.
Assertion (ii) follows from (3.5), (3.7) and (3.8), after applying Gronwall’s in-

equality to (3.51). Assertion (iii) is obtained by using the estimate (ii), (3.6) and
the inverse inequality bounding the L∞ norm in terms of the L2 norm.



562 XIAOBING FENG AND ANDREAS PROHL

To show assertions (iv)–(vi), we set ηh = dtΥm
ϕ in (3.21) to get

εα(ε)
2
‖ dtΥm

ϕ ‖2L2 +
ε

2
dt‖∇Υm

ϕ ‖2L2 +
εk

2
‖ dt∇Υm

ϕ ‖2L2(3.52)

= εα(ε)
[(
Rmϕ , dtΥm

ϕ

)
−
(
dtΘm

ϕ , dtΥ
m
ϕ

)]
+ s(ε)

(
Θm−1
u + Υm

u , dtΥ
m
ϕ

)
+s(ε)k

[(
dtu(tm), dtΥm

ϕ

)
+
(
dtΥm

u , dtΥ
m
ϕ

)]
+

1
ε

(
f(ϕ(tm))− f(Υm

ϕ ), dtΥm
ϕ

)
.

Taking the sum over m from 1 to ` (≤ M), using Schwarz’s inequality, (i) and (ii)
of Theorem 3.1 and (3.24) to bound the terms on the right-hand side and then
applying Gronwall’s inequality, we get

max
0≤m≤`

ε

2
‖∇Υm

ϕ ‖2L2 + k
∑̀
m=1

[εα(ε)
4
‖ dtΥm

ϕ ‖2L2 +
εk

2
‖ dt∇Υm

ϕ ‖2L2

]
(3.53)

≤ C
[ ˆ̂η(ε)h4 + ˆ̂

ζ(ε)k2
]
,

where ˆ̂η(ε) and ˆ̂
ζ(ε) are given by (3.47) and (3.48). Assertions (iv)–(vi) follow from

applying the triangle inequality to Emϕ = Θm
ϕ +Υm

ϕ and using (3.5), (3.7) and (3.53).
Finally, setting vh = dtΥm

u in the error equation (3.22) gives

c(ε)
2
‖ dtΥm

u ‖2L2 +
1
2
[
dt‖∇Υm

u ‖2L2 + k‖ dt∇Υm
u ‖2L2

]
(3.54)

≤ C
{ 1
c(ε)

[
‖ dtEmϕ ‖2L2 + ‖Rmϕ ‖2L2

]
+ c(ε)

[
‖ dtΘm

u ‖2L2 + ‖Rmu ‖2L2

]}
.

Then assertions (vii)–(ix) follow immediately from (3.54), (3.7), assertion (v) above,
(3.24) and Gronwall’s inequality. �

4. Convergence of fully discrete solutions

to the solutions of the free boundary problems

In this section we shall present a nontrivial byproduct of the error estimates of the
previous section. That is, we shall show convergence of the tuple {( Φm, Um )}Mm=0

which solves the fully discrete mixed finite element scheme (3.1)–(3.2) to the so-
lution of the free boundary problem (1.7)–(1.12), provided that the latter has a
global (in time) classical solution. Specifically, it is proved that the fully discrete
solution Um, as h, k ↘ 0, converges to the solution u0 of the phase field model
uniformly in ΩT , and the fully discrete solution Φm converges to ±1 uniformly on
every compact subset of ΩT \ Γ. Hence, the zero level set of Φm converges to the
free boundary Γ. Our main ideas are to make full use of the convergence result that
the free boundary problem is the distinguished limit, as ε ↘ 0, of the phase field
model proved by Caginalp and Chen in [11], and to exploit the “closeness” between
the solution (ϕ, u ) of the phase field model and its fully discrete approximation
{( Φm, Um )}Mm=0, which was obtained in the previous section. We note that as in
[11], our numerical convergence is also established under the assumption that the
free boundary problem has a global (in time) classical solution; we refer to [11] and
references therein for further expositions on this assumption and related theoretical
works on the phase field model. We also remark that our convergence result covers
all six types of free boundary problems corresponding to six different sets of choices
of c0, d0 and α0 in (1.7)–(1.12). These six types of free boundary problems include
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the classical Stefan problem, generalized Stefan problems with surface tension and
surface kinetics, the Hele-Shaw problem, and the motion by mean curvature flow
(cf. Theorem 4.1 below).

Let (ϕε, uε ) denote the solution of the phase field model (1.1)–(1.4). Note that
we put back the super-index ε on the solution in this section. Define ( Φε,h,k(x, t),
Uε,h,k(x, t) ) to be the piecewise linear interpolation (in time) of the fully discrete
solution ( Φm, Um ), that is,

Φε,h,k(·, t) :=
t− tm
k

Φm+1(·) +
tm+1 − t

k
Φm(·) ,(4.1)

Uε,h,k(·, t) :=
t− tm
k

Um+1(·) +
tm+1 − t

k
Um(·)(4.2)

for tm ≤ t ≤ tm+1 and 0 ≤ m ≤M − 1. Note that Φε,h,k and Uε,h,k are continuous
piecewise linear functions in space and time.

