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NONINTERPOLATORY HERMITE SUBDIVISION SCHEMES

BIN HAN, THOMAS P.-Y. YU, AND YONGGANG XUE

Abstract. Bivariate interpolatory Hermite subdivision schemes have recently
been applied to build free-form subdivision surfaces. It is well known to geo-
metric modelling practitioners that interpolatory schemes typically lead to
“unfair” surfaces—surfaces with unwanted wiggles or undulations—and nonin-
terpolatory (a.k.a. approximating in the CAGD community) schemes are much
preferred in geometric modelling applications. In this article, we introduce, an-
alyze and construct noninterpolatory Hermite subdivision schemes, a class
of vector subdivision schemes which can be applied to iteratively refine Her-
mite data in a not necessarily interpolatory fashion. We also study symmetry
properties of such subdivision schemes which are crucial for application in
free-form subdivision surfaces.

A key step in our mathematical analysis of Hermite type subdivision
schemes is that we make use of the strong convergence theory of refinement
equations to convert a prescribed geometric condition on the subdivision
scheme—namely, the subdivision scheme is of Hermite type—to an algebraic
condition on the subdivision mask. The latter algebraic condition can then be
used in a computational framework to construct specific schemes.

1. Introduction

Subdivision algorithms are iterative methods for producing smooth curves and
surfaces with a built-in multiresolution structure. They are now used in surface
modelling in computer-aided geometric design. They are also intimately connected
to wavelet bases and their associated fast filter bank algorithms. In the so-called
functional/parametric, shift-invariant/regular setting, a subdivision scheme is a lin-
ear operator S := Sa,M : [l(Zs)]1×m → [l(Zs)]1×m of the form

(1.1) Sv(α) =
∑
β∈Zs

v(β)a(α −Mβ),

where a ∈ [l0(Zs)]m×m is the mask of the subdivision scheme, M is the dilation
matrix and m is the multiplicity of the subdivision scheme.

Received by the editor April 15, 2003 and, in revised form, December 10, 2003.
2000 Mathematics Subject Classification. Primary 41A05, 41A15, 41A63, 42C40, 65T60,

65F15.
Key words and phrases. Refinable function, vector refinability, subdivision scheme, shift in-

variant subspace, subdivision surface, spline.
The first author’s research was supported in part by the Natural Sciences and Engineering

Research Council of Canada (NSERC Canada) under grant G121210654.
The second author’s research was supported in part by an NSF CAREER Award (CCR

9984501).

c©2004 American Mathematical Society

1345



1346 BIN HAN, THOMAS P.-Y. YU, AND YONGGANG XUE

General vector subdivision schemes. Vector subdivision schemes and vector
refinement equations are very related and had been extensively studied in the math-
ematics literature. Since free-form subdivision surfaces in geometric modelling is an
application domain where scalar (i.e., m = 1) subdivision schemes find major prac-
tical applications (see, e.g., [6, 1, 23, 9, 29, 22, 21, 26, 27]), one would expect that
the extensive theory in vector subdivision schemes can be materialized into useful
algorithms for modelling free-form surfaces, potentially with improved properties in
specific situations. In implementing this proposal, the first fundamental difficulty
we encounter occurs to be that the subdivision data generated by a general vector
subdivision scheme has a rather unclear geometric meaning.

For any convergent scalar scheme S one has, writing informally,

Snv(α) ≈ f(M−nα), n large.(1.2)

This means that the scalar Snv(α) “measures” the “approximate position” of a
point on the limit curve (when s = 1) or surface (when s = 2). In a vector scheme,
however, the different components in the vector Snv(α) have, in general, no explicit
“geometric meanings”. To clarify as much as possible what we mean here, we first
mention that for a convergent vector subdivision scheme, one has, similar to (1.2),

Snv(α) ≈ [f1(M−nα), . . . , fm(M−nα)], n large.(1.3)

But the limit functions fi are typically highly correlated—and the exact correla-
tion among the component functions (fi) is implicit to the user of the subdivision
scheme. There is a concept called the rank of a subdivision scheme that basically
describes this situation in a rigorous way. For a detailed account of this concept,
we recommend the interdependence analysis section of the unpublished article [2].
Here we give an intuitive description of two extreme cases:

[C0] Rank = m. A rank m scheme is essentially m entirely unrelated convergent
scalar subdivision schemes “put together”. In this case, the fi, i = 1, . . . ,m,
are essentially m entirely unrelated functions.

[C1] Rank = 1. The limit functions fi, i = 1, . . . ,m, of a rank 1 scheme are
essentially just one function: each fi, redefined based on a suitable renor-
malization in the subdivision process (see below for one example), must be
a linear combination of the derivatives of a single function f .

