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APPROXIMATING THE JUMP DISCONTINUITIES
OF A FUNCTION BY ITS FOURIER-JACOBI COEFFICIENTS

GEORGE KVERNADZE

Abstract. In the present paper we generalize Eckhoff’s method, i.e., the
method for approximating the locations of discontinuities and the associated
jumps of a piecewise smooth function by means of its Fourier-Chebyshev co-
efficients.

A new method enables us to approximate the locations of discontinuities
and the associated jumps of a discontinuous function, which belongs to a re-
stricted class of the piecewise smooth functions, by means of its Fourier-Jacobi
coefficients for arbitrary indices. Approximations to the locations of disconti-
nuities and the associated jumps are found as solutions of algebraic equations.
It is shown as well that the locations of discontinuities and the associated jumps
are recovered exactly for piecewise constant functions with a finite number of
discontinuities.

In addition, we study the accuracy of the approximations and present some
numerical examples.

1. Introduction

An important assumption for a number of spectral methods designed for the
reconstruction of a piecewise smooth function is the accurate knowledge of the
function’s discontinuity locations and the associated jumps. This key data should
be extracted from spectral modes of a given function.

A number of authors (see Banerjee and Geer [1], [8], Bauer [2], Cai et al. [3],
Eckhoff [4], [5], [6], Gelb and Tadmor [9], [10], Kvernadze et al. [13], [14], [15], [16],
and Mhaskar and Prestin [20]) studied the problem of approximating the singularity
locations and the associated jumps of a piecewise smooth function given a finite
number of its ordinary Fourier coefficients.

Eckhoff [4] introduced the first explicit method to recover the discontinuities
of a piecewise smooth function by means of its Fourier coefficients with respect
to an orthonormal system of algebraic polynomials. He developed a method to
approximate the locations of discontinuities and the associated jumps of a piecewise
smooth function by means of its Fourier-Chebyshev coefficients. If a function has
a finite number, M , of jump discontinuities, then approximations to the locations
of discontinuities are found as solutions of certain Mth degree algebraic equation.

Mhaskar and Prestin [18], [19] proposed a class of algebraic polynomial frames
that can be used to detect discontinuities in derivatives of all orders of a function.
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Recently Gelb and Tadmor [9], [10] used a different approach by introducing so-
called “concentration kernels” Kε(·), depending on the small scale ε. These satisfy
the condition Kε ∗ f(x) = f(x+)− f(x−) +O(ε), thus recovering both the location
and the amplitude of all singularities. In particular, the authors have considered
concentration kernels with respect to the Gegenbauer system of orthonormal poly-
nomials with nonpositive indices. A special case corresponding to the polynomial
concentration kernel with respect to the Fourier-Jacobi series was studied by the
author earlier in [13].

In the present paper we investigate the problem of approximating the jump
discontinuity locations of a bounded function given its finite number of Fourier-
Jacobi coefficients. As a result, a new method is developed which enables us to
approximate the locations of discontinuities and the associated jumps of a function
of the C̃r[−1, 1] class (see Definition 2.1) by solving appropriate algebraic equations.
Theorem 3.1 shows that the locations of discontinuities and the associated jumps
can be recovered exactly for piecewise constant functions with a finite number of
discontinuities. In Theorems 3.2 and 3.3 it is proved, and subsequently numerically
confirmed, that for functions of the C̃3[−1, 1] class the locations of discontinuities
are approximated to within O(1/n2) and the associated jumps to within O(1/n).

2. Preliminaries

Throughout this paper we use the following general notations: N , Z+, and R are
the sets of positive integers, nonnegative integers, and real numbers, respectively.
By b = (b1, b2, . . ., bM ) ∈ RM we denote a column vector, where bm ∈ R, m =
1, 2, . . .,M , and ||b|| = max1≤m≤M |bm| is the `∞ norm of the vector b. If A is a
M ×M matrix, by ||A|| = sup||b||=1 ||Ab||/||b|| we denote its natural (induced)
`∞ norm.

By C−1[a, b] we denote the space of functions on [a, b] that may have only a
finite number of jump discontinuities and are normalized by the condition f(x) =
(f(x+) + f(x−))/2 (here and elsewhere f(x+) and f(x−) denote the right-hand
and left-hand side limits of the function f at a point x).

By [f ](x) ≡ f(x+)− f(x−) we denote the jump of the function f ∈ C−1[−1, 1]
at the point x. By M ≡ M(f) we denote the number of discontinuities of the
function f ∈ C−1[−1, 1] and by xm ≡ xm(f), m = 1, . . . ,M , we denote the points
of discontinuity of the function f ∈ C−1[−1, 1] arranged in increasing order.

By Cr[a, b], r ∈ Z+, we denote the space of r-times continuously differentiable
functions on [a, b].

Definition 2.1. We say that a function f belongs to C̃r[a, b] if there exist points
a = x0 < x1 < . . . < xM < xM+1 = b, M < ∞, such that the function f is
r-times continuously differentiable over each interval (xm, xm+1), m = 0, 1, . . .,M ,
one-sided limits of the function and its derivatives up to rth derivative at the points
xm exist and are finite, and [f ](xm) ≡ [f (0)](xm) 6= 0, m = 1, 2, . . .,M .

By K we denote constants, possibly depending on some fixed parameters, and in
general distinct in different formulas. Sometimes the important arguments ofK will
be written explicitly in the expressions for it. For quantities An and Bn, possibly
depending on some other variables as well, we write An = o(Bn) or An = O(Bn),
if limn→∞An/Bn = 0 or supn∈N |An/Bn| <∞, respectively. For quantities A and
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B, depending on some variables, we write A ∼ B if the ratio A/B is between two
positive constants, independent of the variables.

We say that ρ(α,β) is a Jacobi weight if ρ(α,β)(x) = (1−x)α(1+x)β , α > −1 and
β > −1. If ρ(α,β) is a Jacobi weight, then by σ(ρ(α,β)) = (P (α,β)

n (x))∞n=0 we denote
the corresponding system of orthogonal polynomials P (α,β)

n (x) = γn(α, β)xn+lower
degree terms, γn(α, β) > 0, normalized by the condition P (α,β)

n (1) = ( n+α
n ), n ∈ N ;

i.e., ∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)ρ(α,β)(x)dx = 0, n 6= m.

The system σ(ρ(α,β)) is defined uniquely and is called the Jacobi system of or-
thogonal polynomials. Some important special cases of the Jacobi system are the
Chebyshev (α = β = −1/2), Legendre (α = β = 0), and Gegenbauer (α = β)
systems.

If fρ(α,β) is integrable on [−1, 1], then the function f has a Fourier series with
respect to the system σ(ρ(α,β)), and by S(α,β)

n (f, x) we denote the nth partial sum
of the Fourier series of f with respect to the system σ(ρ(α,β)); i.e.,

S(α,β)
n (f, x) =

n∑
k=0

µ
(α,β)
k a

(α,β)
k (f)P (α,β)

k (x),

where

a
(α,β)
k (f) =

∫ 1

−1

f(t)P (α,β)
k (t)ρ(α,β)(t)dt

is the kth Fourier coefficient of the function f and µ(α,β)
k ∼ k.

