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A LOWER BOUND FOR RANK 2 LATTICE RULES

FRIEDRICH PILLICHSHAMMER

Abstract. We give a lower bound for a quality measure of rank 2 lattice rules
which shows that an existence result of Niederreiter is essentially best possible.

1. Introduction

For the definition and the general theory of lattice rules for multivariate integra-
tion we refer to the monographs of Niederreiter [7] and of Sloan and Joe [9].

A rank 2 lattice rule is a quadrature rule for functions f over the s-dimensional
unit cube [0, 1]s of the form

Q(f) =
1
N

n1∑
k1=1

n2∑
k2=1

f({k1z1/n1 + k2z2/n2}),(1)

which cannot be re-expressed in an analogous form with a single sum. Here n1, n2

are positive integers such that n2|n1, N = n1n2 and z1, z2 are vectors in Zs. The
integers n1, n2 are called the invariants of the lattice rule. (For a vector x ∈ Rs the
fractional part {x} is defined componentwise.)

For a given rank 2 lattice rule with invariants n1 and n2, N = n1n2 and with
z1 = (z1, . . . , zs) and z2 = (ζ1, . . . , ζs) for zi, ζi ∈ Z, we define the quantity

RN (z1, z2) :=
∑

−N<h1,...,hs<N
h1z1+...+hszs≡0 (mod n1)
h1ζ1+...+hsζs≡0 (mod n2)

∗ 1
r(h1) . . . r(hs)

,

where
∑ ∗

means summation over (h1, . . . , hs) 6= (0, . . . , 0), and where r(h) =
max(1, |h|) for h ∈ Z.

Let f : [0, 1]s −→ R be a real-valued periodic function with period 1 in each vari-
able and with Fourier-coefficients f̂(h), h = (h1, . . . , hs) ∈ Zs, satisfying |f̂(h)| =
O(r(h)−α) for some α > 1 where r(h) =

∏s
i=1 r(hi). Then for the integration error

of any rank 2 lattice rule (1) we have the relation∣∣∣∣∣
∫

[0,1]s
f(x) dx −Q(f)

∣∣∣∣∣ = O(RN (z1, z2)α).

For a proof of this result see [6] or [7].
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Another reason for the importance of the quantity RN is its relation to the
discrepancy DN of the finite s-dimensional point set{

k1

n1
z1 +

k2

n2
z2

}
, ki = 1, . . . , ni, 1 ≤ i ≤ 2.(2)

(For the definition of the discrepancy DN see, for example, [3] or [7].) In fact, it
was shown by Niederreiter and Sloan [8] that the discrepancy of the point set (2)
can be estimated by

DN ≤
s

N
+

1
2
RN (z1, z2).

(A proof of this estimate can also be found in [7].)
In [6] Niederreiter proved that for every dimension s ≥ 2 and for any prescribed

invariants n1 and n2, N = n1n2, there exist integer vectors of the form z1 =
(z1, . . . , zs), z2 = (0, ζ2, . . . , ζs) with gcd(zi, n1) = 1, 1 ≤ i ≤ s, and gcd(ζi, n2) = 1,
2 ≤ i ≤ s, such that

RN (z1, z2) < c′s

(
(logN)s

N
+

logN
n1

)
,

where c′s > 0 is a constant only depending on s. Note that the lattice rule in
Niederreiter’s existence result is projection-regular. (See [7] for the definition of
projection-regular lattice rules.)

In this paper we prove a lower bound for the quantity RN (z1, z2) which shows
that Niederreiter’s estimate is essentially best possible.

2. Statement and proof of the result

We have

Theorem 2.1. For every dimension s ≥ 2 there is a constant cs > 0, depending
only on s, with the following property: for any prescribed invariants n1 and n2 with
n2|n1, N = n1n2 and for any integer vectors z1 = (z1, . . . , zs) and z2 = (ζ1, . . . , ζs)
such that there is an index 1 ≤ i0 ≤ s with gcd(zi0 , n1) = 1, we have

RN (z1, z2) > cs
(logN)s

N
.

