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SEARCHING FOR KUMMER CONGRUENCES
IN AN INFINITE SLOPE FAMILY

B. DATSKOVSKY AND P. GUERZHOY

Abstract. We consider powers of a grossencharacter, the corresponding L-
functions twisted with quadratic Dirichlet characters, and their central critical
values. We state several conjectures concerning Kummer-type congruences
between these numbers for a ramified prime and describe specific numerical
data in support of these conjectures.

0. Introduction

Let K be an imaginary quadratic field of class number 1, and let E be an elliptic
curve defined overK with complex multiplication by the ring of integers ofK. Let Ω
denote a fundamental period of a minimal model of E and ψ the grossencharacter
of K attached to E. Let D be a fundamental discriminant, and let χD be the
quadratic Dirichlet character associated to Q(

√
D). Then the special values

L(k,D, l) =
(2π)2k−1−ll!

Ω2k−1

∑
a

ψ(a)2k−1χD(N (a))N (a)−l,

where the sum is taken over the integral ideals a of K, are rational numbers [3] if
l is an integer and 1 ≤ l ≤ 2k − 1. (Of course, the series might diverge, in which
case one considers the value of the analytic continuation of L.)

For a prime number p which splits in K one can construct a two-variable p-adic
L-function that interpolates L(k,D, l) (see [13], [8]). In other words, there exists a
p-adic analytic function in two variables such that the numbers L(k,D, l), multiplied
by an explicit factor, become special values of this function. The existence of this
interpolating function is equivalent [9, Proposition 4.0.6] to the fact that certain
congruences hold for these numbers; these are the Kummer-type congruences (see
below).

The reason for this successful p-adic interpolation may be explained as follows.
The L-series in question are the Mellin transforms of modular forms

(1) f =
∑

a

ψ(a)2k−1qN (a), q = exp(2πiτ),

of weight 2k and a certain level [15, Theorem 4.8.2], twisted with quadratic Dirichlet
characters χD.

If p splits, these modular forms are specializations of a p-ordinary Λ-adic modular
form [6], and one explains the success of the p-adic interpolation in the framework
of Hida’s theory. The situation is more complicated if p is inert; in this case,
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nevertheless, some congruences were found by Hurwitz [7] and reproved by Katz
[10] by using Cartier duality. These congruences concern the restriction of the
conjectural two-variable p-adic L-function to the boundary line l = 2k − 1 with
the variable k. On the other hand, if k is fixed (and the variable l is allowed to
run over the set of continuous characters of Z∗p), one gets a k-admissible measure
according to [19], [1] (see [14] for an exhaustive discussion concerning this case and,
in particular, about admissible measures).

The main subject of the present paper is Kummer-type congruences for the
primes p which are ramified in K. We remind the reader ([6]) that p-ordinary
modular forms (modular forms of zero slope) are those that survive under the action
of Hida’s ordinary projector Ep = limn→∞ Un!

p . As the opposite extreme case, we
propose the following terminology: we say that a modular form is of infinite slope
if it belongs to the kernel of the Up-operator. This definition coincides with the
definition of slope coming from the consideration of the Newton polygon of the
Hecke polynomial at p.

If the prime p is ramified in K, the modular forms (1) are of infinite slope. One
of the motivations for this research was a very näıve approach to a question from [2]
about the possibility of completing the eigencurve by including the missing points
of infinite slope. The families of infinite slope should live on the boundary of the
eigencurve, and it turns out to be easy to produce such a family. The next natural
question is about the p-adic properties of special values of the L-function.

As in the split case, the modular forms (1) are specializations at weight 2k
of a p-adic family of modular forms, which should be thought of as a Λ-adic
Hecke eigenform of infinite slope. In this case, once again, the restriction of the
conjectural two-variable p-adic L-function for D = 1 to the boundary line l =
2k − 1 was constructed by Rubin [17]. This is equivalent to saying that the values
L(k, 1, 2k−1), where 1 stands for the trivial Dirichlet character, satisfy certain con-
gruences (see [17] for details). Our numerical calculations of the values L(k,D, l)
for different k and l did not provide any substantial evidence for the existence of
the two-variable p-adic L-function.