To avoid unnecessary complication of notation, we sometimes omit dependence
on parameters α > −1 and β > −1, as they are arbitrary, but fixed.

By virtue of the Christoffel-Darboux formula
(2.1)

P
(α,β)
n+1 (x)P (α,β)

n (t)− P (α,β)
n (x)P (α,β)

n+1 (t) = (x − t)h(α,β)
n

n∑
k=0

µ
(α,β)
k P

(α,β)
k (x)P (α,β)

k (t)

for n ∈ N , where h(α,β)
n ∼ 1/n.

If x(α,β)
k,n , k = 1, 2, . . ., n, are the zeros of the polynomial P (α,β)

n (x), then

(2.2) x
(α,β)
k,n+1 < x

(α,β)
k,n < x

(α,β)
k+1,n+1.

The asymptotic formula

(2.3) P (α,β)
n (cos τ) = K(α, β, τ)[cos (ñτ + γ̃) +O(1)(n sin τ)−1],

holds as n→∞, where

K(α, β, τ) = 2−(α+β)/2π−1/2 sin−α−1/2 (τ/2) cos−β−1/2 (τ/2),

ñ = n+ (α+ β + 1)/2, γ̃ = −(2α+ 1)π/4,

and
K/n ≤ τ ≤ π −K/n.

The following is a generalization of Rodrigues’ formula:

(2.4) ρ(α,β)(x)P (α,β)
k (x) =

(−1)i(k − i)!
2ik!

di

dxi
(ρ(α+i,β+i)(x)P (α+i,β+i)

k−i (x)),

where k ≥ i.
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This is the recurrence formula for the Jacobi polynomials

(2.5) A
(α,β)
k P

(α,β)
k+1 (x) + (x+B

(α,β)
k )P (α,β)

k (x) + C
(α,β)
k P

(α,β)
k−1 (x) = 0,

where

A
(α,β)
k =− 2(k + 1)(k + α+ β + 1)

(2k + α+ β + 1)(2k + α+ β + 2)
= O(1),

B
(α,β)
k =

α2 − β2

(2k + α+ β + 2)(2k + α+ β)
= O(

1
k2

),

C
(α,β)
k =− 2(k + α)(k + β)

(2k + α+ β + 1)(2k + α+ β)
= O(1)

(2.6)

for k ≥ 2 and P
(α,β)
0 (x) = 1 and P

(α,β)
1 (x) = (α+ β + 2)x/2 + (α − β)/2.

Let us mention an obvious consequence of (2.6):

A
(α+i,β+i)
k−i =A(α,β)

k +
2i(α+ β + i)

(2k + α+ β + 1)(2k + α+ β + 2)
= A

(α,β)
k +O(

1
k2

),

B
(α+i,β+i)
k−i =B(α,β)

k +
2i(α− β)

(2k + α+ β)(2k + α+ β + 2)
= B

(α,β)
k +O(

1
k2

),

C
(α+i,β+i)
k−i =C(α,β)

k

(2.7)

for fixed i ∈ N and k ≥ i+ 2.

(2.8) |P (α,β)
k−1 (x)| < K(α, β)k−1/2((1 − x)1/2 +

1
k

)−α−1/2((1 + x)1/2 +
1
k

)−β−1/2

holds for x ∈ [−1, 1] and k ∈ N . (Regarding (2.1)–(2.5) and (2.8), see [22, pp. 71,
46, 197, 97, 71, and 169.])

The following is a function which has a jump discontinuity of order i ∈ Z+, i.e.,
[f (s)](x) = 0, s = 0, 1, . . ., i − 1, and [f (i)](x) 6= 0, with magnitude 1 at the point
x ∈ (−1, 1) and which is smooth everywhere else:

(2.9) Hi(x, t) ≡
{

0, if −1 ≤ t < x,
(t−x)i

i! , if x < t ≤ 1.

Therefore, a given function f ∈ C̃r[−1, 1] can be expressed as follows:

(2.10) f =
r∑
i=0

M∑
m=1

[f (i)](xm)Hi(xm, ·) + fc,

where fc is r-times continuously differentiable on [−1, 1].
Obviously, the smoother fc is, the more rapidly a

(α,β)
k (fc) converges to zero.

Hence,

a
(α,β)
k (f) ≈

r∑
i=0

M∑
m=1

[f (i)](xm)a(α,β)
k (Hi(xm, ·))

and it is plausible to recover the information about the locations of discontinuities
and the associated jumps of a given function from its Fourier-Jacobi coefficients.
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It is easy to check that (see (2.4), (2.8), and (2.9))

a
(α,β)
k (Hi(x, ·)) =

(k − i− 1)!
2i+1k!

ρ(α+i+1,β+i+1)(x)P (α+i+1,β+i+1)
k−i−1 (x)

=
{
O(k−i−3/2)ρ(α/2+i/2+1/4,β/2+i/2+1/4)(x), if x ∈ [−1 + 1

k2 , 1− 1
k2 ],

O(kmax (α,β))ρ(α+i+1,β+i+1)(x), if x ∈ [−1, 1]\[−1 + 1
k2 , 1− 1

k2 ],

(2.11)

holds for k > i, i ∈ Z+.
For a given function f , the polynomial of i variables

a
(i)
k (t1, t2, . . . , ti) ≡ a(i)

k (f, t1, t2, . . ., ti), ti ∈ R, i = 1, 2, . . .,M,

is defined as

(2.12) a
(0)
k ≡ a

(0)
k (f) ≡ 2(k + 1)a(α,β)

k+1 (f)

for k ∈ Z+ and

a
(i)
k (t1, t2, . . ., ti) ≡A(α+1,β+1)

k a
(i−1)
k+1 (t1, t2, . . . , ti−1)

+ (ti +B
(α+1,β+1)
k )a(i−1)

k (t1, t2, . . . , ti−1)

+ C
(α+1,β+1)
k a

(i−1)
k−1 (t1, t2, . . . , ti−1)

(2.13)

for i ∈ N and k ≥ i, where a(1)
k (t1) ≡ A

(α+1,β+1)
k a

(0)
k+1 + (t1 + B

(α+1,β+1)
k )a(0)

k +

C
(α+1,β+1)
k a

(0)
k−1.

A particular value of the polynomial a(i)
k (t1, t2, . . ., ti), namely

a
(i)
k ≡ a

(i)
k (0, 0, . . ., 0),

will be called a higher order Fourier-Jacobi coefficient of the function f .
For a function f ∈ C−1[−1, 1] with M jump discontinuities we introduce the

M ×M matrix

(2.14) A(n)
M ≡ A(n)

M (f) ≡ (a(i)
n+j)

M−1
i,j=0.

If A(n)
M is nonsingular for some n ≥ M , then by xm(n) ≡ xm(f, n), m =

1, 2, . . .,M , we denote the solutions of the polynomial equation

(2.15) Q
(n)
M (x) ≡ xM +

M∑
i=1

(−1)iq(M)
M−i(n)xM−i = 0,

where q(M)
i (n), i = 0, 1, . . . ,M − 1, are determined by the linear equations

(2.16)
M−1∑
i=0

a
(i)
n+jq

(M)
i (n) + a

(M)
n+j = 0 (j = 0, 1, . . .,M − 1).

