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FINITE DIFFERENCE METHOD FOR A COMBUSTION MODEL

LUNG-AN YING

Abstract. We study a projection and upwind finite difference scheme for a
combustion model problem. Convergence to weak solutions is proved under
the Courant-Friedrichs-Lewy condition. More assumptions are given on the
ignition temperature; then convergence to strong detonation wave solutions or
to weak detonation wave solutions is proved.

1. Introduction

Chemical reaction processes in fluids are determined by the conservation laws
and the internal mechanism in reaction zones. Detonation waves travel at a high
speed, and the scale of reaction zones may be orders of magnitude smaller than
the fluid dynamical space scales. As a result the governing systems of equations
are stiff. It was observed that even stable scheme and a reasonable grid may cause
spurious numerical results. Sometimes the wave travelled one grid point per time
step, which was qualitatively incorrect [5], [10], [11], [13].

One natural approach to deal with the problems in numerical computation is
applying very fine meshes to simulate the internal mechanism in reaction zones.
However, another strategy has been a subject of study by many authors, [1], [2],
[8]: that is, to develop a method on a grid in which the resolution is not enough
with respect to the short reacting time, but is fine enough with respect to the fluid
dynamics. One cannot expect to predict the effects associated with the detailed
structure of detonation fronts, but the detonation waves can be captured with
correct speeds by using these methods. The aim of this paper is to study some
convergence problems for this kind of methods.

We will study the problem for Majda’s simplified combustion model [12], which
is a 2 × 2 system, where a “lumped variable” are introduced to represent density,
velocity and temperature. In addition we will consider the Chapman-Jouguet model
for this 2×2 system; that is, the rate of chemical reaction is assumed to be infinity,
and the effects of viscosity are neglected. In this model the width of reaction zones
is zero and frame fronts are sharp. We think it is a typical model, which reflects
some basic properties of the complete system, to study convergence problems of
difference schemes for combustion problems.

Together with an upwind scheme we will consider the projection method, which
has been applied by some authors. It is a fractional step method. In this method
the numerical solution at each time level is computed in two steps. In the first step
the upwind scheme is applied to a homogeneous conservation law, which causes
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chemically nonequilibrium data. In the second step the nonlinear ODE describing
the reacting progress is solved. If the numerical time step is much greater than the
reacting time, the ODE solver essentially reduces to a projection operator, which
coincides with the Chapman-Jouguet model, where the rate of chemical reaction is
infinity.

The main difficulty lies in stiffness of the system. Numerical diffusion and smear-
ing is introduced in the first step. Based on this smeared result, the result of the
second step is sensitive to the choice of ignition temperature. On the other hand
ignition temperature might be applied as a control parameter to the numerical re-
sults. This problem has been studied in [2]. It was proved that if the approximate
solutions tended to piecewise constant weak detonation waves, then the ignition
temperature had to be less than a number ul∗ − q, which will be explained later
on in this paper. Therefore a necessary condition for generating weak detonation
waves was proved. As a result, if one hopes to get a piecewise constant strong
detonation wave, the assumed ignition temperature should be no less than it.

To overcome the difficulty of choosing the assumed ignition temperature, a ran-
dom projection method was developed by Bao and Jin [1]. The ignition temperature
was assumed to be a random number with uniform distribution in the projection
scheme. Strong detonation waves were obtained in one and two dimensional flows
with chemical reaction. Asymptotic stability of this scheme was proved for a scalar
equation with a stiff source term. Therefore the approach in [1] is effective for
computing strong detonation waves. Meanwhile some problems have arisen. Why
does a random number with uniform distribution yield strong detonation waves?
What would happen if the distribution is not uniform? As a particular case, what
are the results for different deterministic ignition temperatures?

We will answer part of these questions in this paper. We will give some suf-
ficient conditions and prove convergence rigorously. It will be proved that under
some assumptions the sequence of approximate solutions tends to a weak solution.
Moreover, it will be proved that if the ignition temperature is no less than ul∗ − q,
then the limit is a piecewise constant strong detonation wave solution. Therefore
this condition is not only necessary but also sufficient. We will also give a sufficient
condition for generating weak detonation waves, and prove it.

We remark that although the results in this paper, like the usual convergence
investigation, are on the limits of approximate solutions as the mesh sizes go to
zero, it does not mean we study high resolution schemes here. We have assumed
that the reacting time is zero, so the system is stiff for any positive mesh sizes, and
the results are on the behavior of numerical solutions to a system with a stiff source
term.

Let us state our problem. We consider the following Majda model for combustion
[12]:

∂(u+ qz)
∂t

+
∂f(u)
∂x

= 0,(1)

∂z

∂t
= −Kφ(u)z,(2)

where u is a “lumped variable”, representing density, velocity and temperature,
z ∈ [0, 1], representing the fraction of unburnt gas, q > 0 is a constant, representing
the binding energy, K > 0 is a constant, representing the rate of chemical reaction,
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Figure 1.

f ′ > 0, f ′′ ≥ a0 > 0,

φ(u) =
{

1, u > Ui,
0, u < Ui,

and Ui is a constant, representing the ignition temperature.
We assume the initial condition

(3) u|t=0 = u0(x), z|t=0 = z0(x),

where naturally we assume that z0 ∈ [0, 1] and z0(x) = 0 for a certain x if u0(x) >
Ui.

