
MATHEMATICS OF COMPUTATION
Volume 73, Number 246, Pages 957–965
S 0025-5718(03)01589-8
Article electronically published on August 5, 2003

ON TESTING THE DIVISIBILITY
OF LACUNARY POLYNOMIALS BY CYCLOTOMIC

POLYNOMIALS

MICHAEL FILASETA AND ANDRZEJ SCHINZEL

Abstract. An algorithm is described that determines whether a given poly-
nomial with integer coefficients has a cyclotomic factor. The algorithm is
intended to be used for sparse polynomials given as a sequence of coefficient-
exponent pairs. A running analysis shows that, for a fixed number of nonzero
terms, the algorithm runs in polynomial time.

1. Introduction and the main theorems

This paper describes an algorithm for determining whether a given polynomial
f(x) ∈ Z[x] has a cyclotomic divisor. In particular, the algorithm works well when
the number of nonzero terms is small compared to the degree of f(x). This work
is based on a paper by J. H. Conway and A. J. Jones [1]. The specific result we
establish is the following.

Theorem 1. There is an algorithm that has the following property: given f(x) =∑N
j=1 ajx

dj ∈ Z[x] with N > 1 and deg f = n > 1, the algorithm determines
whether f(x) has a cyclotomic factor and the algorithm runs in time

(1) � exp
(
(2 + o(1))

√
N/ logN(logN + log logn)

)
log(H + 1)

as N tends to infinity, where H = max1≤j≤N{|aj |}.
In the above theorem, we view the input as consisting of a list of N coefficient-

exponent pairs (aj , dj) sorted in increasing order by the values of dj . Observe that
for fixed N , the algorithm runs in polynomial time (time that is polynomial in
logn and log(H + 1)). In the case that a cyclotomic factor exists, the algorithm
can be made to output a positive integer m for which Φm(x), the mth cyclotomic
polynomial, divides f(x) without affecting the bound given for the running time.

For m a positive integer, let ζm = e2πi/m. For integers a, b, and m with m > 0,
we write a ≡ b (mod m) if m|(a− b) and we use the notation a mod m to represent
the unique b ≡ a (mod m) such that 0 ≤ b < m. For f(x), g(x), and w(x) in Q[x]
with degw(x) ≥ 1, we write f(x) ≡ g(x) (mod w(x)) if w(x)|(f(x) − g(x)), and
we use the notation f(x) mod w(x) to denote the unique polynomial g(x) ≡ f(x)
(mod w(x)) with either g(x) ≡ 0 or 0 ≤ deg g(x) < degw(x). If S is a set, we will
denote by |S| the cardinality of S.

Received by the editor October 1, 1998 and, in revised form, December 15, 2002.
2000 Mathematics Subject Classification. Primary 13P05, 12Y05, 11Y16, 11C08.
The first author gratefully acknowledges support from the National Security Agency and the

National Science Foundation.

c©2003 American Mathematical Society

957



958 MICHAEL FILASETA AND ANDRZEJ SCHINZEL

Theorem 2. Let f(x) ∈ Z[x] have N nonzero terms. Suppose n is a positive
integer such that Φn(x)|f(x). Suppose further that p1, p2, . . . , pk are distinct primes
satisfying

2 +
k∑
j=1

(pj − 2) > N.

Let ej be the nonnegative integer for which p
ej
j ||n. Then for at least one j ∈

{1, 2, . . . , k}, we have Φm(x)|f(x) where m = n/p
ej
j .

Proof. We first describe and then make use of Theorem 5 from [1]. For r a positive
integer, define γ(r) = 2 +

∑
p|r(p − 2). Following [1], we call a vanishing sum

S minimal if no proper subsum of S vanishes. We will be interested in sums
S =

∑t
j=1 ajωj where t is a positive integer, each aj is a nonzero rational number

and each ωj is a root of unity. We refer to the reduced exponent of such an S as the
least positive integer r for which (ωi/ω1)r = 1 for all i ∈ {1, 2, . . . , t}. Theorem 5
of [1] asserts then that if S =

∑t
j=1 ajωj is a minimal vanishing sum, then t ≥ γ(r)

where r is the reduced exponent of S. (Also, note that Theorem 5 of [1] implies
that the reduced exponent r of a minimal vanishing sum is necessarily squarefree.)