From our point of view, the rank 1 scheme seems like the only kind of vector
subdivision scheme of direct interest in this application. Any vector subdivision
scheme with a rank > 1 is essentially the “putting together” of more than one
unrelated schemes. Notice then a fine point of the aforementioned comment [C1]
pertaining to the rank 1 scheme: the exact linear combination mentioned in [C1]
depends on the subdivision scheme itself. For two different rank 1 schemes, the
corresponding linear combinations may be entirely different. It is in this sense that
we say that the numerical values generated by a general vector subdivision scheme
do not possess precise geometric meanings.

Hermite subdivision scheme: vector subdivision scheme with a pre-
scribed geometric meaning. To overcome the above-mentioned difficulty in ap-
plications to free-form surfaces, in this article we introduce and study a special
class of vector subdivision schemes with a “prescribed geometric meaning” made
precise in Definition 1.1. In the case of s = 1, M = [2], these subdivision schemes
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behave in such a way that for every v, there is a Cm−1 function f such that, for
l = 0, . . . ,m− 1,

(Snv)(α)l+1 ≈ f (l)(2−nα) × 2−nl, n large.(1.4)

Consequently, the components of (Snv)(α) have rather precise meanings, namely,
“approximate position”, “approximate gradient”, “approximate curvature”, etc., of
a point on the limit curve.

Such subdivision schemes can be viewed as a generalization of the more well-
studied interpolatory Hermite subdivision schemes [24, 10, 7, 16, 5, 17], in which

‘≈’ and ‘n large’

above are replaced by
‘=’ and ‘∀ n’,

respectively. Figure 1 shows an interpolatory and a noninterpolatory Hermite
scheme in action. Starting from a set of Hermite data defined on integers, a Her-
mite subdivision scheme successively introduces Hermite data at the half-integers,
the quarter-integers and so on. The distinction between an interpolatory and a
noninterpolatory scheme should be evident from the figures.

It is well known to geometric modelling practitioners that interpolatory schemes
often produce “unfair” surfaces—surfaces with unwanted wiggles or undulations
(see Figure 2(c))—and noninterpolatory schemes are much preferred in geometric
modelling applications.

Relating (1.4) to (1.3) in 1-D with M = [2], a Hermite subdivision scheme is one
such that

[f1, . . . , fm] = [f, 0, . . . , 0];(1.5)

and if we modify the definition of [f1, . . . , fm] from “limn→∞ Snv” to

“ lim
n→∞Snv × diag[1, 2n, . . . , 2(m−1)n]”,

then
“the renormalized [f1, . . . , fm]” = [f, f ′, . . . , f (m−1)].

(The above will be formally defined in Definition (1.1).)

Other Possibilities. Hermite schemes are not the only schemes that serve our needs.
In Definition 3.1, we define another kind of vector subdivision schemes termed
Lagrange type schemes, for which the relation corresponding to (1.5) becomes

[f1, . . . , fm] = [f, f, . . . , f ].

However, as explained in Section 3.1, we believe that there is no fundamental dif-
ference between Hermite and Lagrange schemes.

Symmetry. All the schemes for free-form subdivision surfaces published in [6, 1,
23, 9, 29, 22, 21, 26] are based on a scalar (i.e., m = 1) subdivision scheme of
the form (1.1) with a certain symmetry property (together with special subdivision
rules at extraordinary vertices). Symmetry occurs to be a very fundamental re-
quirement for applications in free-form surfaces, because on a manifold there is not
a natural choice of a local coordinate system and hence it seems necessary to apply
a subdivision scheme which is insensitive to such a choice.

For a general vector subdivision scheme (1.1), however, it is unclear what sym-
metry means.
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Figure 1. 1-D interpolatory and noninterpolatory Hermite subdivision

This second issue is, after all, highly correlated to the first one: it is unclear what
symmetry may mean to a vector subdivision scheme precisely because we do not
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(a) Coarse mesh (b) Loop [23]
—noninterpolatory

(c) Butterfly [29]
—interpolatory

Figure 2. A noninterpolatory and an interpolatory (scalar) sub-
division scheme applied to a very irregular coarse mesh. It is a
well-known experience that interpolatory schemes typically pro-
duce surfaces which are less “fair” than those produced by nonin-
terpolatory schemes.

have a “geometric interpretation” to the data Snv(α) produced by the subdivision
process. But if a vector subdivision scheme is of the Hermite type considered in
the paper, then the meaning of symmetry becomes immediately clear. See Section
2.1.