Remark 2.2. Note that by [7, Theorem 5.38] there is also a simple lower bound for
RN (z1, z2) of the order (logn2)/n1, which shows that the second term in Nieder-
reiter’s upper bound is essentially best possible.

Remark 2.3. In particular the lower bound for RN (z1, z2) from Theorem 2.1 is true
for all projection-regular rank 2 lattice rules (see [7]), since by a result of Sloan
and Lyness [10] a rank 2 lattice rule is projection-regular if and only if the vectors
z1, z2 ∈ Zs can be chosen in such a way that z1 = 1, ζ1 = 0 and ζ2 = 1. (Actually
Sloan and Lyness give a characterization of projection-regular rank r lattice rules.)

Remark 2.4. We note here that Larcher [4] proved the result stated in Theorem 2.1
for any rank 1 lattice rule, which shows that the existence theorems on good rank
1 lattice rules of Hlawka [1], Korobov [2] and Niederreiter [5] are best possible.

For the proof of Theorem 2.1 we need the following generalization of the Chinese
remainder theorem:
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Lemma 2.5. Let a1, a2, b1, b2,m1,m2 ∈ Z such that gcd(ai,mi)|bi, 1 ≤ i ≤ 2.
Then the system of congruences

a1x ≡ b1 (mod m1), a2x ≡ b2 (mod m2)

has a solution if and only if

b1a2 − b2a1 ≡ 0 (mod d),

where d := gcd(m1m2,m1a2, a1m2).

Proof. For 1 ≤ i ≤ 2 let di := gcd(ai,mi), ai = āidi, bi = b̄idi and mi = m̄idi.
Now since bi ≡ 0 (mod di), 1 ≤ i ≤ 2, we may divide the first congruence by d1

and the second one by d2 and our system of congruences becomes

ā1x ≡ b̄1 (mod m̄1), ā2x ≡ b̄2 (mod m̄2).

Since gcd(āi, m̄i) = 1, we can find ti such that āiti ≡ 1 (mod m̄i), 1 ≤ i ≤ 2. Now
we find that our system of congruences is equivalent to the system

x ≡ b̄1t1 (mod m̄1), x ≡ b̄2t2 (mod m̄2).

This system has a solution if and only if

b̄1t1 − b̄2t2 ≡ 0 (mod gcd(m̄1, m̄2)).

From the definition of t1 and t2 we find that this congruence is equivalent to the
congruence

b̄1ā2 − b̄2ā1 ≡ 0 (mod gcd(m̄1, m̄2)).
Finally from the definition of āi and b̄i, 1 ≤ i ≤ 2, this congruence is equivalent to

b1a2 − b2a1 ≡ 0 (mod d)

with d := gcd(m1, a1) gcd(m2, a2) gcd(m̄1, m̄2). Recalling the definition of m̄1 and
m̄2, we have

d = gcd(gcd(m2, a2)m1, gcd(m1, a1)m2)
= gcd(m1m2,m1a2, a1m2)

and we are done. �

Proof of Theorem 2.1. W.l.o.g. we may assume that z1 = 1. In the following let
n̄1 := n1/n2, δi := gcd(zi, n̄1) and let ti be defined by ziti ≡ δi (mod n̄1) with
gcd(ti, n̄1) = 1, 1 ≤ i ≤ s.

(i) Assume that there is an index 2 ≤ i ≤ s such that δi > (logN)s. Then we
have

RN (z1, z2) ≥
δi−1∑
l=1

hi=l (N/δi)

1
hi
≥ δi
N

>
(logN)s

N
.

So we may assume in the following that δi ≤ (logN)s holds for all 1 ≤ i ≤ s.
(ii) Assume that n2 > (logN)s. Then we have

RN (z1, z2) ≥
n2−1∑
l=1

h1=l (N/n2)

1
h1
≥ n2

N
>

(logN)s

N
.