To prove Theorem 2, we suppose as we may that ej > 0 for each j ∈ {1, 2, . . . , k}.
We write f(x) =

∑s
i=1 fi(x) where each fi(x) is a nonzero polynomial divisible by

Φn(x), no two fi(x) have terms involving x to the same power, and s is maxi-
mal. Thus, each fi(ζn) is a minimal vanishing sum. For each i ∈ {1, 2, . . . , s}, we
write fi(x) = xbigi(xdi) where bi and di are nonnegative integers chosen so that
gi(0) 6= 0 and the greatest common divisor of the exponents appearing in gi(x) is
1. Then gi(ζdin ) is a minimal vanishing sum with reduced exponent n/ gcd(n, di).
If ti denotes the number of nonzero terms of gi(x), we deduce from Theorem 5 of
[1] that

N =
s∑
i=1

ti ≥
s∑
i=1

γ

(
n

gcd(n, di)

)

≥ 2s+
k∑
j=1

(pj − 2)
∣∣∣∣{1 ≤ i ≤ s : pj divides

n

gcd(n, di)

}∣∣∣∣.
The inequality in Theorem 2 implies that at least one of the expressions |{1 ≤
i ≤ s : pj |(n/ gcd(n, di))}| is zero. In other words, for some j ∈ {1, 2, . . . , k} and
every i ∈ {1, 2, . . . , s}, we have pejj |di. Setting m = n/p

ej
j and d′i = di/p

ej
j , we

obtain that gi(ζ
d′i
m ) = 0. Since gcd(m, pj) = 1, ζ

p
ej
j
m is a primitive mth root of unity

and we deduce gi(ζdim ) = 0. As this is true for every i ∈ {1, 2, . . . , s}, we conclude
f(ζm) = 0, establishing the theorem. �

Corollary 1. Let f(x) ∈ Z[x] have N nonzero terms. If f(x) is divisible by a
cyclotomic polynomial, then there is a positive integer m such that

2 +
∑
p|m

(p− 2) ≤ N and Φm(x)|f(x).

The above is a direct consequence of Theorem 2. Observe that it follows easily
from Corollary 1 that if f(x) is divisible by a cyclotomic polynomial, then there is
a positive integer m such that every prime divisor of m is ≤ N and Φm(x)|f(x).



THE DIVISIBILITY OF LACUNARY POLYNOMIALS 959

2. The proof of Theorem 1

For the proof of Theorem 1, we will make use of the following preliminary result
of independent interest.

Theorem 3. There is an algorithm that has the following property: given f(x) =∑N
j=1 ajx

dj ∈ Z[x] with deg f = n > 1 and a positive integer m together with its
factorization m =

∏s
j=1 p

ej
j where s ≥ 1, the pj are distinct primes ≤ M , and the

ej are positive integers ≤ E, the algorithm determines whether Φm(x) divides f(x)
and the algorithm runs in time

� (log n)2+o(1) +N(logn)1+o(1) + s
(

logM + log(E + 1)
)

+N logN
(

logm+ logN
)

+ 2sN
(

logn+ log(H + 1)
)
,

as N tends to infinity, where H = max1≤j≤N{|aj |}.

In the above theorem, we view the input as consisting of a list of coefficient-
exponent pairs (aj , dj) sorted in increasing order by the values of dj and a list of
prime-exponent pairs (pj , ej) sorted in increasing order by the values of pj . Before
giving the proof, we note that the factor logm+ logN that appears in the fourth
term above may be replaced by log n (which, depending on the size of m, could be
an improvement).

Proof of Theorem 3. We suppose as we may throughout that N > 1. We begin with
the algorithm and then we justify that the algorithm works and has the indicated
bound for its running time.

For a polynomial g(x) ∈ Z[x], we define ω
(
g(x)

)
as g(x) mod (xm − 1). We

can view ω
(
g(x)

)
as the polynomial obtained by reducing the exponents of g(x)

modulo m and combining the terms with like exponents. In other words, if g(x) =∑T
j=1 ujx

vj , then

ω
(
g(x)

)
=

T∑
j=1

ujx
(vj mod m) =

T ′∑
j=1

u′jx
v′j

where 0 ≤ v′1 < v′2 < · · · < v′T ′ < m, 0 ≤ T ′ ≤ T , and each u′j is a sum of one or
more uj .