We also consider the matrices
(2.17)
P(n)
M ≡ P(n)

M (t1, t2, . . ., tM ) ≡ (p(M)
n ,p(M)

n+1, . . .,p
(M)
n+M−1) ≡ (P (α+1,β+1)

n+j (ti+1))M−1
i,j=0

for n ≥M and tm ∈ R, m = 1, 2, . . .,M , where
p(M)
s ≡ (P (α+1,β+1)

s (t1), P (α+1,β+1)
s (t2), . . ., P (α+1,β+1)

s (tM )) ∈ RM is the sth col-
umn vector of the matrix P(n)

M .



736 GEORGE KVERNADZE

If xm(n), m = 1, 2, . . .,M , represent solutions of the equation (2.15) for some
n ≥ M and P

(α+1,β+1)
k (xm(n)) 6= 0 for some k ∼ n, then fm(n), m = 1, 2, . . .,M ,

is determined by the equation

fm(n)ρ(α+1,β+1)(xm(n))P (α+1,β+1)
k (xm(n))

M∏
s=1;s6=m

(xs(n)− xm(n))

= a
(M−1)
k (x1(n), . . . , xm−1(n), xm+1(n), . . . , xM (n)).

(2.18)

Let us give some explanations to the notions introduced above.
First, via recurrence formulas (2.12) and (2.13), we have constructed the poly-

nomials a(i)
k (t1, t2, . . ., ti), k ≥ i, utilizing given Fourier-Jacobi coefficients of the

function f . Next, we considered the system of linear equations (2.16) using higher
order Fourier-Jacobi coefficients of a given function. Under assumption that the
linear system of equations is consistent, i.e., det A(n)

M 6= 0 (see (2.14)), we used
its solution to build the polynomial Q(n)

M ; see (2.15). It will be shown that the
solutions xm(n), m = 1, 2, . . .M , of the polynomial equation (2.15) represent ap-
proximations to the locations of discontinuities and the solutions of linear equations
(2.18) represent approximations to the magnitudes of the jumps of the given func-
tion f ∈ C̃3[−1, 1].

In what follows, in Lemma 2.2 we will derive a key identity which relates the
polynomials a(i)

k (f, t1, t2, . . ., ti), associated to a piecewise constant function f with
a finite number, M , of discontinuities, to the locations of discontinuities of the
function and the corresponding jumps; see (2.19). As a corollary we will learn
that the zeros of the polynomial a(M)

k (t1, t2, . . ., tM ) represent the locations of dis-
continuities xm, m = 1, 2, . . .,M , of the given piecewise constant function f , i.e.,
a

(M)
k (x1, x2, . . ., xM ) = 0; see (2.23).

Next, in Lemma 2.3, we will show that there is the close relation (2.27) between
higher order Fourier-Jacobi coefficients of a function f ∈ C−1[−1, 1], the associated
polynomials a(M)

k (t1, t2, . . ., tM ), and the coefficients of the polynomial (2.15).
Now, we formulate and give formal proofs for Lemmas 2.2 and 2.3.

Lemma 2.2. Let f be a piecewise constant function defined on [−1, 1] with a finite
number, M , of discontinuities at the points xm, m = 1, 2, . . .,M . Then
(2.19)

a
(i)
k (f, t1, t2, . . . , ti) =

M∑
m=1

[f ](xm)ρ(α+1,β+1)(xm)P (α+1,β+1)
k (xm)

i∏
s=1

(ts − xm),

where k ≥ i.

Proof. Since the function f is piecewise constant, it may be represented as

(2.20) f =
M∑
m=1

[f ](xm)H0(xm, ·) + f(−1+).

Then by (2.11), (2.12), and (2.20) we get

(2.21) a
(0)
k =

M∑
m=1

[f ](xm)ρ(xm)Pk(xm)

for k ∈ N , where ρ(x) ≡ ρ(α+1,β+1)(x) and Pk(x) ≡ P (α+1,β+1)
k (x).
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By virtue of (2.5), (2.13), and (2.21) we have

a
(1)
k (t1) =Aka

(0)
k+1 + (t1 +Bk)a(0)

k + Cka
(0)
k−1

=
M∑
m=1

[f ](xm)ρ(xm)[AkPk+1(xm) + (t1 +Bk)Pk(xm) + CkPk−1(xm)]

=
M∑
m=1

[f ](xm)ρ(xm)Pk(xm)(t1 − xm)

(2.22)

for k ≥ 1, where Ak ≡ A(α+1,β+1)
k , Bk ≡ B(α+1,β+1)

k , and Ck ≡ C(α+1,β+1)
k .

Now, in view of (2.5), (2.13), and (2.22), the rest of a proof may be completed
by mathematical induction. �

For a piecewise constant function f with M discontinuities at the points xm,
m = 1, 2, . . .,M , Lemma 2.2 instantly implies the following three identities (i ≤M):

a
(i)
k (x1, x2, . . . , xi) =

M∑
m=i+1

[f ](xm)ρ(α+1,β+1)(xm)P (α+1,β+1)
k (xm)

i∏
s=1

(xs − xm),

(2.23)

a
(M−1)
k (x1, . . . , xm−1, xm+1, . . . , xM )

= [f ](xm)ρ(α+1,β+1)(xm)P (α+1,β+1)
k (xm)

M∏
s=1;s6=m

(xs − xm),
(2.24)

and

(2.25) a
(i)
k = (−1)i

M∑
m=1

[f ](xm)ρ(α+1,β+1)(xm)P (α+1,β+1)
k (xm)(xm)i.

Lemma 2.3. Let f ∈ C−1[−1, 1] and suppose

QM (x) ≡ QM (t1, . . ., tM , x) ≡(x − t1)(x− t2). . .(x− tM )

≡xM +
M∑
i=1

(−1)iq(M)
M−i(t1, t2, . . ., tM )xM−i.

(2.26)

Then

(2.27) a
(M)
k (f, t1, t2, . . . , tM ) =

M−1∑
i=0

a
(i)
k (f)q(M)

i (t1, t2, . . ., tM ) + a
(M)
k (f)

for M ∈ N and k ≥M .

Proof. First of all, let us mention that the coefficient q(M)
i ≡ q

(M)
i (t1, t2, . . ., tM ),

i = 0, 1, . . .,M − 1, represents the ith elementary symmetric function of the M
numbers t1, t2, . . ., tM (cf. [12, p. 41]); i.e.,

(2.28) q
(M)
M−i =

∑
1≤m1<...<mi≤M

i∏
j=1

tmj .
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We will prove identity (2.27) by mathematical induction. Let M = 1. Then
(2.26) implies

(2.29) t1 = q
(1)
0 .