Having a precise “geometric meaning” and a natural symmetry property that
comes along with it, the vector subdivision schemes constructed in this article are
currently being applied to construct free-form subdivision surfaces [28].

1.1. Notations. Let Λr := {µ ∈ Ns
0 : |µ| ≤ r} and by #Λr we denote the

cardinality of the set Λr. Now the elements in Λr can be ordered according to the
lexicographic order. That is, (ν1, . . . , νs) is less than (µ1, . . . , µs) in lexicographic
order if |ν| < |µ| or νj = µj for j = 1, . . . , i−1 and νi < µi for some i. The set Λr is
always ordered in the lexicographic order in this paper with the default first element
being 0. When we write u = (uµ)µ∈Λ, it means u is a (row or column) vector with
its entries ordered lexicographically. A similar comment applies to #Λr × #Λr

matrices.
For an s× s matrix E, define the (#Λr) × (#Λr) matrix S(E,Λr) ([12]) by the

unique matrix that satisfies

(1.6) g = f(E·) implies ∂≤rg = ∂≤rf(E·)S(E,Λr)

where ∂≤rf(x) is the row vector of length #Λr with entries Dµf(x), µ ∈ Λr. In
other words, S(E,Λr) measures how Hermite data change under a linear change of
variables. From this interpretation, we get S(E1E2,Λr) = S(E1,Λr)S(E2,Λr) and
S(E−1,Λr) = [S(E,Λr)]−1, provided that E is invertible.

For a vector space B, denote by [B]m×n the vector space of all matrices of
elements in B, equipped with the cartesian vector space structure. Define [B]m :=
[B]m×1. If B is a normed space with norm || · ||B, then [B]m×n is a normed space
with norm ||v||[B]m×n := ||(||vi,j ||B)1≤i≤m,1≤j≤n||, where the outer || · || is any norm
in Rm×n. If (B, || · ||B) is a Banach space, then so is ([B]m×n, || · ||[B]m×n).

We denote by l(Zs) and L(Rs) the vector spaces of all complex valued sequences
and functions defined on Zs and Rs. The space of finitely supported sequences is
denoted by l0(Zs).
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Throughout this paper, M is an isotropic dilation matrix. If f : Rs → R is a
smooth function, the notation [∂≤rf ]|M−nZs refers to the element in [l(Zs)]1×#Λr

defined by
(
[∂≤rf ]|M−nZs

)
(α) = [∂≤rf ](M−nα).

1.2. Hermite type subdivision schemes. We now formally define the object of
interest in this article.

Definition 1.1. A subdivision scheme S := Sa,M is of Hermite type of order r
if (i) m = #Λr for some r ≥ 0, and for any initial sequence v ∈ [l0(Zs)]1×m there
exists fv ∈ Cr(Rs) such that

lim
n→∞ ||[∂≤rfv]|M−nZs − vnS(Mn,Λr)||[l∞(Zs)]1×m = 0,

where vn = Snv, (ii) fv �= 0 for some v �= 0.

Having formally defined Hermite type subdivision schemes, the mission of the
rest of the article is as follows.

Organization. In Section 2, we derive a constructive condition for Hermite type
subdivision masks. The section encompasses the key mathematical contribution of
this article; namely, we establish Theorem 2.2. This result utilizes a major technical
result in the so-called strong convergence theory of vector refinement equations [13,
Theorem 4.3] to derive an implementable algebraic condition on the subdivision
mask of a Hermite type subdivision scheme. Section 2.1 discusses condition for
symmetry, which is crucial for applying Hermite type subdivision schemes in the
free-form surface setting [28]. In Section 3, we set up a computational framework for
constructing Hermite type subdivision masks, and we report some computational
findings. While this computational framework is based on the analytical results in
Section 2, we sketch a different approach for constructing Hermite type subdivision
schemes in 1-D based on multiple-knot B-splines. In Section 4 we give several
concluding remarks.

2. Analysis

We begin with a road map of this theory section. Since the subdivision mask
determines everything about a subdivision scheme, the ultimate question for us is:
what are the necessary and/or sufficient condition(s) satisfied by the mask of a
Hermite type subdivision scheme?

This section addresses the above question in the following steps:
• Old components. Each of the following implications is known in the

literature and is not specific to a Hermite type subdivision scheme.