For the moment, suppose that m has already been computed from the prime-
exponent pairs (pj , ej); the running time for computing m will be discussed later.
For the time being, we view our asymptotic estimates as holding for T tending to
infinity. Later, we will consider values of T which are ≥ N so that T will tend to
infinity with N . Given g(x) as an ordered list of coefficient-exponent pairs (uj , vj),
ordered in increasing order by the size of vj , we compute ω

(
g(x)

)
as follows. We

compute the complete list of pairs (uj , vj mod m) in

� T (logU) + T
(

logm+ logV
)1+o(1)

binary operations, where U = 1 + max1≤j≤T {|uj|} and V = 1 + max1≤j≤T {vj}.
Next, we sort the pairs in increasing order according to the values of vj mod m
and we combine terms of like exponents to form a sorted list of coefficient-exponent
pairs (u′j , v

′
j) associated with ω

(
g(x)

)
; this requires

� T (logU) + T (logT )(logm+ logT )



960 MICHAEL FILASETA AND ANDRZEJ SCHINZEL

binary operations. Thus, the total number of binary operations to compute ω
(
g(x)

)
is bounded by

� T (logU) + T
(

logm+ log V
)1+o(1) + T (logT )(logm+ logT ).

This analysis will be used only for an initial computation of ω
(
f(x)

)
in our algo-

rithm.
Our main interest will be in computing ω

(
g(x)(xm/p − 1)

)
for a given prime p

dividing m where deg g < m and g(x) is given as an ordered list of coefficient-
exponent pairs (uj , vj), ordered in increasing order by the size of vj . We suppose
that both m and m/p have already been computed. Using a bisection approach, we
determine the positive integer k for which vk < m− (m/p) ≤ vk+1. (If every vk <
m− (m/p), then we take k = T .) This computation involves � logT comparisons
with the total running time being

� logT
(

logm+ logT
)
,

where we have used now that V = 1 + max1≤j≤T {vj} ≤ m. We first compute
g(x)xm/p by forming the sequence of tuples (uj , vj + (m/p)−m) for k+ 1 ≤ j ≤ T
followed by the tuples (uj , vj + m/p) for 1 ≤ j ≤ k. Observe that, in this order,
the T tuples for g(x)xm/p are increasing with respect to their second components.
The running time for this part is bounded by

� T
(

logm+ logU + logT
)
.

We now combine this sequence of tuples with the sequence of tuples for −g(x),
namely (−uj, vj) for 1 ≤ j ≤ T . We do this by forming a new list of ordered
pairs that starts with the smaller (with respect to second components) of (−u1, v1)
and (uk+1, vk+1 + (m/p)−m) (and simply (−u1, v1) if k = T ) or, in the case that
v1 = vk+1 + (m/p) −m, with (−u1 + uk+1, v1). Similarly, the new list of ordered
pairs will end with the larger of (−uT , vT ) and (uk, vk +m/p) or, in the case that
vT = vk+m/p, with (−uT +uk, vT ). This can be accomplished by passing through
each element of both sequences of tuples in increasing order with running time

� T
(

logm+ logU + logT
)
.

We deduce that computing ω
(
g(x)(xm/p − 1)

)
can be accomplished in

� T
(

logm+ logU + logT
)

binary operations. We use the above to describe and justify the running time of
the following algorithm.

Algorithm A: (Specific cyclotomic factor test): Given f(x) =
∑N
j=1 ajx

dj

∈ Z[x] with deg f = n > 1 and m =
∏s
j=1 p

ej
j as in the statement of the

theorem, determine whether Φm(x) divides f(x).
Step A1: Check the size of φ(m). Check whether

s∏
j=1

p
ej−1
j (pj − 1) ≤ n.

If the inequality holds, then proceed to Step A2. Otherwise, output that
Φm(x) does not divide f(x).