From (2.13), on the other hand, it follows that

a
(1)
k (t1) =Aka

(0)
k+1 + (t1 +Bk)a(0)

k + Cka
(0)
k−1

=a(0)
k t1 +Aka

(0)
k+1 + Bka

(0)
k + Cka

(0)
k−1 = a

(0)
k t1 + a

(1)
k ,

(2.30)

which combined with (2.29) produces the desired result for M = 1. (Here and
below we use the same abbreviations as in Lemma 2.2, i.e., Ak ≡ A(α+1,β+1)

k , etc.)
Now we assume that identity (2.27) is correct for M = m and we will prove it

for M = m+ 1. According to our assumption (2.27) and (2.13) we have (k ≥M)

a
(m+1)
k (t1, . . . , tm+1) =Ak(a(0)

k+1q
(m)
0 + . . .+ a

(m−1)
k+1 q

(m)
m−1 + a

(m)
k+1)

+ (tm+1 +Bk)(a(0)
k q

(m)
0 + . . .+ a

(m−1)
k q

(m)
m−1 + a

(m)
k )

+ Ck(a(0)
k−1q

(m)
0 + . . .+ a

(m−1)
k−1 q

(m)
m−1 + a

(m)
k−1)

=a(0)
k q

(m)
0 tm+1

+
m−2∑
i=0

[(Aka
(i)
k+1 +Bka

(i)
k + Cka

(i)
k−1)q(n)

i + a
(i+1)
k q

(m)
i+1 tm+1]

+ (Aka
(m−1)
k+1 +Bka

(m−1)
k + Cka

(m−1)
k−1 )q(m)

m−1 + a
(m)
k tm+1

+Aka
(m)
k+1 +Bka

(m)
k + Cka

(m)
k−1

=a(0)
k q

(m)
0 tm+1 +

m−2∑
i=0

[a(i+1)
k q

(m)
i + a

(i+1)
k q

(m)
i+1 tm+1]

+ a
(m)
k q

(m)
m−1 + a

(m)
k tm+1 + a

(m+1)
k

=
m∑
i=0

a
(i)
k q

(m+1)
i + a

(m+1)
k ,

(2.31)

since by (2.28) q(m)
i + q

(m)
i+1 tm+1 = q

(m+1)
i+1 for i = −1, 0, . . . ,m− 1, where q(m)

−1 = 0
and q(m)

m = 1. �

Finally, since solvability of the system of linear equations (2.16) depends on
invertibility of the matrix (2.14), let us study the matrix A(n)

M (f) in more details
for a function f ∈ C̃3[−1, 1].

If a function f ∈ C̃3[−1, 1] has jump discontinuities at xm, m = 1, 2, ..,M , then
it can be represented as

(2.32) f =
3∑
i=0

M∑
m=1

[f (i)](xm)Hi(xm, ·) + fc ≡
3∑
i=0

H(i) + fc ≡ H(0) + Fc,

where fc ∈ C3[−1, 1] and Fc ∈ C[−1, 1]. Thus,

(2.33) A(n)
M (f) = A(n)

M (H(0)) + A(n)
M (Fc),
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and if

(2.34) det(A(n)
M (H(0))) 6= 0

and

(2.35) ||(A(n)
M (H(0)))−1||||A(n)

M (Fc)|| < K < 1,

then by virtue of the Perturbation Lemma [11, p. 74] A(n)
M (f) is also nonsingular

and

(2.36) ||(A(n)
M (f))−1|| ≤ ||(A(n)

M (H(0)))−1||
1− ||(A(n)

M (H(0)))−1||||A(n)
M (Fc)||

.

It is known (cf. [11, p. 70]) that

(2.37) ||A|| = max
1≤i≤M

M∑
j=1

|aij |

for a matrix A = (aij)Mi,j=1.
Thus, in view of (2.6), (2.11)–(2.14), (2.32), (2.37), and (3.3),

(2.38) ||A(n)
M (Fc)|| = O(

1
n3/2

)[
M∑
m=1

|[f ′](xm)|ρ(α/2+3/4,β/2+3/4)(xm) + o(1)].

Substituting (2.25) into (2.14), it is easy to check that the matrix A(n)
M (H(0))

may be represented as the product of four matrices

A(n)
M (H(0)) = ((−1)i+1δij)Mi,j=1 × ((xj+1)i)M−1

i,j=0

× ([f ](xi)ρ(α+1,β+1)(xi)δij)Mi,j=1 ×P(n)
M (x1, . . ., xM )

≡∆×V × F×P,

(2.39)

where the second matrix in the product is an M ×M Vandermonde matrix, the
third matrix is diagonal, and the forth matrix is defined by (2.17).

Since the first three matrices in this representation are nonsingular, it follows
that condition (2.34) is equivalent to the condition det P 6= 0.

Furthermore, if P is nonsingular, then by virtue of (2.39) and the inequality
||A×B|| ≤ ||A||||B|| [11, p. 70] we have
(2.40)
||∆||−1||V||−1||F||−1||P−1|| ≤ ||(A(n)

M (H(0)))−1|| ≤ ||∆−1||||V−1||||F−1||||P−1||.

However, it is known [7] that

(2.41) ||V−1|| ≤ max
1≤m≤M

M∏
k=1;k 6=m

1 + |xk|
|xm − xk|

.
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Hence, combining (2.39)–(2.41), we get
1
M

min
1≤m≤M

1
|[f ](xm)|ρ(α+1,β+1)(xm)

||(P(n)
M (x1, x2, . . ., xM ))−1||

≤ ||(A(n)
M (H(0)))−1||

≤ max
1≤m≤M

M∏
k=1;k 6=m

2
|xm − xk|

× max
1≤m≤M

1
|[f ](xm)|ρ(α+1,β+1)(xm)

||(P(n)
M (x1, x2, . . ., xM ))−1||,

(2.42)

where by virtue of (2.8) and (2.17)

O(n1/2) min
1≤m≤M

ρ(α/2+3/4,β/2+3/4)(xm) ≤||P(n)
M ||−1

≤||(P(n)
M )−1||.

(2.43)

Together, (2.43) with (2.38), and (2.42) imply that condition (2.35) of the Per-
turbation Lemma will be satisfied for sufficiently large n.

The importance of the matrix P(n)
M (x1, x2, . . ., xM ) should be clear now, as non-

singularity of the matrix A(n)
M (f) and the magnitude of its inverse depend on it.

It is easy to construct matrices P(k)
M (x1, x2, . . ., xM ) such that

det P(k)
M (x1, x2, . . ., xM ) = 0

for M consecutive indices. Just pick x1, x2, . . ., xM to be the zeros of P (α+1,β+1)
n+M−1 (x)

and consider P(k)
M (x1, x2, . . ., xM ) for k = n, n+ 1, . . ., n+M − 1.

However,

Lemma 2.4. For any fixed xi 6= xj , i 6= j, and n ∈ N , at least one out of M + 1
consecutive matrices P(k)

M (x1, x2, . . ., xM ), k = n, n+ 1, . . ., n+M , is nonsingular.

