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A LOWER BOUND FOR RANK 2 LATTICE RULES

FRIEDRICH PILLICHSHAMMER

ABSTRACT. We give a lower bound for a quality measure of rank 2 lattice rules
which shows that an existence result of Niederreiter is essentially best possible.

1. INTRODUCTION

For the definition and the general theory of lattice rules for multivariate integra-
tion we refer to the monographs of Niederreiter [7] and of Sloan and Joe [9].

A rank 2 lattice rule is a quadrature rule for functions f over the s-dimensional
unit cube [0, 1]® of the form

1 ni na
(1) QU =5 Do D f{kiz/ny + kaza/na}),
ki=1ko=1

which cannot be re-expressed in an analogous form with a single sum. Here n1,no
are positive integers such that ng|ni, N = ning and z;, 2 are vectors in Z°. The
integers ny, no are called the invariants of the lattice rule. (For a vector x € R*® the
fractional part {x} is defined componentwise.)

For a given rank 2 lattice rule with invariants n; and ny, N = nine and with
z1 = (z1,...,2s) and 22 = ((1,...,(s) for z;, (; € Z, we define the quantity

* 1
Ry(z1,22) := Z

r(hi)...r(hs)’
~N<hi,...hs<N (h1) (hs)
hizi+...4+hszs=0 (mod n1)
hi1¢1+...+hs(s=0 (mod n2)

where Y means summation over (hy,...,hs) # (0,...,0), and where r(h) =
max(1,|h|) for h € Z.

Let f :][0,1]° — R be a real-valued periodic function with period 1 in each vari-
able and with Fourier-coefficients f(h), h = (hy,...,hs) € Z*, satistying |f(h)| =
O(r(h)~®) for some a > 1 where r(h) = []’_, 7(h;). Then for the integration error
of any rank 2 lattice rule (Il) we have the relation

/ F(x) dx — Q(f)| = O(Rw (21, 2)).
[0,1]¢

For a proof of this result see [6] or [7].
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Another reason for the importance of the quantity Ry is its relation to the
discrepancy Dy of the finite s-dimensional point set

k k
(2) {_1Z1+_2Z2}7 ki:17--'an’i7 1SZS2
n

(For the definition of the discrepancy Dy see, for example, [3] or [7].) In fact, it
was shown by Niederreiter and Sloan []] that the discrepancy of the point set (2)
can be estimated by

Dy < % + %RN(ZLZQ)-
(A proof of this estimate can also be found in [7].)

In [6] Niederreiter proved that for every dimension s > 2 and for any prescribed
invariants n; and no, N = nino, there exist integer vectors of the form z; =
(Zl’ ceey Zs)a Zy = (07 C27 sy Cs) with ng(zivnl) = 1; 1<i< S, and ng(g’ivnQ) = ]-a
2 <14 < s, such that

log N)* log N
RN(Z1,Z2)<C/S((Og )+og >7

N ny
where ¢, > 0 is a constant only depending on s. Note that the lattice rule in
Niederreiter’s existence result is projection-regular. (See [7] for the definition of
projection-regular lattice rules.)

In this paper we prove a lower bound for the quantity Ry (z1,%2) which shows
that Niederreiter’s estimate is essentially best possible.

2. STATEMENT AND PROOF OF THE RESULT

We have

Theorem 2.1. For every dimension s > 2 there is a constant cs > 0, depending
only on s, with the following property: for any prescribed invariants ny and no with

nalni, N = ning and for any integer vectors z; = (z1,...,2s) and 22 = ((1,...,(s)
such that there is an index 1 < ig < s with ged(z;,,n1) = 1, we have
(log N)*

RN(Zl,ZQ) > CST.
Remark 2.2. Note that by [7 Theorem 5.38] there is also a simple lower bound for
RN (2z1,22) of the order (logns)/n1, which shows that the second term in Nieder-
reiter’s upper bound is essentially best possible.

Remark 2.3. In particular the lower bound for Ry (z1,22) from Theorem 211 is true
for all projection-regular rank 2 lattice rules (see [7]), since by a result of Sloan
and Lyness [10] a rank 2 lattice rule is projection-regular if and only if the vectors
71,29 € Z° can be chosen in such a way that z; =1, ¢t = 0 and {3 = 1. (Actually
Sloan and Lyness give a characterization of projection-regular rank r lattice rules.)