Let K → +∞ formally; then we get ∂z
∂t ≤ 0, φ(u)z = 0, and if u < Ui then

∂z
∂t = 0. Therefore (2) is replaced by

(4) z(x, t) =
{

0, sup0≤τ≤t u(x, τ) > Ui,
z0(x), sup0≤τ≤t u(x, τ) < Ui,

and

(5)
∂z

∂t
≤ 0.

A global existence theorem for the problem (1), (4), (5), (3) was proved in [14].
One special case for the above problem is the Riemann problem, where the initial

condition is

(6) u|t=0 =
{
ul, x < 0,
ur, x > 0, z|t=0 =

{
0, x < 0,
1, x > 0,

where ur < Ui ≤ ul and ul > ur + q.
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The travelling wave solution for the Riemann problem is the following:

(7) u(x, t) =
{
ul, x < st,
ur, x > st,

z(x, t) =
{

0, x < st,
1, x > st,

where the constant s is the speed of the wave. By (1), s should satisfy the Rankine-
Hugoniot condition,

(8) s =
f(ul)− f(ur)
ul − (ur + q)

.

By the assumption of f there exists uCJ > ur + q such that

f ′(uCJ) =
f(uCJ)− f(ur)
uCJ − (ur + q)

.

f ′(uCJ) is the minimum value of s, and the corresponding travelling wave for ul =
uCJ , is called a “CJ detonation wave”. For a given s ∈ (f ′(uCJ),∞) there are
two values of ul corresponding to s. Let them be u∗l > uCJ and ul∗ < uCJ , and
the corresponding travelling waves be called “strong detonation waves” and “weak
detonation waves” respectively (Figure 1). We will always assume that ul = u∗l in
(6) later on. (7) is a solution of the Riemann problem, but the solutions are not
unique. For example

u(x, t) =

 ul, x < s1t,
um, s1t < x < s2t
ur, x > s2t,

z(x, t) =
{

0, x < s2t,
1, x > s2t,

where ul∗ > um > ur + q, um > Ui, and

s1 =
f(ul)− f(um)

ul − um
, s2 =

f(um)− f(ur)
um − (ur + q)

.

It is a solution with two waves, where a weak detonation wave is followed by a
shock wave. The value of um is also not unique.

Since the solutions are not unique, different parameters in the numerical scheme
lead to different solutions. We are going to give some sufficient conditions and prove
that the approximate solutions of the difference scheme converge to some different
limits. We state our main results and assumptions as the follows.

We study a projection and upwind finite difference scheme, which will be given in
the next section. Let ∆x,∆t be the step sizes. The numerical ignition temperature
at time n∆t is denoted by Uni . Then we consider a series of approximate solutions
to the Riemann problem and assume that ∆x,∆t→ 0. If Uni is taken as a random
number, then we require that Uni ∈ (U − q, U), where U ∈ [ur + q, ul]. If Uni
is fixed, which can be regarded as a special case of a random number, we denote
Ui = U = Uni ∈ (ur, ul).

Theorem 1.1. If

(9)
∆t
∆x

max
u∈[ur ,ul+2q]

f ′(u) ≤ q

ul + 2q − ur
,

then there is a subsequence of the approximate solutions converging pointwise almost
everywhere for x ∈ (−∞,∞), t ∈ (0,∞). If (u, z) is the limit, then there is a curve
Γ : x = l(t) such that u is an entropy solution of the scalar conservation law

∂u

∂t
+
∂f(u)
∂x

= 0,
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for x 6= l(t), z = 1 for x > l(t), and z = 0 for x < l(t). Moreover (u, z) is the weak
solution to (1),

(10) z(x, t) =
{

0, sup0≤τ≤t u(x, τ) > U,
z0(x), sup0≤τ≤t u(x, τ) < U,

(5) and (6).

Theorem 1.2. Under the assumption of Theorem 1.1, if Ui is fixed, assume that
Ui ∈ [ul∗−q, u∗l ); if Uni is random, assume that U ∈ [ul∗, u∗l ), Then as ∆x,∆t→ 0,
the approximate solution converges to a unique strong detonation limit (7). For the
random case the conclusions should be understood in the sense of probability 1.

Theorem 1.3. If Ui is fixed and

(11)
∆t
∆x

max
(
f ′(u∗l ),

f(u∗l )− f(ul∗ − q)
u∗l − ul∗

)
≤ 1,

then there is a constant uw ∈ (ur, ul∗ − q) such that if Ui ∈ (ur, uw], there is a
subsequence of the approximate solutions converging pointwise almost everywhere
for x ∈ (−∞,∞), t ∈ (0,∞). Let (u, z) be the limit; then there is a curve Γ : x =
l(t) such that u is an entropy solution of the scalar conservation law

∂u

∂t
+
∂f(u)
∂x

= 0,

for x 6= l(t), z = 1 for x > l(t), and z = 0 for x < l(t). Moreover (u, z) is a
weak solution to (1), (10), (5), (6), and the discontinuity Γ is a weak detonation
wave in the following sense: (a) The slope of characteristics for x > l(t) is less
than the slope of this discontinuity, and the downward characteristics for x < l(t)
neighboring this discontinuity intersect it. (b) The Rankine-Hugoniot condition for
weak detonation waves holds on Γ.

We will prove the above theorems in the following sections. For Theorem 1.3
we will give the exact value of uw and state the Rankine-Hugoniot condition pre-
cisely. Finally, we will compare our results with the results in [12], which is about
continuous travelling detonation waves.

2. Difference scheme and convergence to weak solutions

We consider a fractional step method for the system of equations (1), (4), (5)
with initial conditions (3) or (6), where the convection and the chemical reaction
are split by a three-step procedure, and the solver of the convection part is an
upwind scheme.