Proof. M = 1. This case is trivial. Indeed, by (2.17), P(k)
1 (x1) = (Pk(x1)). (Here

and below we use the same abbreviation as in (2.21) and (2.22).) Thus, invertibility
of the matrix depends on whether x1 is a zero of the polynomial Pk(x). By (2.2)
Pk(x1) 6= 0 for at least one k = n, n+ 1.
M = 2. Let us assume that for some n ∈ N , det P(k)

2 (x1, x2) = 0 for k =
n, n+ 1, n+ 2. Thus

Pn(x1)Pn+1(x2)− Pn(x2)Pn+1(x1) = 0,(2.44)

Pn+1(x1)Pn+2(x2)− Pn+1(x2)Pn+2(x1) = 0,(2.45)

Pn+2(x1)Pn+3(x2)− Pn+2(x2)Pn+3(x1) = 0.(2.46)

Since x1 6= x2, the combination of (2.1) with (2.44)–(2.46) leads to

(2.47) Pn+1(x1)Pn+1(x2) = 0

and

(2.48) Pn+2(x1)Pn+2(x2) = 0.

Without loss of generality let us assume that Pn+2(x1) = 0. Then, by (2.2) it
follows that Pn+1(x1) 6= 0. Thus (2.47) implies Pn+1(x2) = 0, which combined with
(2.44) implies Pn+1(x1) = 0, an obvious contradiction.
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M ≥ 3. The rest of the proof is based on mathematical induction. Let us
introduce the additional notation Xm ≡ (δijxi)mi,j=1. Then, by (2.5) and (2.17)

(2.49) Xmp(m)
k = −(Akp

(m)
k+1 +Bkp

(m)
k + Ckp

(m)
k−1)

for k ≥ 2.
Now, assuming that Lemma 2.4 is correct for M = m − 1, we prove it for the

M = m case.
According to our assumption, at least one system out of the systems of vectors

{p(m)
k ,p(m)

k+1, . . .,p
(m)
k+m−2}, k = n+ 1, n+ 2, . . ., n+m, will be linearly independent.

Without loss of generality, let as assume that

(2.50) dim(Span{p(m)
n+1,p

(m)
n+2, . . .,p

(m)
n+m−1}) = m− 1.

Now let us assume to the contrary that

(2.51) dim(Span({p(m)
k ,p(m)

k+1, . . .,p
(m)
k+m−1})) < m

for k = n, n+ 1, . . ., n+m.
Combining (2.49) and (2.51), it is easy to check that the linear operator T (y) =

Xmy, T : Rm → Rm, maps the subspace Span{p(m)
n+1,p

(m)
n+2, . . .,p

(m)
n+m−1} into itself.

Since the consecutive Jacobi polynomials do not have common zeros (see (2.2)),
there exists a constant K such that the vector q ≡ (q(x1), q(x2), . . ., q(xM )) ≡
p(m)
n+1 +Kp(m)

n+2 has no zero entry, i.e., q(xi) 6= 0, i = 1, 2, . . .,m.
Now, repeatedly applying the linear operator T to the vector q, we have (Xm)sq

∈ Span{p(m)
n+1,p

(m)
n+2, . . .,p

(m)
n+m−1}, s = 0, 1, . . .,m− 1, and

(2.52) det(q,Xmq, . . ., (Xm)m−1q) =
m∏
i=1

q(xi) det V 6= 0,

where V is an m ×m Vandermonde matrix with distinct xi 6= xk, i 6= k, entries,
and that contradicts (2.50). �

The magnitude of ||(P(k)
M (x1, x2, . . ., xM ))−1|| is much harder to analyze. For

M = 1, by virtue of (2.3), the measure of the set {x|x ∈ [−1, 1] and ||(P(k)
1 (x))−1|| =

1/|P (α,β)
n (x)| > Kn−1/2} is O(1/K). In general, we do not have estimates for

||(P(k)
M (x1, x2, . . ., xM ))−1||, although numerical simulations show that typically the

norms are not large.
Finally, combining (2.36), (2.38), (2.42), and (2.43), we obtain the following

rough estimate

||(A(n)
M (f))−1|| ≤O(1) max

1≤m≤M

1
|[f ](xm)|ρ(α+1,β+1)(xm)

max
1≤m≤M

M∏
k=1;k 6=m

1
|xm − xk|

× ||(P(n)
M )−1||K−1

0 ,

(2.53)



742 GEORGE KVERNADZE

where

K0 =1−O(
1

n3/2
)K1K2,

K1 =
M∑
m=1

|[f ′](xm)|ρ(α/2+3/4,β/2+3/4)(xm) + o(1),

K2 = max
1≤m≤M

1
|[f ](xm)|ρ(α+1,β+1)(xm)

max
1≤m≤M

M∏
k=1;k 6=m

1
|xm − xk|

||(P(n)
M )−1||.

(2.54)

3. Main results

A combination of Lemmas 2.2 and 2.3 leads to the first important result, The-
orem 3.1: The locations of discontinuities and the associated jumps of a piece-
wise constant function with a finite number, M , of discontinuities can be recov-
ered exactly in terms of its Fourier-Jacobi coefficients. Indeed, by Lemma 2.2,
a

(M)
k (x1, x2, . . ., xM ) = 0. On the other hand (Lemma 2.3) a(M)

k (x1, x2, . . . , xM ) =∑M−1
i=0 a

(i)
k q

(M)
i (x1, x2, . . ., xM )+a(M)

k . Therefore, solving the system of linear equa-
tions (2.16), we can recover the coefficients of the polynomial (2.15), i.e., (2.26),
with the roots equal to the locations of discontinuities of the given piecewise con-
stant function f .

In a more general case, Theorem 3.2, approximating the locations of discon-
tinuities of a function of the C̃3[−1, 1] class, we will proceed the following way:
Although a

(M)
k (x1, x2, . . ., xM ) 6= 0 for a function which is not piecewise constant,

still it will be shown that a(M)
k (x1, x2, . . ., xM ) ≈ 0 for sufficiently large k. Hence,

solving the homogeneous system of linear equations (2.16) instead of the nonhomo-
geneous system

∑M−1
i=0 a

(i)
k q

(M)
i (x1, x2, . . ., xM ) + a

(M)
k = a

(M)
k (x1, x2, . . . , xM ) ≈ 0,

k = n, n+ 1, . . ., n+M − 1, we will recover the coefficients of the polynomial (2.15)
only approximately. It will be shown in Theorem 3.2 that the roots of the poly-
nomial (2.15) are within O(1/n2) to the locations of discontinuities of the given
function.

Theorem 3.1. Let f be a piecewise constant function defined on the segment [−1, 1]
with a finite number, M , of discontinuities at the points xm, m = 1, 2, . . . ,M . Also
suppose that the matrix A(n)

M (f) (2.14) is nonsingular for some n ≥ M . Then
the solutions of the polynomial equation (2.15) represent the discontinuity locations
and the solutions of the linear equations (2.18) represent the associated jumps of
the function f .

Proof. Let us consider the polynomial QM (2.26) with tm = xm, m = 1, 2, . . .,M .
In order to prove that the polynomials Q(n)

M and QM have identical roots, it suffices
to show that they have identical coefficients, i.e., q(M)

i (n) = q
(M)
i , i = 0, 1, . . .,M−1.