Remark 2.4. We note here that Larcher [4] proved the result stated in Theorem 211
for any rank 1 lattice rule, which shows that the existence theorems on good rank
1 lattice rules of Hlawka [I], Korobov [2] and Niederreiter [5] are best possible.

For the proof of Theorem[Z1] we need the following generalization of the Chinese
remainder theorem:
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Lemma 2.5. Let aj,as,b1,ba,mi,ma € Z such that ged(a;, m;)|b;, 1
Then the system of congruences

a1z =b;  (mod my), asx =bs  (mod ma)
has a solution if and only if
bias —bsa; =0 (mod d),
where d := ged(mimea, myag, a;ms).

Proof. For 1 < i < 2 let d; := ged(ai, mi), a; = a;d;, b; = b;d; and m; = m;d;.
Now since b; = 0 (mod d;), 1 < i < 2, we may divide the first congruence by d;
and the second one by do and our system of congruences becomes

ayr=by  (mod my), Gor = by (mod 1my).

Since ged(a;, m;) = 1, we can find ¢; such that a;t; =1 (mod m;), 1 <i < 2. Now
we find that our system of congruences is equivalent to the system

r=bit; (mod mq), x = byt (mod my).

This system has a solution if and only if

bty —boto =0 (mod ged(1my,ms)).
From the definition of ¢; and t; we find that this congruence is equivalent to the
congruence

biag — bea; =0 (mod ged(mq,ms)).
Finally from the definition of @; and b;, 1 < i < 2, this congruence is equivalent to

bias —bsa; =0 (mod d)

with d := ged(mq, a1) ged(ma, az) ged(my, msa). Recalling the definition of m; and
me, we have

u
|

ged(ged(ma, ag)my, ged(mq, a1)ms)
= ged(mima, miag, a1ms)

and we are done. O

Proof of Theorem [Zl1 W.l.o.g. we may assume that z; = 1. In the following let

1 := ni/ng, 0; := ged(z;,n1) and let ¢; be defined by z;t; = 6; (mod nq) with
ged(t;,ny) =1,1<i<s.

(i) Assume that there is an index 2 < ¢ < s such that ¢; > (log N)*. Then we

have

0i— 1

R > —

N(z1,z2) > > >

1=1
hi=1(N/5,)

Ju

i _ (logN)*
N~ TN

v

So we may assume in the following that J; < (log N)® holds for all 1 <14 < s.
(ii) Assume that ny > (log N)*. Then we have

nil 1 _n2 _ (logN)s

Ry(z1,22) >
=1
h1=l (N/TLQ)

So we may assume in the following that ny < (log N)*.
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dits
. ny
has a continued fraction coefficient a}, > (log N)*. W.lo.g. assume that
i = 2. Then we have

Ry (z1,22) > Z

* 1
—N<hi,ha<N T(hl)r(ha)
hi1+h2z2=0 (mod ni)

h1¢1+h2(2=0 (mod n2)

(iii) Assume that there is an index 2 < < s such that one of the rationals

Y

* 1
Z naner(hy)r(h
—n1<hi,ha<ni 272 ( 1) ( 2)
hi14+h2z2=0 (mod 7i1)

* 1
B Z naner(hy)r(h
—n1<hi,ha<ni 2762 ( 1) ( 2)
hita+h282=0 (mod 1)

Y

* 1
Z nanor(hy)r(h
i Ten, M2nar(ha)r(hz)
h1=0 (mod d2)
hita+h282=0 (mod 1)

Y

> 1
—1/82<hi,ha<ni/d2 n2n262r(h1)r(h2)
hita+ho=0 (mod ﬁl/ég)

For hy € Z let

|
o,| |
(Ol
—
>
31[$
Sl
>
——
-
i
—
>
=
S
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o
——
INA
N|—=

H(hl) =

0:| |
N =
T
—_

|
=

>

=

Sl‘n?q

= (=

v
—
N—

—

=
—

>

=

3“\?1
S

]
—

V

N[=

Then we have hito + H(h1) =0 (mod 71/d2) and

1 Oata

H(hy)| = —||lhi—||.