THE DIVISIBILITY OF LACUNARY POLYNOMIALS 961

Step A2: Reduce exponents of f modulo m. Compute

f0(x) = ω
(
f(x)

)
where the function ω is defined above.

Step A3: Multiply by xm/p − 1 for each p dividing m. For j ∈ {1, 2, . . . , s},
recursively define

fj(x) = ω
(
fj−1(x)

(
xm/pj − 1

))
.

Step A4: Check whether the final result is zero. Check whether fs(x) ≡ 0.
If fs(x) ≡ 0, then output that Φm(x) divides f(x). Otherwise, output that
Φm(x) does not divide f(x).

We justify now the correctness of the algorithm. Observe that the degree of
Φm(x) is

φ(m) =
s∏
j=1

p
ej−1
j (pj − 1).

Thus, if φ(m) > n, then Φm(x) does not divide f(x). It remains to consider then
the case that φ(m) ≤ n. We use that the factorization of xm − 1 into irreducible
polynomials over the rationals is given by

xm − 1 =
∏
d|m

Φd(x).

Observe that every divisor d ofm with d 6= m dividesm/pj for some j ∈ {1, 2, . . . , s}.
Thus, for each such d, the polynomial Φd(x) divides

h(x) =
s∏
j=1

(
xm/pj − 1

)
.

On the other hand, Φm(x) does not divide h(x). We deduce that h(x) is not
divisible by xm − 1, but Φm(x)h(x) is. This implies that Φm(x) divides f(x) if
and only if xm − 1 divides f(x)h(x). From Steps A2 and A3, we see that fs(x) is
f(x)h(x) mod (xm − 1). Therefore, Φm(x) divides f(x) if and only if fs(x) ≡ 0.
Step A4 and the correctness of the algorithm are justified.

For an upper bound on the running time of the algorithm, we return now to
asymptotic estimates that hold for N tending to infinity. We begin in Step A1 by
reading the data and checking the sizes of s, the primes pj , and the exponents ej
to determine if the inequality in Step A1 does not hold due to any of these being
too large. The inequality can only hold if

s ≤ 1 + lgn, pj ≤ n+ 1, and ej ≤ 1 + lgn,

where lg x denotes the logarithm function to the base 2 and the bounds involving
j are for every j ∈ {1, 2, . . . , s}. These bounds are weaker than they need to be,
but they will serve for our purposes. To read the data and to check these bounds
requires

�
(

log(H + 1) + logn
)
N +

(
logM + log(E + 1) + logn

)
s

binary operations. If any of the bounds does not hold, neither does the inequality
in Step A1 (and so an output would be given that Φm(x) does not divide f(x) and
no further time would be required). We assume therefore that the above bounds
hold for s and each pj and ej. In particular, we consider from this point on only
the case that s ≤ 1 + lgn, M ≤ n+ 1 and E ≤ 1 + lgn.



962 MICHAEL FILASETA AND ANDRZEJ SCHINZEL

We continue to estimate the amount of time needed to check the inequality in
Step A1. We view this as being done as follows. Set a variable, say A, to be 1.
Consider in turn each pj beginning with j = 1 and ending with j = s. For each
such j, replace the value of A with the value of A × pj and do this ej − 1 times.
Then replace the value of A with the value of A× (pj − 1) before continuing to the
next value of j. After each multiplication, check if A ≤ n. Each multiplication will
take O

(
(log n+ logM)1+o(1)

)
binary operations. At most O(logn) multiplications

are necessary (before obtaining A > n). Hence, completing Step A1 requires

� (logn+ logM)2+o(1) � (logn)2+o(1)

binary operations. Observe that further steps in the algorithm are only considered
if φ(m) ≤ n. In particular, m ≤ 2φ(m)2 ≤ 2n2 implies logm ≤ 3 logn. We
therefore suppose this holds in discussing the remaining steps of the algorithm.