So we may assume in the following that n2 ≤ (logN)s.
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(iii) Assume that there is an index 2 ≤ i ≤ s such that one of the rationals δiti
n̄1

has a continued fraction coefficient aik > (logN)s. W.l.o.g. assume that
i = 2. Then we have

RN (z1, z2) ≥
∑

−N<h1,h2<N
h1+h2z2≡0 (mod n1)
h1ζ1+h2ζ2≡0 (mod n2)

∗ 1
r(h1)r(h2)

≥
∑

−n1<h1,h2<n1
h1+h2z2≡0 (mod n̄1)

∗ 1
n2n2r(h1)r(h2)

=
∑

−n1<h1,h2<n1
h1t2+h2δ2≡0 (mod n̄1)

∗ 1
n2n2r(h1)r(h2)

≥
∑

−n1<h1,h2<n1
h1≡0 (mod δ2)

h1t2+h2δ2≡0 (mod n̄1)

∗ 1
n2n2r(h1)r(h2)

≥
∑

−n̄1/δ2<h1,h2<n̄1/δ2
h1t2+h2≡0 (mod n̄1/δ2)

∗ 1
n2n2δ2r(h1)r(h2)

.

For h1 ∈ Z let

H(h1) :=


− n̄1
δ2

{
h1

δ2t2
n̄1

}
, if

{
h1

δ2t2
n̄1

}
≤ 1

2 ,

n̄1
δ2

(
1−

{
h1

δ2t2
n̄1

})
, if

{
h1

δ2t2
n̄1

}
> 1

2 .

Then we have h1t2 +H(h1) ≡ 0 (mod n̄1/δ2) and

|H(h1)| = n̄1

δ2

∥∥∥∥h1
δ2t2
n̄1

∥∥∥∥ .
(Here and in the following ‖.‖ denotes the distance to the nearest integer
function, i.e., ‖x‖ = min({x}, 1− {x}).) Now let

δ2t2
n̄1

= [0; a1, a2, . . . , am]

and let q−1, q0, q1, . . . , qm be the denominators of the convergents of δ2t2
n̄1

,
q−1 = 0, q0 = 1 and ql = alql−1 + ql−2 for 1 ≤ l ≤ m. Assume that
ak > (logN)s. Let h1 := qk−1, then we have

RN (z1, z2) ≥ 1
n2n2δ2qk−1|H(qk−1)| .

Since
δ2t2
n̄1
− pk−1

qk−1
=

θk
akq2

k−1

with |θk| < 1, it follows that

qk−1
δ2t2
n̄1

= pk−1 +
θk

akqk−1
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and hence we have

|H(qk−1)| = n̄1

δ2

∥∥∥∥ θk
akqk−1

∥∥∥∥ ≤ n̄1

δ2akqk−1
.

From this we get

RN (z1, z2) ≥ δ2akqk−1

n2n2δ2qk−1n̄1
=
ak
N

>
(logN)s

N
.

So we may assume in the following that all continued fraction coefficients
of the rationals δiti

n̄1
, 2 ≤ i ≤ s, are less than or equal to (logN)s.

Moreover we assume N so large that

logN < 2 log
(

N

(logN)3s

)
.

For the finitely many N that do not satisfy the last inequality, the assertion
of the theorem is trivially true with cs > 0 small enough.

(iv) Define d1 := n2 and for 2 ≤ k ≤ s define dk := gcd(zkζ1 − ζk, dk−1). For
2 ≤ k ≤ s and for v, w ∈ Z define

RkN (z1, z2, v, w) :=
∑

−N<h1,...,hk<N
h1+h2z2+...+hkzk≡v (mod n1)
h1ζ1+h2ζ2+...+hkζk≡w (mod n2)

∗ 1
r(h1) . . . r(hk)

.

We shall prove that for vζ1 ≡ w (mod dk) we have

RkN (z1, z2, v, w) ≥ c(s, k)dk
(logN)k

N
,(3)

where c(s, k) > 0 is a constant depending only on s and k (but not on N).
We do this by induction on k.
k = 2 : Let v, w ∈ Z with vζ1 ≡ w (mod d2) and define

R2 := R2
N (z1, z2, v, w) =

∑
−N<h1,h2<N

h1+h2z2≡v (mod n1)
h1ζ1+h2ζ2≡w (mod n2)

∗ 1
r(h1)r(h2)

.