[H(h)l = 5 1
(Here and in the following ||.|| denotes the distance to the nearest integer
function, i.e., ||z|| = min({z},1 — {z}).) Now let

dat

=2 = [0;a1, a2, .., G

ni
and let ¢_1,q0,q1,...,¢m be the denominators of the convergents of 52t2,

n
g1 = 0,90 = 1and ¢ = a;q;—1 + q—2 for 1 < I < m. Assume thlat
ar > (log N)®. Let hy := gx—1, then we have

1

N2n2062qK—1 |H(Qk—1)| .

Rn(z1,22) >

Since

oty pr—1 _ bk
ny qr—1 qu13,1
with |0x| < 1, it follows that

(52t2
Qk—1—— = Pk-1*+
ni

akqk—1
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and hence we have

nq O n
H(gp_1)| = — .
[H (gx-1)] 02 ||arqr—1]| = d2akqr—1
From this we get
020k qr—1 ap _ (logN)*
Ry(z1,2 e = R A
N (21,22) Non2baqr—11 N N

So we may assume in the following that all continued fraction coefficients

of the rationals 5%’;", 2 < i < s, are less than or equal to (log N)*.
Moreover we assume NN so large that

N
log N < 21 — .
oe < 25 1 vy
For the finitely many IV that do not satisfy the last inequality, the assertion
of the theorem is trivially true with c¢; > 0 small enough.
Define dy := ny and for 2 < k < s define dj, := ged(zx(1 — Ck,dg—1). For
2 < k < s and for v,w € Z define

* 1
k
RN(Zlaz27v7w) = Z T(h ) T(h )
—N<hi,....,hx <N VAR k
hi+hozo+...+hrzr=v (mod nl)
h1l1+h2la+...+hrl=w (mod YLQ)

We shall prove that for v¢; = w (mod di) we have
(log N)*
N ?
where ¢(s, k) > 0 is a constant depending only on s and & (but not on NNV).

We do this by induction on k.
k=2:Let v,w € Z with v{1 = w (mod dz) and define

* 1
R? := Ry (21, 22,0, w) = > _.
—N<hi,ho<N r(hl)r(h2)
h1+h2222v, (mod ny)
h1¢it+h2(a=w (mod n2)

R?\/’(Z17 Z2,, 'LU) Z C(S; k)dk

For hy € Z the system
hi+hozo = v (mod nq),
hiCi + ha(o

has a solution hq iff

w  (mod ng2)

hoCa = w (mod oq)
and
ho(z2¢1 —C2) = v( —w (mod ng).

(Here o1 := ged(¢1,n2). The second congruence is obtained with Lemma
[25l) Let h be a solution of congruence (@). Then we have

Coh=w+ (G (22h —v)  (mod no).

Now from the definition of o; we obtain (oh = w (mod o1) and so h is
also a solution of congruence (B). Hence in the following we only have to
consider congruence (6.
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From v(; — w = 0 (mod dz) and dy = ged(22¢1 — (2, n2) we find that
congruence (@) has dz incongruent (mod ng) solutions 1, ..., x4, € Z with
0 < m; <ng. Nowlet i€ {1,...,ds} and let hy = x; + hona. Then system
() becomes

hi+ (z; + hong)ze = v (mod ny),
hiCi+ (w; + hana)e = w  (mod ny).
From congruence (B) we get
hi¢i =w —x;(  (mod ny).

Since x; is a solution of congruence (@) (and hence of congruence (), we
have w — z;(2 =0 (mod o1). Now define o := (1 /01, w; := (w — 2;(2) /01,
fig := na/o1. Then congruence (@) may be rewritten as

hia =w; (mod nig).

Let 71 € Z be defined by (371 = 01 (mod n2) with ged(m1,n2) = 1 and
define s; := w;my. Then we obtain from (1) the congruence hy = s;
(mod 72) and hence hy is of the form

h1 =s; + iLlT_LQ

w.l.o.g. assume that 0 < s; < 7n2). Substituting this in congruence (1), we
g g g
get

hifg + hongze = v — 5; — x;29  (mod ny).
Once again we note that z; is a solution of congruence (@), i.e.,
v( —w — (zex; + e =0 (mod ny).
By the definition of 71 we obtain
vop — (w — x;C2)T1 — 01222, =0 (mod ng)

and hence we have v —s; — zox; = 0 (mod 712). So we get an integer a; such
that v — s; — zow; = a;nie. Therefore congruence (1)) becomes

ﬁl + 520'122 = a; (mod 0’1771).

