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GAUSSIAN ELIMINATION IS STABLE
FOR THE INVERSE
OF A DIAGONALLY DOMINANT MATRIX

ALAN GEORGE AND KHAKIM D. IKRAMOV

ABSTRACT. Let B € M, (C) be a row diagonally dominant matrix, i.e.,

n
oilbisl = > |bigl, i=1,...,m,
Jj=1
J#i
where 0 < 0; < 1, ¢ = 1,...,n, with 0 = max;<;<, 0;. We show that no
pivoting is necessary when Gaussian elimination is applied to A = B~1. More-

over, the growth factor for A does not exceed 1+ o. The same results are true
with row diagonal dominance being replaced by column diagonal dominance.

1. INTRODUCTION

We begin with a quotation from N. Higham’s paper [I]: “There are three main
classes of matrix for which it is known to be safe not to pivot when computing an LU
factorization: matrices diagonally dominant by rows or columns, Hermitian positive
definite matrices, and totally nonnegative matrices.” Then the author proceeds to
“identify another class of matrices with this highly desirable property: complex
symmetric matrices whose real and imaginary parts are both positive definite.” In
this short article we extend the set of matrices having this property to include
matrices whose inverses are matrices diagonally dominant by rows or columns, and
we show that the growth factor for such matrices is bounded by two. The reader
will find the proof in Section 3, with preliminary material required for the proof
contained in Section 2.

2. PRELIMINARY FACTS

Let A € M,(C), the set of n x n complex matrices. For an index set a C
{1,...,n}, we denote the principal submatrix of A that lies in the rows and columns
indexed by « as A(a) and its complementary principal submatrix as A(a’). The
following lemma is of crucial importance in Section 3.
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Lemma 1. Let A € M, (C) be a nonsingular matriz, and B = A~'. Let o be a
subset of {1,...,n}. The inequality

(1) |det A| < p|det A(a)| | det A(a')]

with a positive scalar p holds if and only if the similar inequality

(2) |det B| < p|det B(a)| | det B(a)|

holds for the matriz B.

Proof. Inequality (2) is just another form of (1). This can be seen from the relations

1

det B = ——

¢ det A’
~det A(o)
det Ble) = =304
det A(«)

n—

det B(a') = oA

The last two equalities are particular cases of a general formula that connects minors
in B and A (see formula (33) in [2| Chapterl]).

We say that B € M, (C) is a (row) diagonally dominant matrix (d.d. matrix, for
short) if

n

(3) 01|b11|22|b1j|7 Z:157na

j=1

J#i
where 0 < g; < 1, i =1,...,n. The quantity
4 — .
(4) o = max o;
will be called the dominance factor of B. O

Lemma 2. Let B be a d.d. matriz, and let B! = A = (a;;). Then, fori=1,...,n,
(5) |det B < (1 + 04)|bsi | Bil,

where B; is the cofactor of b;;, and

(6) laji| < ojlaul, — §#1i.

Both assertions of the lemma can be found in [3], Sections 4, 6, and 7]. Inequality
(6) says that, in each column of the inverse matrix A, the element with the largest
modulus is on the main diagonal.

Suppose that a nonsingular n-by-n matrix A with nonvanishing leading principal
minors undergoes Gaussian elimination with no pivoting. After k steps of the
elimination have been completed, we have an order n — k matrix that has yet to be

processed. This matrix is alternatively called the active submatrix (after the kth
step) or the Schur complement. In the latter case, it is denoted as A/A(«), where

(7) a={1,...,k}.
Lemma 3. It holds that

(8) (4/A(e))~" = B(d),
where B = A~1.
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This is a well-known relation (see, for example, 4] Sec. 0.7.3]).
Let a%c) (i, = k+1,...,n) be the entries of the Schur complement A/A(«a), «
being the index set in (7). The quantity

(
max ;i |a;;
(9) pn(A) = ————"—

max; ; |aq;|
is called the growth factor for A.
The properties of d.d. matrices related to Gaussian elimination are widely known.
We state those we need in Section 3 in the lemma below.

Lemma 4. Let B € M,(C) be a d.d. matriz with the row dominance factors o;
(see (3)). Then:

(1) Gaussian elimination is applicable to B under any diagonal pivoting order.

(2) The diagonal dominance property is inherited by active submatrices. In
other words, each Schur complement B/B(«) is also a d.d. matriz. More-
over, for each i, the row dominance factor o} for B/B(«) does not exceed
the corresponding factor o; for B (assuming that the original row indices
of B remain “attached” to the rows in B/B(«)).

3. THE MAIN RESULT

We now prove

Theorem 1. Let A € M,,(C) be a nonsingular matriz such that B = A~1 is a d.d.
matriz with the dominance factor o (see (4)). Then

(10) pn(4d) <1+o0.

Proof. By Lemma 2, a1 is the entry with the largest modulus in the first column.
Thus, a1 can be taken as the pivot for the first step of elimination. Setting o = {1},

we see from (8) that A/A(a) has the d.d. matrix B(a’) as its inverse. Hence, CLSQ)
is the entry with the largest modulus in the first column of A/A(«) and can be
taken as the pivot for the second step. Continuing in this way, we conclude that no
permutations are needed to perform Gaussian elimination (GE) for A. Moreover,
GE with no pivoting as applied to A is the same as GE with partial pivoting.

In fact, relation (6) means that the entry with the largest modulus in the entire
matrix A belongs to the main diagonal. The same is true for all Schur complements
A/A(«). Hence, to bound p,(A), we have to examine only the behavior of the
diagonal entries in the course of elimination. Assume that

M = max|al?)|
r,s,t -

is attained when r = s =4, t = k. Define

a={1,...,k}, B=aU{i}.
Then
| det A(9)
|det A(a)|”
The inverse of A(S) is B/B(f’). According to Lemma 4, B/B((’) is a d.d. matrix,
and its row dominance factors o} do not exceed the corresponding factors o; for B.

(11) M
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It follows that an inequality of type (5) is valid for B/B(3’) and then, by Lemma
1, the similar inequality

(12) | det A(B)] < (1 + 03)lasl| det A(a)]
holds for A(f3). Relations (11) and (12) imply that

7|a“| <l+o
max, |ap.| ~

< (1-1—(71‘)

pn(A) =

max, |arr|

The theorem is proved. (|

Remark. It can be shown that bound (10) is, in fact, the strict inequality p,(A) <
1+ 0, when 0 < 0 < 1. Note that 1+ ¢ is also a bound for the growth factor of the
d.d. matrix B = A~

Remark. Tt is clear that, in the argument above, the row diagonal dominance could
be replaced by the column diagonal dominance. Thus, we have

Theorem 2. Let A € M, (C) be a nonsingular matriz such that B = A~! is
a matriz diagonally dominant by columns with the (column) dominance factor o.
Then

(13) pn(A) <1+o0.

The results of this paper can be extended to block matrices with the block
diagonal dominance property (see [9] Chapter 12]). This will be the subject of our
forthcoming paper.
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Following [B], we list some applications where systems of linear equations Az = b
with A being the inverse of an M-matrix are encountered. These are the solution
of certain integral equations [6], a time series approach to numerical differentiation
[7], and certain physical problems involving coupled oscillators [§].
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