The coefficients q(M)
i (n) are determined by the condition (2.16). Since the func-

tion f is piecewise constant, it follows that a(M)
k (x1, x2, . . . , xM ) = 0 for k ≥ M

(check (2.23) for i = M), which combined with (2.27) with tm = xm, m =
1, 2, . . .,M , implies that the coefficients q(M)

i satisfy the same condition (2.16).
On the other hand, no other choice for tm, m = 1, 2, . . .,M , except tm = xm, will

make it possible that a(M)
k (t1, t2, . . . , tM ) = 0 for k = n, n+1, . . ., n+M−1. Indeed,
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since det A(n)
M (f) 6= 0, (2.19) implies that

∏M
s=1(ts − xm) = 0, m = 1, 2, . . .,M ,

which is possible only if tm = xm.
Finally, if xm(n) = xm, m = 1, 2, . . . ,M , the linear equations (2.18) and (2.24)

are identical. Thus fm(n) = [f ](xm), m = 1, 2, . . .,M . �

Now we study the accuracy of the approximation to the locations of discontinu-
ities for a function of the C̃r[−1, 1] class.

Theorem 3.2. Suppose the function f belongs to C̃3[−1, 1], M ≥ 2. In addition,
let us assume that the matrix A(n)

M (f) (2.14) is nonsingular for some n ≥ M + 3.
Then

xm(n) = xm+O(
1

n5/2
)

||(A(n)
M )−1||

ΠM
i,j=1;i<j(xi − xj)

× (
M∑
m=1

|[f ′](xm)|ρ(α/2+3/4,β/2+3/4)(xm) + o(1)),

(3.1)

where xm(n), m = 1, 2, . . .,M , are the roots of the polynomial equation (2.15).

Proof. The following is an outline of the proof: First we obtain an estimate for the
difference between the coefficients of polynomials Q(n)

M and QM ; then we estimate
the difference between the roots of those polynomials.

Since the function f belongs to C̃3[−1, 1], it can be represented as in (2.32).
Due to (2.11) and (2.32),

a
(α,β)
k (f) =

3∑
i=0

M∑
m=1

[f (i)](xm)
(k − i− 1)!

2i+1k!
ρ(α+i+1,β+i+1)(xm)P (α+i+1,β+i+1)

k−i−1 (xm)

+ a
(α,β)
k (fc).

(3.2)

Hence,

a
(0)
k =2(k + 1)a(α,β)

k+1 (f) =
M∑
m=1

[f ](xm)ρ(α+1,β+1)(xm)P (α+1,β+1)
k (xm)

+
1
2k

M∑
m=1

[f ′](xm)ρ(α+2,β+2)(xm)P (α+2,β+2)
k−1 (xm)

+
1

4k(k − 1)

M∑
m=1

[f ′′](xm)ρ(α+3,β+3)(xm)P (α+3,β+3)
k−2 (xm)

+
1

8k(k − 1)(k − 2)

M∑
m=1

[f (3)](xm)ρ(α+4,β+4)(xm)P (α+4,β+4)
k−3 (xm)

+ a
(0)
k (fc)

(3.3)

for k ≥ 3, where a(0)
k (fc) = o(k−5/2) by virtue of (2.11).
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By (2.5), (2.6), (2.13), (2.23), and (3.3) we have

a
(1)
k (x1) = A

(α+1,β+1)
k a

(0)
k+1 + (x1 +B

(α+1,β+1)
k )a(0)

k + C
(α+1,β+1)
k a

(0)
k−1

=
M∑
m=2

[f ](xm)ρ(α+1,β+1)(xm)P (α+1,β+1)
k (xm)(x1 − xm)

+
1
2

M∑
m=1

[f ′](xm)ρ(α+2,β+2)(xm)

× [
A

(α+1,β+1)
k

k + 1
P

(α+2,β+2)
k (xm) +

x1 +B
(α+1,β+1)
k

k
P

(α+2,β+2)
k−1 (xm)

+
C

(α+1,β+1)
k

k − 1
P

(α+2,β+2)
k−2 (xm)]

+
1
4

M∑
m=1

[f ′′](xm)ρ(α+3,β+3)(xm)

× [
A

(α+1,β+1)
k

(k + 1)k
P

(α+3,β+3)
k−1 (xm) +

x1 +B
(α+1,β+1)
k

k(k − 1)
P

(α+3,β+3)
k−2 (xm)

+
C

(α+1,β+1)
k

(k − 1)(k − 2)
P

(α+3,β+3)
k−3 (xm)] + . . .+ a

(1)
k (fc, x1)

≡ I1 + I2 + I3 + I4 + o(
1

k5/2
).

(3.4)

By virtues of (2.7) and since (k + 1)−1 = k−1 − (k(k + 1))−1 and (k − 1)−1 =
k−1 + (k(k − 1))−1, we have

I2 =
1
2

M∑
m=1

[f ′](xm)ρ(α+2,β+2)(xm)

× [(
1
k
− 1
k(k + 1)

)(A(α+2,β+2)
k−1 +O(

1
k2

))P (α+2,β+2)
k (xm)

+
1
k

(x1 +B
(α+2,β+2)
k−1 +O(

1
k2

))P (α+2,β+2)
k−1 (xm)

+ (
1
k

+
1

k(k − 1)
)C(α+2,β+2)

k−1 P
(α+2,β+2)
k−2 (xm)]

≡ I2,1 + I2,2,

(3.5)

where by (2.5),

I2,1 =
1
2k

M∑
m=1

[f ′](xm)ρ(α+2,β+2)(xm)

× [A(α+2,β+2)
k−1 P

(α+2,β+2)
k (xm) + (x1 +B

(α+2,β+2)
k−1 )P (α+2,β+2)

k−1 (xm)

+ C
(α+2,β+2)
k−1 P

(α+2,β+2)
k−2 (xm)]

=
1
2k

M∑
m=2

[f ′](xm)ρ(α+2,β+2)(xm)P (α+2,β+2)
k−1 (xm)(x1 − xm),

(3.6)
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and by (2.6) and (2.8),

|I2,2| =O(
1
k2

)
M∑
m=1

|[f ′](xm)|ρ(α+2,β+2)(xm)
k∑

i=k−2

|P (α+2,β+2)
i (xm)|

=O(
1

k5/2
)
M∑
m=1

|[f ′](xm)|ρ(α/2+3/4,β/2+3/4)(xm).

(3.7)

Analogously,

I3 =
1

4k(k − 1)

M∑
m=2

[f ′′](xm)ρ(α+3,β+3)(xm)P (α+3,β+3)
k−2 (xm)(x1 − xm)

+O(
1

k7/2
)
M∑
m=1

|[f ′′](xm)|ρ(α/2+5/4,β/2+5/4)(xm)

(3.8)

and I4 = O(k−9/2).
Combining (3.4)–(3.8), we obtain

a
(1)
k (x1) =

M∑
m=2

[f ](xm)ρ(α+1,β+1)(xm)P (α+1,β+1)
k (xm)(x1 − xm)

+
1
2k

M∑
m=2

[f ′](xm)ρ(α+2,β+2)(xm)P (α+2,β+2)
k−1 (xm)(x1 − xm)

+
1

4k(k − 1)

M∑
m=2

[f ′′](xm)ρ(α+3,β+3)(xm)P (α+3,β+3)
k−2 (xm)(x1 − xm)

+O(
1

k5/2
)(

M∑
m=1

|[f ′](xm)|ρ(α/2+3/4,β/2+3/4)(xm) + o(1)).