Let Γ00 ⊂ Ω be a smooth closed hypersurface and let (u0,Γ :=
⋃

0≤t≤T (Γt×{t}) )
be a smooth solution of the free boundary problem (1.7)–(1.12) starting from Γ00

such that Γ ⊂ Ω× [0, T ]. Let d(x, t) denote the signed distance function to Γt such
that d(x, t) < 0 in It, the inside of Γt, and d(x, t) > 0 in Ot := Ω \ (Γt ∪ It), the
outside of Γt. We also define the inside I and the outside O of Γ as follows:

I := {(x, t ) ∈ Ω× [0, T ] ; d(x, t) < 0} ,
O := {(x, t ) ∈ Ω× [0, T ] ; d(x, t) > 0} .

In addition, let Γε,h,kt denote the zero level set of Φε,h,k at time t, that is,

(4.3) Γε,h,kt := {x ∈ Ω ; Φε,h,k(x, t) = 0 } .
As mentioned earlier, our proof of convergence is based on making full use of

the convergence result of [11], which shows that the free boundary problem is the
distinguished limit, as ε↘ 0, of the phase field model. For the readers’ convenience,
we recall the convergence result in the following theorem, and we refer to Theorems
2.1 and 2.2 of [11] for more details.

Theorem 4.1. Let Ω be a given smooth domain and let Γ00 be a smooth closed
hypersurface in Ω. Suppose that the free boundary problem (1.7)–(1.12) starting
from Γ00 has a smooth solution (u0,Γ :=

⋃
0≤t≤T (Γt×{t}) ) such that Γ ⊂ Ω×[0, T ].

Then there exists a family of smooth functions {(ϕε0, uε0 )}0<ε≤1 which are uniformly
bounded in ε ∈ (0, 1] and (x, t ) ∈ ΩT , such that if (ϕε, uε ) solves the phase field
model (1.1)–(1.4), then

(i) ‖ uε − u0 ‖C0(ΩT )

ε↘0−→ 0,(4.4)

(ii) ϕε
ε↘0−→ 1 uniformly on compact subsets of O ,(4.5)

(iii) ϕε
ε↘0−→ −1 uniformly on compact subsets of I(4.6)

hold in each of the following six cases:
(1) α0, c0 and d0 are positive constants in (1.7)–(1.12); α(ε) = α0, c(ε) =

c0 and s(ε) = m
2d0

in (1.1)–(1.4), where m =
∫ 1

−1

√
2F (s) ds, which only

depends on the choice of the potential function F .
(2) d0 = 0, α0 and c0 are positive constants; α(ε) = α0, c(ε) = c0 and s(ε) =

ε−
1
2 .
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(3) c0 = 0, α0 and d0 are positive constants; c(ε) = ε` for any ` ≥ 1, α(ε) = α0

and s(ε) = m
2d0

.
(4) c0 and α0 are positive constants; α(ε) = α0, c(ε) = c0, s(ε) = ε` for

any ` ≥ 1. In this case, the equilibrium condition (1.10) is replaced by
κΓ = α0V .

(5) α0 = 0, d0 and c0 are positive constants; and α(ε) = ε` for any ` ≥ 1,
c(ε) = c0 and s(ε) = m

2d0
.

(6) c0 = α0 = 0, d0 is positive constant; c(ε) = ε`, α(ε) = εj for any `, j ≥ 1,
and s(ε) = m

2d0
.

Remark 4.1. The above convergence result was proved in [11] when ϕ satisfies the
Dirichlet boundary condition. However, it was noted in (4) of Remark 2.3 of [11] (see
page 424 of [11]) that the conclusion still holds when ϕ satisfies the homogeneous
Neumann boundary condition.

We also remark that the free boundary problem in case (2) is the classical Stefan
problem. The free boundary condition (1.10) in case (5) reduces to the well-known
Gibbs-Thomson condition. The free boundary problem in case (4) is the motion
by mean curvature flow [20, 22], and the one in case (6) is known as the Hele-
Shaw/Mullins-Sekerka problem [3, 33]. The remaining cases (1) and (3) are the
generalized Stefan problems with surface tension and surface kinetics.

We are now ready to show the following convergence theorem.