The numbers under consideration in this paper are central special values of L-
series corresponding to the modular forms (1), twisted with quadratic Dirichlet
characters. The authors consider the restriction to the central critical line, namely
l = k, to be an interesting setting. The purpose of this paper is to discuss the
following conjecture.

Conjecture 1. For any discriminant D, and positive integer k fixed modulo p− 1,
there is an Iwasawa function lD such that

(2) lD(k)2 = C(k)L(k,D, k),

where the quantity C(k) does not depend on D and does not vanish.

In other words we conjecture the existence of a p-adic analytic function F on
Homcont(Z∗p,C∗p), where Cp is the completion of an algebraic closure of Qp, with
the property

F(k) = lD(k)

for a fixed embedding Q̄ ↪→ Cp of the field of algebraic numbers into Cp. The
existence of such a function is known ([9], 4.0.6) to be equivalent to the following.
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Kummer-type congruences. For a nonnegative integer A and positive inte-
gers k1, k2 the congruence

k1 ≡ k2 mod (p− 1)pA

implies the congruence

lD(k1) ≡ lD(k2) mod pA+1.

This equivalence allows us to check numerically a conjecture about the exis-
tence of an interpolating Iwasawa function just by checking whether the Kummer
congruences hold. This is precisely what we are doing in this paper.

There are two questions to discuss in connection with Conjecture 1.
The first, and the most important one, is that the “square” of the conjecture is

true, namely, that the right-hand side of (2) satisfies Kummer congruences. In the
case when the prime p splits in the imaginary quadratic field K this statement is a
special case of results from [8] (see [11] for a detailed discussion).

Our setting differs slightly from the usual one. We consider only the central
special values L(k,D, k) of the L-function associated to different modular forms
of different weights 2k and we do not take into account other special values and
cyclotomic twists (this is because we have no idea of how to interpolate all the
numbers L(k,D, l) by a two-variable p-adic L-function). We are allowed to multiply
the values L(k,D, k) by a nonzero algebraic number C(k). Now there are two ways
to make a nonvacuous claim. The first one is to introduce an additional discrete
argument, namely to consider twists by Dirichlet characters, and to demand that
the normalization constant C(k), a common nonzero factor that depends on k,
does not depend on the Dirichlet character. Another way is to produce an explicit
expression for C(k). We try to do the latter in a very special case in Section 3 of the
paper, and we stick to the former approach here. We consider only quadratic twists;
thus C(k) becomes a normalization constant (a common nonzero factor) for all the
values L(k,D, k), independent of the discriminant D. As to the discriminants D,
we consider all of them, including those which are divisible by p. In other words,
we first view Conjecture 1 as a way to say that the restriction of L(k,D, l) to the
central critical line is a p-adic analytic function even though the two-variable p-adic
L-function may not exist.

The second question is more delicate and concerns the choice of the square
root. The numbers L(k,D, k) are known to be essentially perfect squares of the
Fourier coefficients of modular forms of half-integral weight connected with the
initial modular forms by the Shimura correspondence. Thus the question about
the canonical choice of the square roots can be put as the question of whether
the corresponding set of half-integral weight modular forms is, in a sense, a p-adic
family. Such a type of conjecture was first formulated in [11] in the case when p splits
on the basis of numerical data. Shortly after that the conjecture was reformulated
in a much more appropriate framework of Jacobi forms instead of modular forms of
half-integral weight and partially proven by Kohnen [12]. The rest of the conjecture
(still in the case when p splits) was recently proved by the second author [5] under
an additional condition. The authors hope that our Conjecture 1 may be proved
in the same framework, by an explicit construction of the corresponding family of
Jacobi forms.
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The authors expect that a statement similar to Conjecture 1 holds whenever one
has a p-adic family of modular Hecke eigenforms which are newforms of infinite
slope. In this context complex multiplication can be considered as a convenient
and arithmetically interesting way to produce such a family [6]. Also, we expect
that the assertion should still be true if one considers the twists by arbitrary tame
Dirichlet characters and not only by quadratic characters.

We tried to test numerically some special cases of Conjecture 1. We state them
in the subsequent sections of the paper as separate conjectures, showing numerical
data in support. For the numerical calculations we pick Q(

√
−7) and Q(

√
−11)

for the imaginary quadratic field K and denote by ψ7 and ψ11 the corresponding
grossencharacters.