(3.9)

Next, we construct the sequence a(2)
k (x1, x2), . . ., a(M)

k (x1, x2, . . ., xM ) by the re-
cursion formula (2.13). Subsequently, by (2.6), (2.13), (2.23), and (3.9) we obtain

(3.10)

a
(M)
k (x1, x2, . . ., xM ) = O(

1
k5/2

)(
M∑
m=1

|[f ′](xm)|ρ(α/2+3/4,β/2+3/4)(xm) + o(1)).

Furthermore, combining (2.27) with tm = xm, m = 1, 2, . . .,M , and (3.10), we
conclude that the coefficients q(M)

i , i = 0, 1, . . .,M − 1, of the algebraic equation
(2.26) satisfy the system of linear equations
(3.11)
M−1∑
i=0

a
(i)
n+jq

(M)
i + a

(M)
n+j = O(

1
n5/2

)(
M∑
m=1

|[f ′](xm)|ρ(α/2+3/4,β/2+3/4)(xm) + o(1))

for j = 0, 1, . . .,M − 1. Hence, by virtue of (2.16),

(3.12) q(M)(n)− q(M) = (A(n)
M )−1r(n),
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where q(M)(n) ≡ (q(M)
0 (n), . . ., q(M)

M−1(n)), q(M) ≡ (q(M)
0 , . . ., q

(M)
M−1), and

(3.13) ||r(n)|| = O(
1

n5/2
)(

M∑
m=1

|[f ′](xm)|ρ(α/2+3/4,β/2+3/4)(xm) + o(1))

is the residual vector.
Thus,

(3.14) ||q(M)(n)− q(M)|| ≤ ||(A(n)
M )−1||||r(n)||.

Now, let us consider the function F (x1, x2, . . ., xM ) = (q(M)
M−1, q

(M)
M−2, . . ., q

(M)
0 ) ∈

RM with the domain {(x1, x2, . . ., xM )| − 1 < x1 < x2 < . . . < xM < 1}, i.e., the
function mapping the real distinct roots of a monic polynomial on its coefficients
(see (2.26)). Obviously the function F is differentiable and it is not difficult to
check that (see (2.28) and [17, Lemma, p. 137])

(3.15) det(F ′(x1, x2, . . ., xM )) =
M∏

i,j=1;i<j

(xi − xj) 6= 0.

Hence, the inverse of the function F exists and is differentiable (cf. [21, Theorem
2-11, p. 35]). Later this implies that F−1 belongs to the Lip1 class (cf. [21, Lemma
2-10, p. 35]), i.e.,

||x− x(n)|| ≤K(M)||(F−1)′(F−1(x1, . . ., xM ))||||q(M) − q(M)(n)||
=K(M)||(F ′(x1, x2, . . ., xM ))−1||||q(M) − q(M)(n)||,

(3.16)

where x ≡ (x1, x2, . . ., xM ) and x(n) ≡ (x1(n), x2(n), . . ., xM (n)). However,

(F ′(x1, x2, . . ., xM ))−1 =
adj(F ′(x1, x2, . . ., xM ))
det(F ′(x1, x2, . . ., xM ))

(cf. [17, p. 334]) and

|| adj(F ′(x1, x2, . . ., xM ))|| ≤ K(M)

since |xm| < 1, m = 1, 2, . . .,M . Thus,

(3.17) ||x− x(n)|| ≤ K(M)
| det(F ′(x1, x2, . . ., xM ))| ||q

(M) − q(M)(n)||.

Together (3.13)–(3.15) and (3.17) lead to the estimate (3.1). �

The following is an estimate of the accuracy of approximation to jumps.

Theorem 3.3. Suppose the function f belongs to C̃3[−1, 1], M ≥ 2. In addition,
let us assume that det(A(n)

M (f)) 6= 0 (2.14) and P
(α+1,β+1)
k (xm(n)) 6= 0 for some

n ≥M + 3 and k ∼ n. Then

fm(n) =[f ](xm) +
||x(n) − x||n−1/2

ρ(α+1,β+1)(xm(n))P (α+1,β+1)
k (xm(n))

∏M
s=1;s6=m(xs(n)− xm(n))

× {O(n)[f ](xm)ρ(α/2−1/4,β/2−1/4)(ξm(n))
M∏

s=1;s6=m
(xs(n)− xm(n))

+ [f ](xm)ρ(α/2−1/4,β/2−1/4)(xm) +O(1)}

(3.18)
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for some ξm(n) ∈ (min(xm, xm(n)),max(xm, xm(n))).

The proof of Theorem 3.3 is essentially analogous to the proof of Theorem 3.2
and we omit the details.

Estimates for a function with a single jump discontinuity are the same except
for the term

∏M
i,j=1;i<j(xi − xj).

4. Description of the algorithm and numerical examples

First, let us clarify the order of accuracy for the estimates (3.1) and (3.18).
According to (2.40) and (2.43), roughly the error terms in the estimates (3.1) and
(3.18) for a function f ∈ C̃3[−1, 1] cannot be better than xm(f, n) − xm(f) =
O(1/n2) and fm(n)− [f ](xm) = O(n)||x(n) − x|| = O(1/n), respectively.

Obviously the following question should be addressed: How do we extract in-
formation about the exact number, M , of discontinuities from a finite number of
Fourier-Jacobi coefficients?

We suggest two possible ways to recover the number of discontinuities: First,
following Eckhoff [5, p. 688], we pick a trial number M̃ , large enough to guarantee
that M̃ > M . Then the rank of the matrix A(n)

M̃
will equal M . Second, we may

utilize the identity determining the jumps of a bounded not-too-highly oscillating
function by means of its differentiated Fourier-Jacobi partial sums (for more general
kernels, see [10]).

Theorem 4.1 ([13]). Let r ∈ Z+ and suppose ΛBV is the class of functions of
Λ-bounded variation determined by the sequence Λ = (λk)∞k=1. Then the identity

(4.1) lim
n→∞

(S(α,β)
n (f, x))(2r+1)

n2r+1
=

(−1)r(1− x2)−r−1/2

(2r + 1)π
[f ](x)

is valid for every f ∈ ΛBV and each fixed x ∈ (−1, 1), if condition ΛBV ⊂ HBV
holds.

(ΛBV , and in particular HBV , is a class of functions with generalized bounded
variation. For the exact definition consult [23].)

According to identity (4.1), for a fixed r and sufficiently large n, the function
(1− x2)r+1/2|(S(α,β)

n (f, x))(2r+1)|/n2r+1 must attain the largest local maximum in
the vicinity of the actual points of discontinuity of the function f . Hence, we may
assume that the number of discontinuities, M , equals the number of sharp local
spikes of the graph of the differentiated Fourier-Jacobi partial sum.