Theorem 4.2. Let Ω be a given smooth domain and let Γ00 be a smooth closed hy-
persurface in Ω. Suppose that the free boundary problem (1.7)–(1.12) starting from
Γ00 has a classical solution

(
u0,Γ :=

⋃
0≤t≤T (Γt × {t})

)
such that Γt ⊂ Ω for all

t ∈ [0, T ]. Let {(ϕε0, uε0 )}0<ε≤1 be the family of smooth uniformly bounded functions
as in Theorem 2.1 and 2.2 of [11]. Let ( Φε,h,k(x, t), Uε,h,k(x, t) ) denote the piece-
wise linear interpolation (in time) of the fully discrete solution {( Φm, Um )}Mm=0 of
(3.1)–(3.2). Also, let I and O stand for the “inside” and “outside” (in ΩT ) of Γ.
Then under the mesh and starting value constraints of Theorem 3.1 we have

(i) ‖Uε,h,k − u0 ‖C0(ΩT )

ε↘0−→ 0,

(ii) Φε,h,k(x, t)
ε↘0−→ 1 uniformly on compact subset of O ,

(iii) Φε,h,k(x, t)
ε↘0−→ −1 uniformly on compact subset of I

in each of the six cases of different combinations of c0, α0 and d0 as described in
Theorem 4.1.

Proof. The triangle inequality implies that

‖Uε,h,k − u0 ‖C0(ΩT ) ≤ ‖Uε,h,k − uε ‖C0(ΩT ) + ‖ uε − u0 ‖C0(ΩT ).

Assertion (i) then follows immediately from (i) of Theorem 4.1 and the L∞ error
estimate given in Theorem 3.2.

To show assertion (ii), let A be any compact subset of O, for any (x, t ) ∈ A,
using the triangle inequality we have

|Φε,h,k(x, t)− 1 | ≤ |Φε,h,k(x, t)− ϕε(x, t) | + |ϕε(x, t)− 1 |(4.7)
≤ ‖Φε,h,k − ϕε ‖L∞(ΩT ) + |ϕε(x, t) − 1 | .
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Under the assumptions of Theorem 4.2, the first term on the right-hand side
of (4.7) is bounded by C

(
hα + kβ

)
for some α, β > 0; hence, it converges to zero

uniformly on A (and on Ω) as h ↘ 0. From (ii) of Theorem 4.1 we know that the
second term on the right-hand side of (4.7) also converges to zero uniformly on A.
Note that h↘ 0 as ε↘ 0. Therefore,

Φε,h,k
ε↘0−→ 1 uniformly on A.

This then completes the proof of assertion (ii).
The proof of assertion (iii) is almost a repetition of the above proof. The only

change is to replace O by I and 1 by −1 in the above proof. So we omit it. �

Another consequence of Theorems 3.1 and 3.2 is the following convergence result
for the numerical interface, which establishes convergence of the zero level set Γε,h,kt

of Φε,h,k to the true free boundary Γt.

Theorem 4.3. Let Γε,h,kt := {x ∈ Ω ; Φε,h,k(x, t) = 0 } denote the zero level set of
Φε,h,k. Then under the assumptions of Theorem 4.2, it holds that

sup
x∈Γε,h,kt

(
dist(x,Γt)

) ε↘0−→ 0 uniformly on [0, T ] .

Proof. For any δ ∈ (0, 1), define the (open) tubular neighborhood Nδ of width 2δ
of Γ as

(4.8) Nδ := { (x, t ) ∈ ΩT ; d(x, t) < δ } .
Let A and B denote the complements of Nδ in O and I, respectively, that is

A = O \ Nδ , B = I \ Nδ .
Note that A is a compact subset of O and B is a compact subset of I. Hence, from
(ii) and (iii) of Theorem 4.2 we know that there exists ε̂0 > 0, which only depends
on δ, such that for all ε ∈ (0, ε̂0)

|Φε,h,k(x, t)− 1 | ≤ δ ∀ (x, t) ∈ A ,(4.9)
|Φε,h,k(x, t) + 1 | ≤ δ ∀ (x, t) ∈ B .(4.10)

Now for any t ∈ [0, T ] and x ∈ Γε,h,kt , since Φε,h,k(x, t) = 0, we have

|Φε,h,k(x, t)− 1 | = 1 ,(4.11)
|Φε,h,k(x, t) + 1 | = 1 .(4.12)

Evidently, (4.9) and (4.11) imply that (x, t ) 6∈ A, and (4.10) and (4.12) say that
(x, t ) 6∈ B. Hence (x, t ) must reside in the tubular neighborhood Nδ. Since t is
an arbitrary number in [0, T ] and x is an arbitrary point on Γε,h,kt , therefore, for
all ε ∈ (0, ε̂0)

sup
x∈Γε,h,kt

(
dist(x,Γt)

)
≤ δ uniformly on [0, T ] .

The proof is complete. �

Remark 4.2. Unlike as in [23], Theorem 4.3 does not provide any information about
the rate of convergence of the numerical free boundary Γε,h,kt to the true free bound-
ary Γt. This is because no rate of convergence for the zero level set of ϕε to Γt
was obtained in [11]. To our knowledge, such a rate of convergence estimate is not
known in the literature. On the other hand, if a rate of convergence can be proved
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for the zero level set of ϕε to the true free boundary Γt, it is easy to show that our
numerical free boundary Γε,h,kt should enjoy at least the same rate of convergence
to the true free boundary Γt.
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