A procedure analogous to that just described for determining whether the in-
equality in Step A1 holds can be used for computing m (as well as m/pj) from the
list of exponent pairs (pj , ej). Given that now m ≤ 2n2, computing m (or m/pj)
requires

� (logn+ logM)2+o(1) � (logn)2+o(1)

binary operations.
Given the running time analysis for computing ω

(
g(x)

)
, Step A2 takes

� N log(H + 1) +N(logn)1+o(1) +N logN
(

logm+ logN
)

binary operations. In Step A3, for j ∈ {1, 2, . . . , s}, we now have a polyno-
mial fj−1(x) which is of degree ≤ m and are wanting to obtain the value of
ω
(
fj−1(x)(xm/pj −1)

)
. Inductively, we obtain that fj(x) has ≤ 2jN nonzero terms,

with each coefficient ≤ 2jNH and each exponent ≤ m. By our earlier analysis for
computing ω

(
g(x)(xm/p − 1)

)
, computing ω

(
fj−1(x)

)
takes

� 2jN
(
j + logn+ logN + log(H + 1)

)
binary operations. Summing over j gives an upper bound of

� 2sN
(
s+ logn+ logN + log(H + 1)

)
for the total number of binary operations to perform Step A3. On the other hand,
the number of nonzero terms of f(x) cannot exceed one more than its degree so
that N ≤ n+ 1. Recalling that s� logn, Step A3 takes

� 2sN
(

logn+ log(H + 1)
)

binary operations.
The check in Step A4 to determine if fs(x) is an empty coefficient-exponent pair

list can be completed as the computation for fs(x) is done in Step A3. Thus, no
further work is needed in Step A4 (except to output the result).

The result of the theorem follows. �

Proof of Theorem 1. Corollary 1 implies that we need only consider the possibility
that Φm(x)|f(x) where each prime divisor of m is ≤ N , the number of nonzero
terms of f(x). For each prime p ≤ N , we consider

(2) r(p) =
[

log deg f
log p

]
+ 1.



THE DIVISIBILITY OF LACUNARY POLYNOMIALS 963

Observe that if pe|m, then

deg f(x) ≥ deg Φm(x) = φ(m) ≥ φ(pe) = pe−1(p− 1) ≥ pe−1

so that e ≤ r(p). We make use of this notation for describing an algorithm for
proving Theorem 1.

Algorithm B: (General cyclotomic factor test): Given f(x) =
∑N

j=1 ajx
dj ∈

Z[x] with deg f = n, determine whether there is at least one m such that
Φm(x) divides f(x).

Step B1: Determine relevant primes. Compute the set P = {p1, p2, . . . , pr}
of all primes ≤ N .

Step B2: Obtain exponent bounds. Compute Bj = r(pj) (defined by (2)) for
1 ≤ j ≤ r.

Step B3: Determine relevant elements. Compute the subsets {q1, q2, . . . , qs}
of P for which

(3) 2 +
s∑
j=1

(qj − 2) ≤ N.

Let Q denote the set of all such subsets.
Step B4: Compute possible cyclotomic factors. Construct a list of tuples(

(q1, e1), (q2, e2), . . . , (qs, es)
)

where {q1, q2, . . . , qs} ∈ Q and if qi = pj , then 1 ≤ ei ≤ Bj .
Step B5: Check divisibility. For each

(
(q1, e1), . . . , (qs, es)

)
in Step B4, apply

Algorithm A with m = qe11 q
e2
2 · · · qess to determine whether Φm(x) divides

f(x). If at least one such m exists, indicate that f(x) has a cyclotomic
factor. Otherwise, indicate that f(x) has no cyclotomic factor.

Given the algorithm above, we need to justify the correctness of the algorithm
and the appropriate running time. Corollary 1 implies that f(x) is divisible by a
cyclotomic polynomial if and only if Φm(x)|f(x) for some positive integer m such
that the complete set of prime divisors of m is an element of Q. As indicated after
(2), if pej ||m, then e ≤ r(pj) = Bj . It follows that f(x) is divisible by a cyclotomic
polynomial if and only if Φm(x)|f(x) for some positive integer m considered in Step
B5. Thus, the correctness of the algorithm is justified.

Next, we justify the bound on the running time indicated for the algorithm. The
first two steps indicated in the algorithm can be estimated rather poorly without
affecting this bound. In Step B1, the primes that are ≤ N are determined. A
crude upper bound on the number of binary operations for this step is O(N2).
Note that r is determined by the condition pr ≤ N < pr+1. Hence, by the Prime
Number Theorem, r ∼ N/ logN . Computing any particular Bj takes no more than
O(log3 n) binary operations so that the running time for Step B2 is � r log3 n �
N log3 n/ logN .