Step 1.

(12)
ũnj − unj

∆t
+
f(unj )− f(unj−1)

∆x
= 0,

Step 2.

(13) zn+1
j =

{
0, ũnj ≥ Uni ,
znj , ũnj < Uni ,

Step 3.

(14) un+1
j = ũnj − q(zn+1

j − znj ),



600 LUNG-AN YING

where unj = u(j∆x, n∆t), znj = z(j∆x, n∆t), and ũnj is an intermediate variable.
The scheme is conservative:

(15)
un+1
j − unj

∆t
+ q

zn+1
j − znj

∆t
+
f(unj )− f(unj−1)

∆x
= 0.

We will prove some estimates for the scheme applied to the Riemann problem,
and study the limit of approximate solutions as ∆t→ 0 and ∆x→ 0.

Lemma 2.1. If (9) holds, then

(16) znj ∈ [0, 1], unj ∈ [ur, ul + 2q], ∀j, n.

Proof. Obviously znj ∈ [0, 1], and unj ≥ ur. (16) is true for n = 0. Let us assume
that it is true for a certain n ≥ 0. We notice that f ′ > 0, and if ∆t

∆x max f ′ ≤ 1,
the scheme (12) is monotone. The condition (9) is stronger. We make use of
the properties of monotone schemes (see [4]) to obtain ũnj ≤ maxk unk ≤ ul + 2q.
For a given j, if un+1

j = ũnj , then (16) is verified for un+1. If un+1
j > ũnj , then

zn+1
j = 0 and znj = 1. Consequently zn−1

j = 1 if n ≥ 1. Then, by (13), (14),
unj = ũn−1

j < Un−1
i < U . If n = 0, then unj = ur < U , too. Therefore by (12)

ũnj < U +
∆t
∆x

max
u∈[ur,ul+2q]

f ′(u) · (ul + 2q − ur).

The condition (9) implies

un+1
j < U + 2q ≤ ul + 2q,

and so (16) is verified for n+ 1. �

Lemma 2.2. Under the condition (9) there is an integer jn0 for each n such that
znj = 0, unj ≥ U for j ≤ jn0 , and znj = 1, unj ≤ unj−1, unj ≤ U for j > jn0 .

Proof. It is true for n = 0. We assume that it is true for a certain n ≥ 0. Because
the scheme is monotone, ũnj ≥ U for j ≤ jn0 ; then un+1

j = ũnj ≥ U and zn+1
j = 0. Let

jn+1
0 be an index such that ũnj ≥ Uni for all j ≤ jn+1

0 and ũnj < Uni for j = jn+1
0 +1.

Then jn+1
0 ≥ jn0 . For j = jn0 + 1, · · · , jn+1

0 , we have znj = 1 and zn+1
j = 0; hence

un+1
j = ũnj + q ≥ U . Again because the scheme is monotone, ũnj ≤ ũnj−1 for
j ≥ jn+1

0 + 2. Since ũnj < Uni for j = jn+1
0 + 1, all ũnj < Uni for j ≥ jn+1

0 + 1. Thus
zn+1
j = znj = 1 and un+1

j = ũnj < Unj < U . Finally we have un+1
j ≥ U ≥ un+1

j+1 with
j = jn+1

0 , so un+1
j is monotone decreasing for all j ≥ jn+1

0 . �

Lemma 2.3. un+1
j ≥ unj for j > jn0 .

Proof. Since f ′ > 0 and unj ≤ unj−1, equation (12) implies ũnj ≥ unj . Then by (14)
we have un+1

j ≥ ũnj . �

If Ui < ul∗ − q and is fixed, then we can improve our maximum norm estimate
in Lemma 2.1 and the CFL condition (9).

Lemma 2.4. If Ui < ul∗ − q and (11) holds, then Ui + q ≤ unj ≤ u∗l for j ≤ jn0 ,
and unj < Ui for j > jn0 .
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Proof. For simplicity we denote j0 = jn0 . We argue by induction. We assume that
the conclusion is true for a certain n. The function f(u∗l )−f(u)

u∗l−u−q
is monotonically

increasing with respect to u for u < u∗l − q; thus, by the CFL condition (11),

ũnj0+1 ≤unj0+1 +
u∗l − Ui − q
f(u∗l )− f(Ui)

(f(unj0)− f(unj0+1))

≤unj0+1 +
u∗l − Ui − q
f(u∗l )− f(Ui)

(f(u∗l )− f(unj0+1)) ≡ Φ(unj0+1),

where we notice that Ui < ul∗ − q < u∗l − q. Then for ξ ∈ [ur, Ui],

Φ′(ξ) = 1− u∗l − Ui − q
f(u∗l )− f(Ui)

f ′(ξ) ≥ 1− u∗l − Ui − q
f(u∗l )− f(Ui)

f ′(Ui) ≥ 0.

By the induction assumption we have unj0+1 < Ui; therefore

ũnj0+1 ≤ Φ(unj0+1) ≤ Φ(Ui) ≤ u∗l − q.