Sa,M is a W k
p smooth vector subdivision scheme with multiplicity m

=⇒ impulse response of Sa,M , φ, is refinable with mask a and

φ ∈ [W k
p (Rs)]m×1

=⇒ span{φi(· − α) : α ∈ Zs, i = 1, . . . , m} ⊇ Πk (accuracy order)

⇐⇒ span{ψ(· − α) : α ∈ Zs} ⊇ Πk

ψ̂ = ŷ φ̂, for some y ∈ [l0(Zs)]1×m (super-function)

⇐⇒ ψ satisfies Dµψ̂(2πβ) = 0, β �= 0, |µ| ≤ r (Strang-Fix Condition)

φ has stable shifts⇐⇒
{
Dµ[ŷ(MT ·)â(·)](0) = Dµŷ(0) ∀|µ| ≤ r,
Dµ[ŷ(MT ·)â(·)](2πβ) = 0 ∀|µ| ≤ r, β ∈ (MT )−1Zs\Zs

(sum rule conditions w.r.t. y)
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• New components. We use a result in the strong convergence theory of
vector refinement equations [13, Theorem 4.3] to show that if a mask a
satisfies the sum rule conditions w.r.t. to a y with a specific structure (see
(2.9)), together with a standard spectral condition on the mask (see (2.8)),
then Sa,M is an order r Hermite type subdivision scheme.

We now pursue these components in detail.
It is clear that the limit function fv in Definition 1.1, when it exists, is unique.

In fact,
fv =

∑
α

v(α)φ(· − α)

where φ = (φµ)µ∈Λr (as a column vector) is the “impulse response” of the subdi-
vision scheme: φµ := fδeµ ; here eµ is the µ-th coordinate unit vector in R1×#Λr .
The vector φ satisfies the well-studied two-scale refinement equation

φ(x) =
∑
α∈Zs

a(α)φ(Mx − α).(2.1)

It is well known from the theory of refinement equations that if equation (2.1)
has a smooth solution φ ∈ [Cr(Rs)]m, then

span{φ(· − α) : α ∈ Zs} ⊇ Πr(2.2)

and if in addition span{φ̂(2π(MT )−1α+ 2πβ) : β ∈ Zs} = Cm for all α ∈ Zs, then
the mask a must satisfy the sum rules of order r + 1 (see [10, Theorem 2.4] and
[13]): ∃ y ∈ [l0(Zs)]1×m such that ŷ(0) �= 0,

Dµ[ŷ(MT ·)â(·)](0) = Dµŷ(0) ∀|µ| ≤ r(2.3)

and

Dµ[ŷ(MT ·)â(·)](2πβ) = 0 ∀|µ| ≤ r, β ∈ (MT )−1Zs\Zs.(2.4)

Conversely, if a satisfies the sum rules of order r + 1, then (2.2) must be true ([10,
Theorem 2.4]). As we will see, the Hermite property of a subdivision mask a is
related to the structure of the vector y above; from this the vector y is partially
known and the mask a can be determined from (2.3)–(2.4) up to certain degrees of
freedom.

Given a mask a ∈ [l0(Zs)]m×m, recall that the associated cascade operator Q :=
Qa,M is defined by

(2.5) Qf =
∑
α∈Zs

a(α)f(M · −α).

Let f be a length m column vector of tempered distributions. We say that f
satisfies the moment conditions of order r + 1 with respect to y ∈ [l0(Zs)]1×m (see
[13]) if

ŷ(0)f̂(0) = 1 and Dµ[ŷ(·)f̂(·)](2πβ) = 0, µ ∈ Λr, β ∈ Zs\{0}.(2.6)

Assume that (2.3) is satisfied with some vector y. We say that the cascade
algorithm associated with mask a and dilation matrix M converges in Cr(Rs) if
for any compactly supported function vector f ∈ [Cr(Rs)]m satisfying the moment
conditions of order r + 1 with respect to y, the sequence (Qn

a,Mf)∞n=0 is a Cauchy
sequence in [Cr(Rs)]m; consequently, there exists φ ∈ [Cr(Rs)]m such that

lim
n→∞ ||Qn

a,Mf − φ||[Cr(Rs)]m = 0.
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In this case the limit φ is a solution of the refinement equation (2.1) and moreover,
(2.3)–(2.4) are satisfied (see [13]).

It is well known that (2.2) is equivalent to the existence of a y ∈ [l0(Zs)]1×m

such that (2.6) holds with f being replaced by φ. This vector y, in vague terms,
determines how the function vector φ reproduces Πr: in fact (2.6) is equivalent to
saying that the so-called super-function g := y ∗ f :=

∑
α y(α)f(· − α) satisfies∑

α p(α)g(· − α) ∈ Πr for all p ∈ Πr; alternatively,

p ∗ (y ∗ f) = (p ∗ y) ∗ f
=

∑
β∈Zs

[p(β − iD)ŷ](0)f(· − β) ∈ Πr ∀p ∈ Πr.(2.7)

(Here D = [D1, . . . , Ds] is a vector of differential operators, and for a polynomial
p ∈ Πr, p(β − iD) denotes the differential operator

∑
ν≥0(D

νp)(β)/ν!(−iD)ν .) In
addition to (2.6), if Dµ[ŷ(·)f̂ (·)](0) = 0 for all µ ∈ Λr\{0}, then p = p ∗ (y ∗ f) for
all p ∈ Πr.