Short tables of the special values under consideration for ψ = ψ7 are computed
in [4], but they are not of sufficient length to observe the congruences.

Let us mention here some consequences of our computations which seem to be
especially interesting.

The results of the calculations do not suggest the existence of a smooth two-
variable p-adic L-function when the prime p is ramified in K. Nevertheless, the
“restriction to the center of the critical line” seems to be an Iwasawa function (see
Section 1), as is the case if the prime p splits, but the calculations show that this
is probably not true when the prime p is inert.

The quantities in the right-hand side of Conjecture 1 are essentially perfect
squares, and therefore Conjecture 1 provides a “canonical” choice of the square
roots. A statement similar to Conjecture 1 is true for primes which split (see [12],
[5]). The calculations show that these two choices of the square root are different,
though closely related (see Section 2).

Another canonical choice of the square root, at least in the case ψ = ψ7 and
D = 1, follows from [16]. This setting has almost nothing to do with Conjecture 1.
However, the simple link, found experimentally (see Section 3), seems interesting.
Note that we have not succeeded in finding anything similar for an inert prime.
Instead we record some strange congruences, which do not fit into our framework
(see Section 4).

All the numerical calculations were executed with the use of the Number Theo-
retic package PARI-GP.

1. Calculations in support of Conjecture 1

Assume that Conjecture 1 is true. Then the right-hand side of (2), namely, the
central special values of the L-function twisted with Dirichlet character, satisfies
Kummer congruences. One can test numerically the following statement.

Conjecture 2. There exists a nonzero normalization constant C(k) such that if

k1 ≡ k2 mod (p− 1)pA

with an integer A ≥ 0, then

(3) C(k1)L(k1, D, k1) ≡ C(k2)L(k2, D, k2) mod pA+1.

For the numerical experiments we pick C(k) such that both sides of (3) are not
divisible by p. The computations show that the statement of Conjecture 2 is true
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in the following cases:

ψ = ψ7, 1 ≤ k ≤ 16, 1 ≤ d ≤ 78, p = 7.
ψ = ψ11, 1 ≤ k ≤ 19, odd, 1 ≤ d ≤ 78, p = 11.

Here and in the following d = |D| if D is odd, and d = |D|/4 if D ≡ 0 mod 4.
In all the cases listed above one finds the predicted congruences modulo p if k1 ≡
k2 mod (p− 1). Additionally, we checked the congruences modulo 49 when ψ = ψ7

for the pair k1 = 1 and k2 = 43 and 1 ≤ d ≤ 41.

2. Noncompatibility of square roots

In this section, we test whether our choice of the square root lD(k) is compatible
with another natural choice, which appears when one considers the splitting primes.

We say that a prime q satisfies the condition (*) if q splits in K and there exists a
fundamental discriminant D0 < 0 and k0 > 0 such that q|D0 and L(k0, D0, k0) 6= 0.
We note that there are infinitely many primes q that satisfy the condition (*).

The following proposition is proved in [5] and [12].

Proposition. There is a normalization constant c(k) 6= 0 and a choice of square
root

c(k,D)2 = c(k)L(k,D, k)
for D < 0 with the following property.

For any prime q which satisfies (*) and for any D which is not divisible by q the
congruence

k1 ≡ k2 mod (q − 1)qA with k1, k2 > A ≥ 0
implies

c(k1, D) ≡ c(k2, D) mod qA+1.

We stress that the square root c(k,D) and the normalization constant c(k) may
be chosen to be the same for different splitting primes q. In other words, there
exist specific choices of the normalization constant and of the square root, which
are suitable for most of (conjecturally for all) the splitting primes.

We are now in a position to make the choice of square root in Conjecture 1 more
precise.

Conjecture 3. One can choose

c(k) = C(k) and c(k,D) = εDlD(k),

where εD = ±1 depends only on the Kronecker symbol
(
D
p

)
.

Note that this conjecture means that, in a sense, the choices of the square root
for ramified and split primes are not compatible though they may be somehow
related.