The scheme (12) is monotone, so Ui + q ≤ un+1
j = ũnj ≤ u∗l and zn+1

j = 0 for
j ≤ jn0 . Let jn+1

0 ≥ jn0 be an index such that ũnj ≥ Ui for jn0 < j ≤ jn+1
0 and

ũnj < Ui for j = jn+1
0 + 1; then un+1

j = ũnj + q ∈ [Ui + q, u∗l ] and zn+1
j = 0 for

jn0 < j ≤ jn+1
0 . If j > jn+1

0 , then ũnj < Ui, so un+1
j = ũnj < Ui. Thus the induction

is complete. �

We have 0 = j0
0 ≤ j1

0 ≤ · · · ≤ jn0 ≤ jn+1
0 ≤ · · · . Define a subsequence

j0
0 , j

n1
0 , jn2

0 , · · · such that j0
0 = j1

0 = · · · = jn1−1
0 and jn1

0 > jn1−1
0 , and so on. We

connect points (jnk0 ∆x, nk∆t), (jnk+1
0 ∆x, nk+1∆t) by line segments, k = 0, 1, · · · ,

then get a curve, denoted by x = l∆x(t).

Lemma 2.5. l′∆x(t) > 0, and l∆x(t) is bounded for all ∆x on t ∈ [0, T ], where T
is an arbitrary positive number.

Proof. For each n, if j > n; then unj ≡ ur and znj ≡ 1, so jn0 ≤ n. By the CFL
condition, l∆x(t) is bounded. �

Let ∆x,∆t → 0, then there is a subsequence of l∆x(t) converging pointwise to
a curve Γ : x = l(t) with l′(t) ≥ 0 and l ∈ BV (0, T ). However, we hope to get
uniform convergence. To this end we define new coordinates(

x′

t′

)
=
(

cos π4 sin π
4

− sin π
4 cos π4

)(
x
t

)
.

Let the curve be t′ = l̃∆x(x′) in the new coordinates. Since 0 < l′∆x < +∞, we

have
∣∣∣ ddx′ l̃∆x(x′)

∣∣∣ ≤ 1, which gives uniform convergence. The limit is denoted by

l̃(x′). Let ε > 0; then l̃(x′)± ε defines an ε-neighborhood of this curve, denoted by
Nε. Let Ω+ = {(x, t);x > l(t)} and Ω− = {(x, t);x < l(t)}.

We extend unj and znj by constants on (j∆x, (j+1)∆x]×(n∆t, (n+1)∆t], denoted
by u∆x and z∆x. On Ω+\Nε, u∆x is bounded in BV . There is a subsequence
converging in L1, and the limit u is in BV . u is monotone. On Ω−\Nε, u∆x is
bounded in L∞. There is a subsequence of the above subsequence weakly converging
in Lp, p > 1. Letting ε → 0, we get a sequence of u∆x converging for all ε. Let
u be the limit. There is a family of Young measures {νx,t} associated with the
sequence (see [9], for example). To see the strong convergence in Ω− \Nε, it suffices
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to prove the Young measures are Dirac δ functions. Consider an arbitrary t0 > 0.
The theory of compensated compactness is applied to the difference scheme

vn+1
j − vnj

∆t
+
f(vnj )− f(vnj−1)

∆x
= 0,

with initial data

vn0
j = un0

j for j∆x ≤ l(t0)− ε,
vn0
j = ur for j∆x > l(t0)− ε.

where n0 =
[
t0
∆t

]
and [·] is the integer part of a number. This is the upwind finite

difference scheme for the conservation law
∂u

∂t
+
∂f(u)
∂x

= 0.

It is easy to see that vnj = unj for all j ≤ (l(t0) − ε)/∆x and n ≥ n0, and vnj also
converges weakly in Lp. Following the argument in [7], we can prove that the Young
measures associated with vnj are Dirac δ functions for all x and t, and so are the
Young measures associated with unj for j ≤ (l(t0) − ε)/∆x and n ≥ n0. Since l is
monotone and t0 is arbitrary, it is true for all (x, t) ∈ Ω− \Nε, and ε is arbitrary.

Lemma 2.6. If there is a sequence of time steps with ∆x,∆t→ 0, then there is a
subsequence such that u∆x converges pointwise almost everywhere to u on t ∈ (0, T ).
u is an entropy solution for x < l(t) and x > l(t), and

u ≥ U, z = 0, for (x, t) ∈ Ω−,

u ≤ U, z = 1, for (x, t) ∈ Ω+.

Proof. The conclusion follows from the above argument and Lemma 2.2. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let Ω = {(x, t);−∞ < x <∞, 0 < t <∞} and ϕ ∈ C∞0 (Ω).
By (15) we have

∞∑
j=−∞

∞∑
n=0

{
(unj + qznj )

ϕn+1
j − ϕnj

∆t
+ f(unj )

ϕnj+1 − ϕnj
∆x

}
∆x∆t = 0.

Let ∆x,∆t→ 0 for a given ε > 0; then we get the limit∫∫
Ω\Nε

{
(u + qz)

∂ϕ

∂t
+ f(u)

∂ϕ

∂x

}
dxdt = O(ε)‖ϕ‖C1

0
.

Here we have used the maximum norm estimate in Lemma 2.1 and the fact that
meas(suppϕ

⋂
Nε) = O(ε). ε is arbitrary, so∫∫

Ω

{
(u+ qz)

∂ϕ

∂t
+ f(u)

∂ϕ

∂x

}
dxdt = 0,

which proves (u, z) is a weak solution to (1). The other conclusions are obvious.
Thus the proof is completed. �

We have noticed that the solutions of this problem are not unique.
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3. Convergence to strong detonation waves

We will make more assumption in addition to the CFL condition (9); then we
will prove the weak solution obtained in the previous section is a piecewise constant
solution with a strong detonation wave. Let all assumptions of Theorem 1.2 be
satisfied in this section. To prove the theorem we need the following lemmas.

Lemma 3.1. u ≡ ur on Ω+.