Being an iterative algorithm, a spectral quantity ν∞(a,M) determines whether
the cascade algorithm with mask a and dilation matrix M converges in Ck. For a
definition of νp(a,M), p ∈ [1,∞], see [13, Section 4]. The quantity νp(a,M) plays
a fundamental role in the study of the convergence of vector cascade algorithms
and the smoothness of refinable function vectors ([13]). For example, the cascade
algorithm associated with mask a and dilation matrix M converges in the Sobolev
space W k

p (Rs) (1 ≤ p ≤ ∞) if and only if νp(a,M) > k. Let φ be the refinable
function vector with the mask a and the dilation matrix M . Then one always
has νp(φ) ≥ νp(a,M). If in addition the shifts of φ are stable, then one has
νp(φ) = νp(a,M). For detailed discussion on these issues, see [13]. When a cascade
algorithm converges in Cr(Rs), the same vector y above essentially determines
which are the initial function vectors f for which the cascade sequence (Qnf)∞n=1

converges:

Theorem 2.1 ([13, Theorem 4.3]). Let a ∈ [l0(Zs)]m×m, let M be an s×s isotropic
dilation matrix, let y ∈ [l0(Zs)]1×m be such that ŷ(0) �= 0 and let (2.3) hold for a
nonnegative integer k. Then the following are equivalent:

(i) For every compactly supported function vector f ∈ [Ck(Rs)]m×1 such that f
satisfies the moment conditions of order k + 1 with respect to y, (Qn

a,Mf)∞n=1 is a
Cauchy sequence in [Ck(Rs)]m×1;

(ii) ν∞(a,M) > k.

This theorem happens to give a set of simple sufficient conditions for constructing
Hermite type subdivision masks. We now present the main result of this section:

Theorem 2.2. Let M be an isotropic dilation matrix and let a be a mask with
multiplicity m = #Λr. Suppose that

(2.8) ν∞(a,M) > r.

Then Sa,M is a subdivision scheme of Hermite type of order r if a satisfies the sum
rules of order r + 1 with a sequence y ∈ [l0(Zs)]1×#Λr such that

(−iD)µ

µ!
ŷ(0) = eT

µ , µ ∈ Λr.(2.9)
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Proof. Let ψ be a Hermite interpolant of order r with accuracy order r + 1 (see,
e.g., [16, Lemma 2.6]). We observe that ψ satisfies the moment conditions of or-
der r + 1 with respect to a y which satisfies (2.9). This can be easily seen from
(2.7) and the Hermite interpolation property of ψ: for p(x) = xµ, µ ∈ Λr, p =∑

α[p(α− iD)ŷ](0)ψ(·−α), but since Dµψν(α) = δα,0δµ,ν , we have [(−iD)µŷ](0) =
[∂≤r(·)µ](0), which is equivalent to (2.9). Then since ν∞(a,M) > r, by Theorem
2.1 we have limn→∞ ||Qn

a,Mψ − φ||[Cr(Rs)]m×1 = 0 for some φ ∈ [Cr(Rs)]m×1.
Recall a basic connection between the cascade algorithm and the subdivision

scheme: if an =Sn(δIm×n), then Qnψ=
∑

α an(α)ψ(Mn · −α). Let v∈ [l0(Zs)]1×m,
vn := Snv, then vn =

∑
β v(β)an(· −Mnβ). Then

fn :=
∑
α∈Zs

vn(α)ψ(Mn · −α) =
∑
α∈Zs

∑
β∈Zs

v(β)an(α−Mnβ)ψ(Mn · −α)

=
∑
β∈Zs

v(β)(Qnψ)(· − β).

Therefore, if f :=
∑

α v(α)φ(· − α), then

lim
n→∞ ||fn − f ||Cr(Rs) = 0

and
lim

n→∞ ||Dµfn −Dµf ||L∞ = 0, ∀µ ∈ Λr.

If we denote by ∂≤rψ(x) the #Λr × #Λr matrix with the µ-th row equals to
∂≤rψµ(x), then since ψ is a Hermite interpolant, ∂≤rψ(α) = I#Λr×#Λrδ(α), ∀α ∈
Zs. By (1.6), we have

∂≤rfn(M−nα) =
∑
β∈Zs

vn(β)(∂≤rψ)(α− β)S(Mn,Λr) = vn(α)S(Mn,Λr).