For h2 ∈ Z the system

h1 + h2z2 ≡ v (mod n1),(4)
h1ζ1 + h2ζ2 ≡ w (mod n2)

has a solution h1 iff

h2ζ2 ≡ w (mod σ1)(5)

and

h2(z2ζ1 − ζ2) ≡ vζ1 − w (mod n2).(6)

(Here σ1 := gcd(ζ1, n2). The second congruence is obtained with Lemma
2.5.) Let h be a solution of congruence (6). Then we have

ζ2h ≡ w + ζ1(z2h− v) (mod n2).

Now from the definition of σ1 we obtain ζ2h ≡ w (mod σ1) and so h is
also a solution of congruence (5). Hence in the following we only have to
consider congruence (6).
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From vζ1 − w ≡ 0 (mod d2) and d2 = gcd(z2ζ1 − ζ2, n2) we find that
congruence (6) has d2 incongruent (mod n2) solutions x1, . . . , xd2 ∈ Z with
0 ≤ xi < n2. Now let i ∈ {1, . . . , d2} and let h2 = xi + h̄2n2. Then system
(4) becomes

h1 + (xi + h̄2n2)z2 ≡ v (mod n1),(7)
h1ζ1 + (xi + h̄2n2)ζ2 ≡ w (mod n2).(8)

From congruence (8) we get

h1ζ1 ≡ w − xiζ2 (mod n2).(9)

Since xi is a solution of congruence (6) (and hence of congruence (5)), we
have w − xiζ2 ≡ 0 (mod σ1). Now define α := ζ1/σ1, ωi := (w − xiζ2)/σ1,
n̄2 := n2/σ1. Then congruence (9) may be rewritten as

h1α ≡ ωi (mod n̄2).(10)

Let τ1 ∈ Z be defined by ζ1τ1 ≡ σ1 (mod n2) with gcd(τ1, n2) = 1 and
define si := ωiτ1. Then we obtain from (10) the congruence h1 ≡ si
(mod n̄2) and hence h1 is of the form

h1 = si + h̄1n̄2

(w.l.o.g. assume that 0 ≤ si < n̄2). Substituting this in congruence (7), we
get

h̄1n̄2 + h̄2n2z2 ≡ v − si − xiz2 (mod n1).(11)

Once again we note that xi is a solution of congruence (6), i.e.,

vζ1 − w − ζ1z2xi + xiζ2 ≡ 0 (mod n2).

By the definition of τ1 we obtain

vσ1 − (w − xiζ2)τ1 − σ1z2xi ≡ 0 (mod n2)

and hence we have v−si−z2xi ≡ 0 (mod n̄2). So we get an integer ai such
that v − si − z2xi = ain̄2. Therefore congruence (11) becomes

h̄1 + h̄2σ1z2 ≡ ai (mod σ1n̄1).(12)

(Recall that n1 = n̄1n2.) Now we have

R2 ≥
d2∑
i=1

∑
−N<h1,h2<N
h2=xi+h̄2n2
h1=si+h̄1n̄2

h̄1+h̄2σ1z2≡ai (mod σ1n̄1)

∗ 1
r(si + h̄1n̄2)r(xi + h̄2n2)

.(13)

Denote the inner sum in inequality (13) by
∑

(i) for 1 ≤ i ≤ d2.
Define δ := σ1 gcd(z2, n̄1) = σ1δ2. From h̄1 + h̄2σ1z2 ≡ ai (mod σ1n̄1)

it follows that h̄1 = b + lδ for a b with 0 ≤ b < δ, and ai − b ≡ 0 (mod δ);
furthermore, h̄2σ1z2 ≡ ai − b − lδ (mod σ1n̄1). Let u := ai−b

δ t2. Then
h̄2 ≡ u− lt2 (mod m), where m := n̄1/δ2, and so h̄2 is of the form

h̄2 = m

(
u− lt2
m

+ k

)
,
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where k ∈ Z. It follows that for every l ∈ Z there is a solution h̄1 and h̄2

of congruence (12) with

h̄1 = b+ lδ,

|h̄2| = m

∥∥∥∥ um − l t2m
∥∥∥∥ .