Proof. First of all, let us prove that

(17) u−min − u+
max ≥ q,

where u−min = min(x,t)∈Ω− u(x, t) and u+
max = max(x,t)∈Ω+ u(x, t). If Ui is fixed,

then u ≤ Ui on Ω+ and u ≥ Ui + q on Ω−, so (17) holds. If Uni is random, we set
u+

max = inf{v ∈ (U − q, U);P (Uni < v) > 0}. We construct a 2ε-neighborhood N2ε.
If (x, t) 6∈ N2ε, we take t1 < t such that

t− t1 ≤
ε

max f ′
.

For a given δ > 0 when ∆x,∆t are sufficiently small, there is an n0∆t ∈ (t1, t) such
that Un0

i ≤ u+
max + δ; then un0

j ≤ u+
max + δ for all j on Ω+\Nε. The scheme is

monotone; therefore unj ≤ u+
max + δ holds for n ≥ n0 on Ω+\Nε. Since u∆x(x, t) ≤

u+
max + δ for (x, t) ∈ Ω+\N2ε, we have u(x, t) ≤ u+

max + δ. But δ is arbitrary,
and ε is also arbitrary, so we have u(x, t) ≤ u+

max on Ω+. On the other hand,
u(x, t) ≥ u+

max + q on Ω−. Therefore (17) holds.
Let (x0, t0) ∈ Ω+. The downward characteristic line starting from (x0, t0) is

denoted by C(x0, t0), which is a function x = g(t;x0, t0) (see [6]). If g(t;x0, t0) >
l(t), ∀t ∈ (0, t0), then u is a constant on C(x0, t0) and u(x0, t0) = ur. If there is
t1 ∈ (0, t0) such that g(t1;x0, t0) = l(t1), and g(t;x0, t0) > l(t) for t ∈ (t1, t0), we
construct all C(l(τ), τ), τ ≤ t1. Let g(t) = max{l(t), g(t;x0, t0), g(t; l(τ), τ), ∀τ ≤
t1}; then g is continuous (Figure 2). Also, g′(t) ∈ [0, f ′(U)], so g ∈W 1,∞.

Figure 2.
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Let v(t) = u(g(t) + 0, t). Because u ∈ BV , the limit exists as x→ g(t) + 0.
Let S = {t ∈ (0, t0); g(t) = l(t)}. The derivatives of l and g exist almost

everywhere. By the definition of g, the slope f ′(v(t)) of the characteristic line is
greater than or equal to the slope of the curve g(t). At a point t ∈ S, if both l′

and g′ exist, then l′(t) = g′(t) ≤ f ′(u+
max). On the other hand, if x < l(t), then

the slope of C(x, t) is no less than f ′(u−min). Let δ > 0 be small enough so that
l(t)−l(τ)
t−τ < f ′(u−min) for τ ∈ [t − δ, t]; then g(τ ;x, t) < l(τ) for all τ ∈ [t − δ, t].

As x → l(t) − 0, g(τ ;x, t) is increasing and the limit limx→l(t)−0 g(τ ;x, t) exists.
Now x−g(t−δ;x,t)

δ = f ′(u(x, t)). Since f ′′ > 0, the limit of u(x, t) also exists as
x→ l(t)− 0.

Since u(g(t) + 0), t) = u(g(t) − 0, t) on characteristics, using the definition of
weak solutions we get the Rankine-Hugoniot condition∫
S

g′(t)(u(g(t)+0, t)+q−u(g(t)−0, t)) dt=
∫
S

(f(u(g(t)+0, t))−f(u(g(t)−0, t))) dt,

where the integral is zero for t 6∈ S. By the definition of S,

0 ≤ g′(t) ≤ f ′(u(g(t) + 0, t)).

(17) implies that

f(u(g(t) + 0, t)) < f(u(g(t)− 0, t)),

u(g(t) + 0, t) + q ≤ u(g(t)− 0, t).

Consequently

f(u(g(t)− 0, t))− f(u(g(t) + 0, t))

>f ′(u(g(t) + 0, t))(u(g(t)− 0, t)− u(g(t) + 0, t)− q)
≥g′(t)(u(g(t)− 0, t)− u(g(t) + 0, t)− q).

Therefore meas S = 0.
We define a curve Γε : x = l(t) + ε. We have Γε ⊂ Ω+. From each point on it

we can construct C(x, t). Similar to g(t) and v(t) we have gε(t) and vε(t). From
each point (gε(t), t) we can construct a characteristic line C(gε(t), t) , which is on
the left of the curve x = gε(t). u ≡ u(gε(t), t) on C(gε(t), t). By Lemma 2.2 u is
monotone with respect to x, so u(gε(τ), τ) ≤ u(gε(t), t) for τ < t, which implies vε

is increasing monotonically. Let ε→ 0; then gε(t)→ g(t), vε(t)→ v(t), so v is also
increasing monotonically. As a result v ∈ BV , and dv

dt exists as a measure.
We prove by contradiction that v is a continuous function. If v is discontinuous