Our technique might also be usable in conjunction with the other author’s meth-
ods. For instance, the nonlinear enhancement procedure developed by Gelb and
Tadmor in [10] can be used to recover the number of discontinuities, M , with more
success. Once the nonlinear enhancement is applied, it gives a picture of sharp
spikes at the vicinity of the actual locations of discontinuities of a function, remov-
ing other oscillatory behavior of the graph (see [10, Figures 5–8, pp. 1406–1407]).
Thus, it makes it easier to identify the exact number of discontinuities of a function.

Regarding the norm of (A(n)
M )−1, by virtue of (2.53), it essentially depends on the

behavior of the matrix (P(n)
M (x1, x2, . . ., xM ))−1. We suggest using QR factorization

to estimate the norm of the matrix (A(n)
M )−1 in order to avoid a sharp decline in

the accuracy of approximations. (See [11, p. 75].)
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Let us illustrate a direct application of the method to the following function with
two jump discontinuities:

(4.2) f1(x) =


0 if −1 < x < −2/3,√
x+ 1 if −2/3 < x < 1/2,

0 if 1/2 < x < 1.

(We are assuming that a finite number of its Fourier-Legendre coefficients are
known.)

Utilizing Fourier-Legendre coefficients of the function f1, we calculate its higher
order Fourier coefficients via the formulas (2.12) and (2.13).

Next, we pick M̃ = 6 and apply QR factorization to the matrix (2.14) in order
to identify the rank of the matrix, i.e., the number of discontinuities of the function
f1 ((−k) ≡ 10−k, k ∈ Z+).

The following is the triangular matrix of QR factorization of the matrix (2.14)
for M̃ = 6:

−0.55 0.19 −0.15 0.04 −0.04 0.005
0 0.23 0.04 0.082 0.03 0.03
0 0 −1.5(−5) −9.6(−6) −1.8(−5) −1.4(−5)
0 0 0 −1.2(−5) −1.1(−5) −1.4(−5)
0 0 0 0 7.2(−6) 6.7(−7)
0 0 0 0 0 4.9(−6)

 .

It is reasonable to assume that M = 2.
Next, we calculate the norms of the matrix (A(n)

M )−1 to avoid a sharp decline
in the accuracy of approximations. The results of calculation are summarized in
Table 1.

Table 1. The norms of the matrix (A(n)
M )−1 for various values of n.

n 32 64 128

||(A(n)
M )−1|| 9.3 10.0 26.3

Now, the system of linear equations (2.16) is solved and the results are given in
Table 2.

Finally, the polynomial equation (2.15) is solved with the coefficients presented
in Table 2. The final results are presented in Table 3.

We have tested the theoretical result of Theorem 3.1 via a symbolic computation
using Mathematica. The following is a piecewise constant function with ten discon-
tinuities, some of them clustered within 0.0001 distance, and with the corresponding
jumps ranging from 0.01 to 100:

f2(x) =
1
2
H0(− 999

1000
, x) +

1
5
H0(− 99

100
, x) +

1
10
H0(− 2

10000
, x)

+
1

100
H0(− 1

10000
, x) +H0(

1
1000

, x) − 1
100

H0(
2

1000
, x) +H0(

1
2
, x)

+ 10H0(
2
3
, x) + 100H0(

998
1000

, x) +H0(
999
1000

, x).

(4.3)
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Table 2. The solutions of the system of linear equations (2.16)
for various values of n with absolute errors in the estimates to the
coefficients q0 = −1/3 and q1 = −1/6 of the polynomial (2.15).

n 32 64 128

q0(n) −0.33354 −0.333392 −0.333348

|q0(n)− q0| 2.06(−4) 5.86(−5) 1.46(−5)

q1(n) −0.167629 −0.166917 −0.166731

|q1(n)− q1| 9.62(−4) 2.50(−4) 6.43(−5)

Table 3. The solutions of the polynomial equation (2.15) for var-
ious values of n with absolute errors in the estimates to the dis-
continuity locations x1 = −2/3 and x2 = 1/2 for function (4.2).

n 32 64 128

x1(n) −0.667393 −0.66686 −0.666716

|x1 − x1(n)| 7.26(−4) 1.93(−4) 4.91(−5)

x2(n) 0.499765 0.499942 0.499985

|x2 − x2(n)| 2.35(−4) 5.76(−5) 1.49(−5)

All discontinuity locations, as well as the associated jumps, of the function f2

have been recovered exactly using its Fourier-Legendre coefficients. We have also
considered other piecewise constant functions utilizing its Fourier-Jacobi coefficients
with various indices α > −1 and β > −1. For all of them the discontinuity locations
have been recovered exactly.

Next, we have considered the function f2 perturbed by a smooth function on the
interval [−1, 1], i.e., f3(x) = f2(x) + 5/(2x2 + x− 6).

Despite the highly clustered discontinuity locations, as well as a large ratio of
the magnitudes of the jumps, we found the absolute value of the largest error for
approximation to the points of discontinuity and the associated jumps as it is given
in Table 4.

The following is a function with three jump discontinuities:

(4.4) f4(x) =


0 if −1 < x < −1/4,
ex if −1/4 < x < 1/3,
sinx if 1/3 < x < 2/3,
0 if 2/3 < x < 1.

Below we present the absolute values of the largest error in the estimation of the
points of discontinuity and the associated jumps of the function (4.4) obtained by
applying the suggested method and summarized in Table 5.
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Table 4. Largest errors in the approximation to the locations and
associated jumps of function f3 using its Fourier-Legendre coeffi-
cients.

n 32 64 128

Location-error 4.9(−1) 6.3(−8) 3.8(−35)

Jump-error 5.5(−1) 1.1(−5) 6.6(−33)

Table 5. Largest errors in the estimates to the discontinuity lo-
cations and the associated jumps for the function (4.4) using its
Fourier-Legendre coefficients.

n 32 64 128 256

Location-error 1.2(−3) 2.1(−4) 5.4(−5) 1.3(−5)

Jump-error 1.4(−2) 4.0(−3) 2.4(−3) 3.4(−4)

This is a piecewise polynomial function with five jump discontinuities:

(4.5) f5(x) =


x2 + 2x/3 + 10/9 if −1 < x < −1/3,
x/6 + 7/144 if −1/3 < x < −1/4,
x2 − 1 if −1/4 < x < 0,
4x2 − 4x+ 1 if 0 < x < 1/2,
9x2 − 12x+ 5 if 1/2 < x < 2/3.

The absolute value of the largest absolute error in the computed singularity
locations and the associated jumps for the function (4.5) are given in Table 6.

Table 6. Largest errors in the approximations to the locations
and the associated jumps of the function (4.5) using Fourier-
Legendre coefficients.

n 32 64 128 256

Location-error 2.1(−2) 5.0(−4) 1.2(−4) 3.9(−5)

Jump-error 6.5(−1) 2.4(−2) 1.1(−2) 6.6(−3)
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