But

||∂≤rf(M−n·) − vn(·)S(Mn,Λr)||[l∞(Zs)]1×m

= ||∂≤rf(M−n·) − ∂≤rfn(M−n·)||[L∞(Rs)]1×m

≤ max
µ∈Λr

||Dµfn −Dµf ||L∞ → 0, as n→ ∞.

So a satisfies condition (i) of Definition 1.1.
The condition ν∞(a,M) > r implies, by Theorem 2.1, that span{φ(· − β) : β ∈

Zs} ⊇ Πr, which implies φ �= 0. Thus condition (ii) of Definition 1.1 is also satisfied
by a. �

Note that the assumption ν∞(a,M) > r implies that a must satisfy the sum rules
of order r+ 1 with some sequence y and, in fact, the values (−iD)µŷ(0), µ ∈ Λr, of
such a sequence y are uniquely determined by a and M up to a scalar multiplicative
constant. See [13] for more details on the analysis of vector cascade algorithms. The
condition in (2.9) on the sequence y was first introduced in [10] for the purpose of
studying refinable Hermite interpolants.

2.1. Symmetry. Let G be a finite subset of integer matrices whose determinants
are ±1. This would in particular imply that each element in G induces a linear
isomorphism on Zs. We say that G is a symmetry group with respect to a
dilation matrix M ([12, 11]) if G forms a group under matrix multiplication and

(2.10) MEM−1 ∈ G for all E ∈ G.
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This definition is essential for the following

Proposition 2.3. Let Sa,M be a Hermite type subdivision scheme of order r, and
let φ = (φµ)µ∈Λr be defined by φµ = S∞

a,M (δeµ). Let G be a symmetry group with
respect to the dilation matrix M . The following are equivalent:

(1) The operator Iφ : [l(Zs)]1×#Λr → Cr(Rs) defined by Iφ :=
∑

α v(α)φ(·−α)
respects change of variables by E ∈ G in the following sense: For any F ∈
Cr and G := F (E·), E ∈ G, F̃ := Iφ

(
∂≤rF |Zs

)
and G̃ := Iφ

(
∂≤rG|Zs

)
are again related by G̃ := F̃ (E·).

(2) φ(Ex) = S(E,Λr)φ(x) ∀ E ∈ G, x ∈ Rs.
If, in addition, we assume that 1 is a simple and dominant eigenvalue of the matrix

J0 :=
∑
β∈Zs

a(β)/| detM |

and the first entry of its nonzero eigenvector for the eigenvalue 1 is nonzero, then
both (1) and (2) are implied by the following condition on the mask a:

(3) a(Eα) = S(M−1EM,Λr) a(α)S(E−1 ,Λr) ∀ α ∈ Zs, E ∈ G.

Proof. Assuming (2), G̃ =
∑

α∂
≤rG(α)φ(· − α) =

∑
α∂

≤rF (Eα)S(E,Λr)φ(·−α)
=

∑
α ∂

≤rF (Eα)φ(E · −Eα) =
∑

α ∂
≤rF (α)φ(E · −α) = F̃ (E·). Thus (2)

⇒ (1). Conversely, pick any Hermite interpolant F = (Fν)ν∈Λr . Then F̃ν =
Iφ

(
∂≤rFν |Zs

)
= φν and G̃ν = Iφ

(
∂≤rFν(E·)|Zs

)
= ∂≤rFν(0)S(E,Λr)φ, so φν(E·)

= F̃ν(E·) = G̃ν = eνS(E,Λr)φ, for all ν ∈ Λr, which is equivalent to (2).
(3) ⇒ (2) Let φE(x) := S(E−1,Λr)φ(Ex). We claim that

φE = Qa,MφMEM−1 ∀E ∈ G.(2.11)

This relies on the basic assumption (2.10), which implies that for any E ∈ G,
MEM−1 is an isomorphism on Zs, so

Qa,MφMEM−1

=
∑
α

a(α)φMEM−1 (M · −α)

=
∑
α

a(α)S(ME−1M−1,Λr)φ(ME · −MEM−1α)

=
∑

β

a(ME−1M−1β)S(ME−1M−1,Λr)φ(ME · −MEM−1ME−1M−1β)

=
∑
α

a(ME−1M−1α)S(ME−1M−1,Λr)φ(ME · −α).

(2.12)

Let E′ := ME−1M−1 ∈ G. By (3), we have

a(E′α)S(E′,Λr) = S(M−1E′M,Λr)a(α),

or
a(ME−1M−1α)S(ME−1M−1,Λr) = S(E−1,Λr)a(α).