at a point t1 > 0, let u1 = limt→t1+0 v(t),u2 = limt→t1−0 v(t); then u1 > u2. Let
t2 > t1; then v(t) ≥ u1 on (t1, t2). For each t ∈ (t1, t2), if x > g(t) and x − g(t) is
small enough, then u(x, t) > v(t) − (u1 − u2) ≥ u2. We consider the characteristic
C(x, t), ξ = x+f ′(u(x, t))(τ−t), which doesn’t intersect the line segment {(x, t); t =
t1, x > g(t1)}, as otherwise we would get u|C(x,t) = u(x, t) > u2, which contradicts
Lemma 2.2. We define h(t) = sup{x > g(t);x + f ′(u(x, t))(t1 − t) ≤ g(t1)}; then
h(t) > g(t) for t > t1. On the other hand, we consider x ∈ (g(t), h(t)) and the
characteristic C(x, t). The slope of C(x, t) is bounded by f ′(U), so x − g(t1) ≤
f ′(U)(t− t1). Besides, x+ f ′(u(x, t))(τ − t) ≤ h(τ) for τ ∈ (t1, t), because it is also
the characteristic C(x+ f ′(u(x, t))(τ − t), τ); then by the definition of h, it cannot
be greater than h(τ). Letting x→ h(t), we get x+ f ′(u(x− 0, t))(τ − t) ≤ h(τ) for
x = h(t), which implies h(t)−h(τ)

t−τ ≤ f ′(U). Similarly we consider x > h(t) and get
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Figure 3.

h(t)−h(τ)
t−τ ≥ f ′(ur). Therefore h(t) is continuous and limt→t1 h(t) = g(t1) (Figure

3). By the definition of h(t), we have u(h(t)−0, t) ≥ u1 and u(h(t)+0, t) ≤ u2, so it
is a shock. h′(t) exists almost everywhere, and by the Rankine-Hugoniot condition

(18) h′(t) =
f(u(h(t)− 0, t))− f(u(h(t) + 0, t))

u(h(t)− 0, t)− u(h(t) + 0, t)
.

Given ε > 0, let t > t1 be small enough; then u(h(t)− 0, t) ≤ u1 + ε. Since we have
meas S = 0,

(19) g(t) =
∫ t

t1

g′(t) dt+ g(t1) =
∫ t

t1

f ′(v(t)) dt + g(t1) ≥ f ′(u1)(t− t1) + g(t1).

Let ε be small enough; then (18) yields h′(t) < f ′(u1), and (19) gives h(t) < g(t).
This is impossible, so v is continuous. Because v(t) is constant on characteristics
and meas S = 0, we have

v(t) =
∫ t

0

v′(τ) dτ + ur =
∫
S

v′(τ) dτ + ur ≡ ur.

Because u is a constant on C(x0, t0), u(x0, t0) = ur. (x0, t0) is arbitrary, so u ≡ ur
on Ω+. �

We consider Ω− next. We define

f∗(v) =
f(v)− f(ur)
v − ur − q

for v ≥ ul∗.
Lemma 3.2. If u ∈ [ul∗, v] on a neighborhood of Γ, v ≥ u∗l , then l′ ≤ f∗(v).

Proof. We take a sequence ε1, ε2, · · · , εk → +0 as k → ∞, such that u(l(·)− εk, ·)
converges weakly. Let ũ be the limit. Since u is a weak solution on {(x, t); l(t)−εk <
x < l(t), t0 < t < t1}, where t0, t1 are arbitrary, we have∫

S

{(ur + q)l′ − f(ur)} dt =
∫
S

{u(x− εk, t)l′ − f(u(x− εk, t))}dt+ Ik,
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where S = {(x, t);x = l(t), to < t < t1} and Ik is the integral on t = t0 and t = t1.
Since f∗(u) ≤ f∗(v), we have∫

S

{f(u(x− εk, t))− f(ur)− l′(u(x− εk, t)− ur − q)} dt

≤
∫
S

(f∗(v) − l′)(u(x − εk, t)− ur − q) dt.

Let k →∞. Then Ik → 0, and we get∫
S

(f∗(v)− l′)(ũ− ur − q) dt ≥ 0.

(ũ− ur − q) dt is a measure, denoted by dν, so∫
S

(f∗(v)− l′) dν ≥ 0.

Since S is arbitrary, f∗(v)− l′ ≥ 0 almost everywhere. �
We define ū so that f ′(ū) = f∗(u∗l ); then uCJ < ū < u∗l .

Lemma 3.3. If u(x, t) ≥ ū, then C(x, t) intersects t = 0 at x < 0, and g(τ ;x, t) ≤
l(τ) for τ ≥ 0. If u(x, t) < ū, then C(x, t) intersects Γ.

Proof. If u(x, t) ≥ ū, let u(1) = u(x, t). If C(x, t) intersects Γ at t1 ≥ 0, then∫ t

t1

l′ ds > f ′(u(1))(t− t1) ≥ f∗(u∗l )(t− t1).

There is a point (x2, t2) in {(ξ, τ); g(τ ;x, t) < ξ < l(τ), t1 < τ < t} such that
u(x2, t2) ≥ u∗l . If not, let v = u∗l in Lemma 3.2; then by the conclusion l′ ≤ f∗(u∗l ),
which is impossible. Let u(2) = u(x2, t2). Since characteristics cannot intersect each
other, C(x2, t2) intersects Γ, too. We repeat the argument and get u(3), · · · , such
that f∗(u(k+1)) ≥ f ′(u(k)). {u(k)} is an increasing sequence, so limk→∞ u(k) = u∞.
If u∞ <∞, then

f ′(u∞) ≤ f∗(u∞) =
f(u∞)− f(ur)
u∞ − ur − q

,

which is impossible. It follows that u∞ = ∞, which contradicts the maximum
norm estimate, Lemma 2.1. Therefore C(x, t) intersects t = 0 at x < 0, and
g(τ ;x, t) ≤ l(τ) for τ ≥ 0.