Let d be as in Section 1. The conjecture above is supported by the numerical
calculation of the following special values:

ψ = ψ7, L(2, D, 2) and L(32, D, 32) for 2 ≤ d ≤ 3 (p = 7, q = 11),

ψ = ψ7, L(3, D, 3) and L(33, D, 33) for 1 ≤ d ≤ 30 (p = 7, q = 11),

ψ = ψ11, L(3, D, 3) and L(23, D, 23) for 2 ≤ d ≤ 35 (p = 11, q = 5).

Note that k1 and k2 in the above table are chosen so that k1 ≡ k2 mod
g.c.d. ((p− 1), (q − 1)), the prime q > 3 splits and p ramifies in K.
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In order to illustrate what kind of numerical data support our conjectures, we
present a small table below. Here ψ = ψ7; we took two values of k, and we pick
C(2) = 1 and C(32) = 1/74.

D L(2, D, 2) L(32, D, 32)/74

−3 25 265 326 52 312 59532 154890792

−8 2 21 314 52 312 1032 1251312 308608580029392

−11 28 268 312 52 312 633631932170045421669832

−15 26 266 326 512 312 17412 12031272 25976893872

−19 25 32 265 312 52 194 312 17233035041619685141388092

−24 22 22 326 52 312 18921364578904200912383592

−40 26 26 312 512 312 432 17472 25752772 629086960065946012

−88 23 32 23 314 52 292 312 3792 32757079897577630538958967215912

The fact that the entries in the table are perfect squares or twice perfect squares
is expected in view of [12, Proposition 1], [11, remarks after Conjecture A], though
still surprising. Of course, this fact makes it simple to check the incompatibility
claim even with this short table. Notice that 2 ≡ 32 mod g.c.d. (7 − 1, 11 − 1),
the prime 11 splits in Q(

√
−7), and, according to our Conjecture 2 and Proposition

above, the columns of the table are congruent modulo 11 and 7. Meanwhile, in
order to preserve these congruences, one has to choose two different values of the
square roots (no choice of the square root preserves the modulo 77 congruence
between the two columns).

3. Central special values without character twists

In this section we do not consider twists with Dirichlet characters and therefore
we omit index D from the notation: put D = 1, assume k to be odd, and write

(4) l(k)2 =
(

((k − 3)/2)!
(k − 2)!

)2

L(k, 1, k).

We restrict the consideration to the grossencharacter ψ7 corresponding to
Q(
√
−7). Thus, we put p = 7. In this case the canonical choice of the square

root for the central special values was discovered in [16], and its p-adic interpo-
lation for a splitting prime was constructed in [18]. We use the same choice of
square root as in [16, 18]; with this choice the numbers l(k) are well defined by (4).
Moreover, we can make use of the remarkable recursive formula from [16]. Making
use of this formula, it is easy to compute hundreds of values l(k), and the results of
this computation support the following precise analogue of Kummer congruences.

Conjecture 4. If k1 ≡ k2 mod pA(p − 1) for an integer A ≥ 0 and if k1 and k2

are odd numbers greater than 3, then

l(k1) ≡ l(k2) mod pA+1.

In other words, l(k) is an Iwasawa function.

We mention also the following congruence, found experimentally.

Conjecture 5. If k ≥ 5 is odd, then l(k) ≡ 1 mod 7.
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The statements of this section, while they indirectly support Conjecture 1, are
quite different. We do not consider twists with quadratic characters, and we stip-
ulate very specific values for C(k). Neither an affirmative nor negative answer to
Conjecture 4 will guarantee the same answer to Conjecture 1.

4. A remark about an inert prime

We continue with D = 1, odd k and ψ = ψ7. The prime q = 5 is inert in
K = Q(

√
−7). Let r(k) be the canonical square root for L(k, 1, k)/2 as in [16].

We failed to find a nice and natural normalization for the numbers r(k) so that
the Kummer congruences modulo q hold. Instead of this, within the range of our
computations, the following statement is true.

Conjecture 6. For a positive integer n one has

d(n) := ordq r(1 + 24n) = ordq r(1 + 120n)

and
q−d(n)r(1 + 24n) ≡ q−d(n)r(1 + 120n) mod q.

Note that 24 = q2 − 1 and 120 = q(q2 − 1). We have no general framework to
explain this phenomenon.
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