Hence we have∑
(i) ≥

m−1∑
l=0

1
n2
σ1

(b+ lδ + 1)n2

(
1 +m

∥∥ u
m − l

t2
m

∥∥)
≥

m−1∑
l=0

1
n2

n2
σ1

(δ(1 + l) + 1)m
(

1
m +

∥∥ u
m − l

t2
m

∥∥)
≥

m−1∑
l=0

1
n2

n2
σ1

n̄1
δ2

2δ2σ1(l + 1)
(

1
m +

∥∥ u
m − l

t2
m

∥∥)
≥ 1

4N

m−1∑
l=0

1
(l + 1) max

(
1
m ,
∥∥ u
m − l

t2
m

∥∥) .
Since gcd(t2, n̄1) = 1, it follows that gcd(t2,m) = 1. By our assumptions on
n2, N and δ2 we getN = n2n2δ2m < (logN)3sm and hence logN ≤ 2 logm.
Furthermore, we have that t2

m = δ2t2
n̄1

has continued fraction coefficients
ai < (logN)s ≤ 2s(logm)s. But under these assumptions G. Larcher
proved in [4, p. 48, inequality (∗)] that

m−1∑
l=0

1
(l + 1) max

(
1
m ,
∥∥a− l t2m∥∥) ≥ c(s)(logm)2

holds for every a ∈ [0, 1). (Here c(s) > 0 is a constant depending only on
s.) So we get∑

(i) ≥ 1
4N

c(s)(logm)2 ≥ c(s)
8

(logN)2

N
.

Inserting this in inequality (13), we get

R2 ≥ c(s, 2)d2
(logN)2

N
,

such that the case k = 2 is proved.

k−1 −→ k: For short we write Rk(v, w) instead of RkN (z1, z2, v, w). Let
vζ1 ≡ w (mod dk). Then we have

Rk(v, w) ≥
∑̃
l

1
r(l)

∑
−N<h1,...,hk−1<N

h1+h2z2+...+hk−1zk−1≡v−lzk (mod n1)
h1ζ1+h2ζ2+...+hk−1ζk−1≡w−lζk (mod n2)

∗ 1
r(h1) . . . r(hk−1)

=
∑̃
l

1
r(l)

Rk−1(v − lzk, w − lζk),
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where
∑̃
l

denotes summation over all integers −N < l < N such that

(v − lzk)ζ1 ≡ w − lζk (mod dk−1).(14)

Now we get from the induction hypothesis that

Rk(v, w) ≥ c(s, k − 1)dk−1
(logN)k−1

N

∑̃
l

1
r(l)

.(15)

Since by our assumption dk = gcd(zkζ1−ζk, dk−1) is a divisor of vζ1−w, we
find dk incongruent solutions x1, . . . , xdk of congruence (14), 0 ≤ xi < dk−1.
Now we have∑̃
l

1
r(l)

≥
dk∑
i=1

N−1∑
l=0

l=xi+l̄dk−1

1
r(xi + l̄dk−1)

≥
dk∑
i=1

N/dk−1−1∑
l̄=0

1
(l̄ + 1)dk−1

≥ dk
dk−1

log
N

dk−1
≥ 1

2
dk
dk−1

logN,

since dk−1 ≤ d1 = n2 and hence

log
N

dk−1
≥ log

N

n2
= logn1 ≥

1
2

logN.

Inserting this result in (15) will finish our induction proof of inequality (3).
The result follows.

�
Problem 2.6. (1) It remains an open question whether Theorem 2.1 holds without
the existence of an index 1 ≤ i0 ≤ s such that gcd(zi0 , n1) = 1.

(2) Is the lower bound from Theorem 2.1 also true for rank r lattice rules,
2 < r ≤ s?
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