If u(x, t) < ū and if C(x, t) does not intersect Γ, then it intersects t = 0, and
u(x, t) = ul. This is also a contradiction. �

Since f ′ > 0, C(x0, t0) intersects t = 0, x < 0 for all x0 < 0, t0 > 0, which implies
u(x0, t0) = ul. Let s(t) = sup{x;u(x, t) = ul} for all t; then s(0) = 0. If s(t) < l(t),
then by Lemma 3.3 u(x, t) ≤ ū < ul for all x ∈ (s(t), l(t)). x = s(t) is a shock wave,
because u is discontinuous on it.

Lemma 3.4. s(t) ≡ l(t).

Proof. If not, there is a t1 ≥ 0 such that s(t1) < l(t1); then there is a t0 < t1 such
that s(t) < l(t) for t ∈ (t0, t1) and s(t0) = l(t0). By Lemma 3.2 l′ ≤ f∗(u∗l ) = f ′(ū),
so l is continuous. For x = s(t) we have u(x− 0, t) = u∗l and u(x+ 0, t) ∈ [ul∗, ū);
hence

s′ ≥ f(u∗l )− f(ul∗)
u∗l − ul∗

= f ′(ū).
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Consequently

l(t1)− s(t1) =
∫ t1

t0

(l′(t)− s′(t)) dt ≤ 0,

which leads to a contradiction. �

Obviously we have

Lemma 3.5. u ≡ ul on Ω−.

We are now ready to prove our main result of this section.

Proof of Theorem 1.2. By the Rankine-Hugoniot condition, l′ = f∗(ul). Therefore
the solution is given by (7).

Moreover, by the uniqueness of the limit, the approximate solution u∆x, z∆x

converges in L1 to the exact solution u, z, given by (7), as ∆x → 0, ∆t → 0. The
proof is thus completed. �

4. Convergence to weak detonation waves

We assume that the numerical ignition temperature Ui is fixed, the CFL condi-
tion (11) holds, and Ui < ul∗−q to obtain weak detonation waves in this section. In
fact the restriction on Ui is even stronger. We define a constant f∗ which satisfies

f ′(u∗l ) > f∗ >
f(ul∗)− f(ur)
ul∗ − ur − q

=
f(u∗l )− f(ur)
u∗l − ur − q

=
f(u∗l )− f(ul∗)

u∗l − ul∗
,

and we show that the constant uw in Theorem 1.3 is ur + qf ′(ur)
2f∗ , which is less than

ul∗ − q.

Lemma 4.1. If

(20) ur < Ui ≤ ur + qf ′(ur) ·
{

∆t
∆x , for ∆t

∆x ≥
1

2f∗ ,
1
f∗ −

∆t
∆x , or ∆t

∆x <
1

2f∗ ,

then

(21) l′∆x(t) ≥ f∗.

Proof. By the difference scheme and Lemma 2.4,

ũnj0+1 ≥ unj0+1 +
∆t
∆x

f ′(ur)(unj0 − u
n
j0+1) ≥ unj0+1 +

∆t
∆x

f ′(ur)q.

If ũnj0+1 < Ui, then un+1
j0+1 = ũnj0+1. Let n1 be a given integer; then we have zn1

j0
= 0

and zn1
j0+1 = 1. If znj0+1 keeps invariant up to n1 +N , then

Ui > ũn1+N−1
j0+1 ≥ un1

j0+1 +N
∆t
∆x

f ′(ur)q

≥ ur +N
∆t
∆x

f ′(ur)q,

so

N <
(Ui − ur)∆x
∆tf ′(ur)q

.

Let

N1 =
[

(Ui − ur)∆x
∆tf ′(ur)q

]
+ 1;
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then ũn1+N1−1
j0+1 ≥ Ui. If

Ui ≤ ur + qf ′(ur)
(

1
f∗
− ∆t

∆x

)
,

then N1 ≤ ∆x
∆tf∗ , or ∆x

N1∆t ≥ f∗. (21) follows.
Another possibility is Ui ≤ ur + qf ′(ur) ∆t

∆x ; then ũnj0+1 ≥ Ui. If we take N1 = 1,
then by the CFL condition (11), ∆x

∆t ≥ f∗. (21) also holds.
Because

min
∆t/∆x

(
1
f∗
− ∆t

∆x
,

∆t
∆x

)
=

1
2f∗

,

we get (20). �

Lemma 4.2. l′(t) ≥ f∗.

Proof. Since l′∆x is bounded, there is a subsequence such that

l′∆x ⇀ l′(Lp, p ∈ (1,∞)),

so l′(t) ≥ f∗. �

Lemma 4.3. C(x, t) intersects t = 0, x > 0, and u ≡ ur in Ω+.

Proof. Because u(x, t) ≤ Ui in Ω+, and f ′(Ui) < f ′(ul∗) < f∗ ≤ l′(t), it follows
that f ′(u) < l′. �

We turn now to consider Ω−. Let g(t) = inf{x; C(x, t) intersects Γ} for all
t > 0.

Lemma 4.4. g(t) < l(t) for all t > 0, and g(0) = l(0) = 0.

Proof. If g(t0) < l(t0) for one t0 > 0, then g(t) < l(t) for all t > t0, because
otherwise there is t1 > t0 be such that g(t1) = l(t1) and g(t) < l(t) for t ∈ [t0, t1).
Let t′0 < t0 such that g(t′0) = l(t′0) and g(t) < l(t) for t ∈ (t′0, t0). Since u is a weak
solution on {(x, t); g(t) < x < l(t), t′0 < t < t1}, we have∫ t1

t′0

{u(g(t)− 0, t)g′(t)− f(u(g(t)− 0, t))} dt

=
∫ t1

t′0

{(u(l(t) + 0, t) + q)l′(t)− f(u(l(t) + 0, t))} dt.