So (2.12) equals
∑

α S(E−1,Λr)a(α)φ(ME · −α) = φE and the claim is proved.
Iterating (2.11) we have φE = Qn

a,MφMnEM−n for all E ∈ G and n. Since G is
a finite group and M−nEMn ∈ G for all n ∈ N, there must exist a positive integer
	 such that M−�EM � = E. Consequently, we have Q�

a,MφE = φM−�EM� = φE
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for some positive integer 	. Since 1 is a simple dominant eigenvalue of the matrix
J0, the same can be said of Jn

0 for all n ∈ N. If Jn
0 has 1 as a simple dominant

eigenvalue, then φ is the unique solution, up to a scalar multiplicative constant, to
the refinement equation Qn

a,Mφ = φ.

On the other hand, it follows from the refinement equation that φ̂(0) and φ̂E(0)
are eigenvectors of the matrices J0 and J�

0 , respectively. Since 1 is a simple
eigenvalue of J�

0 , we must have φ̂E(0) = cφ̂(0) for some complex number c ∈ C
since J�

0φ̂E(0) = φ̂E(0) and Jn
0 φ̂(0) = φ̂(0). By the definition of φE , we have

φ̂E(0) = S(E−1,Λr)φ̂(0) by | detE| = 1. By our assumption, the first entry in the
vector φ̂(0) is nonzero; that is, eT

1 φ̂(0) �= 0. Note that the first row of the matrix
S(E−1,Λr) is eT

1 . We see that eT
1 φ̂E(0) = eT

1 φ̂(0) �= 0. Therefore, it follows from
φ̂E(0) = cφ̂(0) that c must be 1. Hence, we conclude that we must have φE = φ by
Q�

a,MφE = φE and φ̂E(0) = φ̂(0). In other words, (2) holds. �

Discussion. It is not known to us whether (2) implies (3), although we conjecture
that it is the case. Indeed, we have

φ(x) =
∑
α

a(α)φ(Mx − α)

=
∑
α

a(MEM−1α)φ(Mx −MEM−1α) (by (2.10))

=
∑
α

a(MEM−1α)φ(MEM−1(ME−1x− α))

=
∑
α

a(MEM−1α)S(MEM−1,Λr)φ(ME−1x−α) (by (2.10) and (2)).

Let x′ = E−1x. We have φ(Ex′) =
∑

β a(MEM−1β)S(MEM−1,Λr)φ(Mx′ − β).
Then, by (2),

φ(x) =
∑

β

S(E−1,Λr)a(MEM−1β)S(MEM−1,Λr)φ(Mx− β).

Now since φ also satisfies the refinement equation with mask a, if we have the
guarantee that φ satisfies a unique refinement equation, then we have a(β) =
S(E−1,Λr)a(MEM−1β)S(MEM−1,Λr) for all β ∈ Zs and E ∈ G. This is equiv-
alent to (3).

We discuss this missing uniqueness condition in Section 4. Notice that if φ is a
Hermite interpolant, then this condition is satisfied; compare [16, Proposition 2.8].

3. Computational results

Based on Theorem 2.2 and Proposition 2.3 and the computational optimization
idea in [14], we now propose a computational framework for constructing symmetric
Hermite type subdivision schemes.

For a given dimension s ≥ 1, order r ≥ 0, dilation matrix M and a symmetry
group G w.r.t. M :

(i) Pick a finite G-symmetric support of the mask a; i.e., choose supp(a) ⊂ Zs

such that α ∈ supp(a) implies Eα ∈ supp(a), for all E ∈ G.
(ii) Pick a target sum rule of order k + 1 ≥ r + 1.
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(iii) Solve the following system of (nonlinear) equations:

a(Eα) = S(M−1EM,Λr) a(α)S(E−1 ,Λr), α ∈ Zs, E ∈ G,(3.1)

Dµ[ŷ(MT ·)â(·)](0) = Dµŷ(0), |µ| ≤ k,(3.2)

Dµ[ŷ(MT ·)â(·)](2πβ) = 0, |µ| ≤ k, β ∈ (MT )−1Zs\Zs,(3.3)

(−iD)µ

µ!
ŷ(0) = eT

µ , |µ| ≤ r.(3.4)

In fact, we can rewrite (3.2) and (3.3) in the time domain (see [10]).
First, note that (3.2) and (3.3) are equivalent to

Dµ[ŷ(·)â((MT )−1·)](0) = Dµ[ŷ((MT )−1·)](0), |µ| ≤ k,(3.5)

Dµ[ŷ(·)â((MT )−1·)](2πβ) = 0, |µ| ≤ k, β ∈ Zs\MT Zs.(3.6)

Let ΩM denote a complete set of representatives of the quotient group
Zs/MZs and define

Ja
ε (µ) :=

∑
β∈Zs

a(ε+Mβ)(M−1ε+ β)µ/µ!, ε ∈ ΩM .