(Recall that nq = fiyng.) Now we have

2 = * 1
S Y
p N<hiha<N r(s; + hang)r(z; + hang)
ho=x;+hana
hi1=s;+hin2

ﬁ1+ﬁ201225a,; (mod 01'7L1)

Denote the inner sum in inequality ([I3]) by > (i) for 1 < i < ds.

Define § := oy ged(22,71) = 0102. From hy + hao122 = a; (mod o17y)
it follows that hy = b+ 16 for a b with 0 < b < J, and a; —b =0 (mod §);
furthermore, hoo122 = a; — b — 16 (mod oy7ny). Let u := ai(;btg. Then
hs = u — Ity (mod m), where m := 71 /d2, and so hs is of the form

h2=m<u—lt2+k}>,
m
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where k € Z. It follows that for every | € Z there is a solution h; and hs
of congruence (I2) with

7L1 = b+ 16,
- t
ho| = ml|— 12
m m
Hence we have
m—1

Y =

-
||M
o
—

=0l Um (L mz 12

g

3
L

1
noZ2(5(141) + )m (& + || & — &)

(]

1=0
> 5 = 1
- = nQZ—fg—;%gal(l—i—l)(%—i—Hm thH
. L3 1
T AN — (l—i—l)max(%,”m lt2||)

Since ged(te, 1) = 1, it follows that ged(te, m) = 1. By our assumptions on
ng, N and d; we get N = nanadom < (log N)>*m and hence log N < 2logm.
Furthermore, we have that t2 = ‘52’52 has continued fraction coefficients
a; < (logN)* < 2%(log m)s. But under these assumptions G. Larcher
proved in [, p. 48, inequality ()] that

Ju

m—

Z 11 = logm)2
— (l—i—l)max(E,Ha—l H

holds for every a € [0,1). (Here c¢(s) > 0 is a constant depending only on
s.) So we get

S0 > prcls)logm)? > BN

Inserting this in inequality (I3), we get

log N)?
R%*> C(S,2)d2%7
such that the case k = 2 is proved.

k—1 — k: For short we write R¥(v,w) instead of R (z1,z2,v,w). Let
v(1 = w (mod dj). Then we have

k v, w NL * ;
R*(v,w) > Zr(l) Z r(h)...7r(hg—1)

l —N<hi,....hp_1<N
hi+hozot...4+hp_12zp_1=v—1z1 (mod nl)
h1Ci+hoCo+...+hr_1(k—1=w—I¢x (mod n2)

1
— RN — Lz, w — G,
250 pee
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where i denotes summation over all integers —N < [ < IN such that
l

(14) (v—Izt)a =w— 1 (mod di—1).
Now we get from the induction hypothesis that
log N)F1T= 1
1 k > k—1)dg_ (7 —.
( 5) R (v,w) = C(Sv ) k—1 N zl:’l"(l)
Since by our assumption dj, = ged(2zk(1 — Ck, dx—1) is a divisor of v(; —w, we
find dj, incongruent solutions 1, . . ., x4, of congruence (Id), 0 < z; < dj—_;.
Now we have
— di -1 dp N/dp—1—-1
1 1 1
— = —_— > —_—
zl:r(l) = 12:_; r(xi + ldkfl) ; —o (l + 1)dk,1
l=x;+ldk—1
d N 1 d
> —F log >_-—* JogN,

dk71 dk—l - Qdkfl
since di_1 < d; = ns9 and hence

N N 1
1ogd— > log — =logni; > = log N.
k-1 ng 2

Inserting this result in (I5]) will finish our induction proof of inequality (B]).
The result follows.
([l

Problem 2.6. (1) It remains an open question whether Theorem P Tlholds without
the existence of an index 1 <4y < s such that ged(z;,,n1) = 1.

(2) Is the lower bound from Theorem Pl also true for rank r lattice rules,
2<r<s?
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