The running time for the algorithm is affected largely by the number of elements
of Q. From (3) and r ∼ N/ logN , we deduce that

(4)
s∑
j=1

qj ≤ (1 + o(1))N



964 MICHAEL FILASETA AND ANDRZEJ SCHINZEL

as N tends to infinity. Using that
∑

p≤z p ∼ z2/(2 log z), we obtain from (4) that

s ≤ (2 + o(1))
√
N/ logN

(take z = (1 + ε)
√
N logN and use that π(z) ∼ z/ log z). Let K denote this bound

on s. Since there are r choices for each prime qj , we deduce that

|Q| ≤ rK ≤ NK = exp
(
(2 + o(1))

√
N logN

)
.

In Step B3, the elements of Q are determined. This can be done by considering
increasing values of s beginning with s = 1 and determining those subsets of P
of size s that belong to Q. For each of the ≤ rs subsets of P of size s, checking
(3) takes � s logN binary operations. Once a value of s is obtained for which no
subsets of P of size s belong to Q, the set Q will be determined and Step B3 ends.
By the definition of K, there are no subsets of P of size K + 1 in Q. It follows that
the number of binary operations needed for Step B3 is

�
K+1∑
s=1

rss logN � rK+1K logN � exp
(
(2 + o(1))

√
N logN

)
.

For Step B4, we observe that B1 ≤ 1 + 2 logn and Bj ≤ 1 + logn for j > 1.
For each of the ≤ rK elements {q1, q2, . . . , qs} of Q, we therefore form at most
2(1 + logn)s ≤ 2(1 + logn)K tuples

(
(q1, e1), . . . , (qs, es)

)
. It follows that there are

� rK(1 + log n)K � exp
(
K(log r + log(1 + logn))

)
such tuples. Note that we are interested in asymptotics as N (and, hence, n) tends
to infinity so that, in particular, log(1 + logn) ∼ log logn. Forming each tuple(
(q1, e1), . . . , (qs, es)

)
takes

� K(logN + log logn)

binary operations. Therefore, we can use

O
(

exp
(
(1 + o(1))K(log r + log logn)

))
as an upper bound on the running time for Step B4.

The running time for Step B5 is determined from the running time for Algorithm
A as given by Theorem 3. Observe that we can take M = N in Theorem 3 as N
serves as a bound for every qj . Also, M = N ≤ n, E � log n, and s ≤ K �

√
N .

Given the number of tuples considered in Step B4, the running time for Step B5 is

� 2KN
(

log2+o(1) n+ log(H + 1)
)

exp
(
(1 + o(1))K(log r + log logn)

)
.

Using r ∼ N/ logN and K = (2 + o(1))
√
N/ logN , the running time in Step B5 is

bounded by

� exp
(
(2 + o(1))

√
N/ logN(logN + log logn)

)
log(H + 1)

as N tends to infinity. As this exceeds the bounds obtained for the running times
in the previous steps of the algorithm, it also serves as a bound for the order of
magnitude of the running time of the entire algorithm, completing the proof. �

Acknowledgments

The authors are grateful to the referee for his or her comments. In particular,
the current version of Theorem 3 together with Algorithm A are due to the referee.



THE DIVISIBILITY OF LACUNARY POLYNOMIALS 965

References

[1] J. H. Conway and A. J. Jones, Trigonometric diophantine equations (On vanishing sums of
roots of unity), Acta Arith. 30 (1976), 229–240. MR 54:10141

Department of Mathematics, University of South Carolina, Columbia, South Car-

olina 29218

E-mail address: filaseta@math.sc.edu

Institute of Mathematics of the Polish Academy of Sciences, P.O. Box 137, ul.

Śniadeckich 8, 00-950 Warszawa 10, Poland

E-mail address: a.schinzel@impan.gov.pl

http://www.ams.org/mathscinet-getitem?mr=54:10141

	1. Introduction and the main theorems
	2. The proof of Theorem ??
	Acknowledgments
	References