Since
∫ t1
t′0
l′ dt =

∫ t1
t′0
g′ dt, we have

f(ul)− f(ur)
ul − ur − q

=
1

t1 − t′0

∫ t1

t′0

l′(t) dt.

By Lemma 4.2 the right hand side is greater than or equal to f∗, which leads to a
contradiction.

For any ε > 0 there exists t ∈ (0, ε) such that g(t) < l(t). Indeed, otherwise
g(t) ≡ l(t) for t ∈ (0, ε); then u ≡ ul for x < l(t), and by the Rankine-Hugoniot
condition l′ = f∗(ul), which also contradicts Lemma 4.2. �
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Lemmas 4.3 and 4.4 tell us the wave is “supersonic” in front of and behind the
discontinuity.

We still don’t know if u(l(t)− 0, t) exists, so we cannot get a pointwise Rankine-
Hugoniot condition on Γ. However, we can get a weaker statement.

Define w(t) so that

(22)
f(w(t)) − f(ur)
w(t) − ur − q

= l′(t), and w(t) ∈ (ur + q, ul∗),

and define H(u, t) = ul′(t)− f(u).

Lemma 4.5. If ε → +0, then H(u(l(·)− ε, ·), ·) converges weak-∗ to H(w(·), ·) in
L∞.

Proof. Let Ω = {(x, t); l(t) − ε < x < l(t), t0 < t < t1}. Since u is a weak solution
on Ω, ∫ t1

t0

{u(l(t)− ε, t)− ur − q}l′(t) dt

=
∫ t1

t0

{f(u(l(t)− ε, t))− f(ur)} dt+ Iε,

where Iε is the integral on t = t1 and t = t0. That is,∫ t1

t0

{H(u(l(t)− ε, t), t)−H(w(t), t)} dt = Iε.

Let ε→ 0. Then ∫ t1

t0

H(u(l(t)− ε, t), t) dt→
∫ t1

t0

H(w(t), t) dt.

Since t1, t0 are arbitrary, convergence follows. �

Proof of Theorem 1.3. The condition (20) is weaker then Ui ∈ (ur, uw], so in fact
we have proved the assertions under a slightly weaker condition. The Rankine-
Hugoniot condition is in the sense of (22). �

We remark that weak detonation waves are not unique, so Γ may be a curve,
and we don’t know if lim∆x→0,∆t→0 u∆x exists. In addition we make more remarks.

Remark 4.1. The condition (20) implies Ui < ul∗ − q.

Proof. The condition (20) implies

Ui ≤ ur +
qf ′(ur)
f∗(ul∗)

.

Let

f̂ =
f(ul∗)− f(ur)

ul∗ − ur
> f ′(ur);

then

ul∗ − q = ur +
qf̂

f∗(ul∗)− f̂
,

f ′(ur)f∗(ul∗) < f̂f∗(ul∗) < f̂(f∗(ul∗) + f ′(ur)),
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which gives
f̂

f∗(ul∗)− f̂
>

f ′(ur)
f∗(ul∗)

.

�

Remark 4.2. Let u0 satisfy f ′(u0) = f∗. Then H is monotone for u < u0.

Proof. We have ∂H
∂u (u, t) = l′(t)−f ′(u). If u < u0, then f ′(u) < f ′(u0) = f∗ ≤ l′(t),

so ∂H
∂u > 0. �

From this remark we know that w→ H(w, t) is one-to-one, but we cannot prove
that u < u0 near Γ, so we don’t know if u→ H(u, t) is one-to-one near Γ. Because
of this difficulty, we cannot get the limit of u from Lemma 4.5.

In [12] some sufficient conditions are given to get strong and weak travelling
detonation waves of the equation

∂(u+ qz)
∂t

+
∂f(u)
∂x

= β
∂2u

∂x2

and (2). Finally, let us compare the result in [12] and our results. First of all, we
recall the results in [12] using our notation.

Given u∗l and ul∗, let

s =
f(u∗l )− f(ul∗)

u∗l − ul∗
.

Define q̂ by

(23)
f(ul∗)− f(Ui)
ul∗ − Ui − q̂

= s.

Then there is qCR such that if q = qCR, there is a weak detonation travelling wave,
and if q > qCR, there is a strong detonation travelling wave. qCR can be estimated
as follows:

(24) q̂ +
K0(ul∗ − Ui)

s2C
< qCR < q̂ +

K0(ul∗ − Ui)
s2

+
2(K0(ul∗ − Ui)q̂)

1
2

s
,

where K0 = βK.
In our case β ≈ f ′∆x, K = 1

∆t , so K0 = βK ≈ f ′∆x∆t . Let Ui = ul∗ − q; then
q = qCR. By (23)

s(qCR − q̂) = f(ul∗)− f(ul∗ − qCR),

and hence

qCR = q̂ +
1
s

(f(ul∗)− f(ul∗ − qCR)) = q̂ +
f ′qCR

s

= q̂ +
f ′(ul∗ − Ui)

s
.

(25)

By the CFL condition ∆x
∆t = c0s, c0 ≥ 1, so f ′ ≈ Ko

∆t
∆x = K0

c0s
. By (25) we get

qCR ≈ q̂ +
K0(ul∗ − Ui)

c0s2
.

This estimate is about the same as the main part of (24).
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