It is shown in [10, 13] that (3.5) and (3.6) are equivalent to

∑
0≤ν≤µ

(−1)|ν|
(−iD)µ−ν ŷ(0)

(µ− ν)!
Ja

ε (ν)

=
∑

ν∈Λk

S(M−1,Λk)µ,ν
(−iD)ν ŷ(0)

ν!
, ∀µ ∈ Λk, ε ∈ ΩM .

(3.7)

In solving the system of algebraic equations (3.1), (3.7) and (3.4), it may
seem at first glance that there is an infinite number of variables since y is
a finitely supported sequence (of vectors) with an unknown support size.
However, if one takes a closer look at (3.7), one sees that the only variables
in the algebraic equations are the entries of a(α) ∈ Rm×m, α ∈ supp(a),
and those of Yν := (−iD)ν ŷ(0)/ν! ∈ C1×m, r < |ν| ≤ k. Thus we do
have a system with a finite number of equations and unknowns which one
can attempt to solve using symbolic algebraic solvers available in software
packages such as Maple.

When one is interested only in masks with real entries, then it is enough
to assume that Yν ∈ R1×m. For a real mask a which also satisfies ν∞(a,M)
> r, if it satisfies (3.7) with a set of complex vectors Yν , then it is obvious
that a also satisfies (3.7) with Yν replaced by Re(Yν) or Im(Yν). Thus, by
comments after the proof of Theorem 2.2, we have Re(Yν) = c × Im(Yν)
for a real scalar c. This implies that looking only for real solutions for Yν

will not essentially yield a fewer number of solutions than by looking for
general complex solutions for Yν .

We summarize the system of algebraic system to be solved:
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Variables:

a(α) ∈ Rm×m, α ∈ supp(a), Yν ∈ R1×m, r < |ν| ≤ k.

Equations:

a(Eα) = S(M−1EM,Λr) a(α)S(E−1,Λr), ∀α ∈ Zs, E ∈ G, Yµ = eT
µ , ∀ |µ| ≤ r,(3.8) ∑

0≤ν≤µ

(−1)|ν|Yµ−νJ
a
ε (ν) =

∑
ν∈Λk

S(M−1,Λk)µ,νYν , ∀µ ∈ Λk, ε ∈ ΩM .(3.9)

(iv) If multiple solutions are found, optimize over the solution space the follow-
ing lower bound for ν∞(a,M) [13, 12, 18]: ν∞(a,M) ≥ ν2(a,M) − s/2 =

(3.10) − logρ(M)

√
ρk − s/2 =: γ(a),

where ρk can be calculated by the following procedure:
Let

b(α) :=
∑

β

a(β) ⊗ a(α + β)/| det(M)|

and

K := Zs
⋂ ∞∑

n=1

M−n(supp b).

Define the size m2|K| matrix F := (b(Mα − β))α,β∈K . Denote the eigen-
values of M by σ = (σ1, . . . , σs). Let J :=

∑
α a(α)/| detM |, and Ek =

{λσ−µ, λσ−µ : |µ| ≤ k, λ ∈ spec(J)\{1}} ∪ {σ−µ : |µ| ≤ 2k + 1}. Then

ρk := max{|ν| : ν ∈ spec(F )\Ek}.
(v) If a mask a satisfying γ(a) > r is found, then, by Theorem 2.2, Sa,M is

a Hermite type subdivision scheme and its associated φa,M , by results in,
e.g., [13], has the following smoothness property:

φa,M ∈ [Cσ(Rs)]m×1 ∩ [W σ+s/2
2 (Rs)]m×1, ∀ σ < γ(a).(3.11)

We had implemented a solver based on the above method using a mixture of
symbolic and numerical computational tools. We now present some results obtained
using our software, and we discuss along the way questions stimulated by these
examples. As in [16], we consider the following cases:

• G = {[1], [−1]}, M = [2].
• the hexagonal symmetry group (a.k.a. dihedral group D6) with respect

to M = 2I2:
(3.12)

D6 =
{
±

[
1 0
0 1

]
,±

[
0 −1
1 −1

]
,±

[−1 1
−1 0

]
,±

[
0 1
1 0

]
,±

[
1 −1
0 −1

]
,±

[−1 0
−1 1

]}
.

• the square symmetry group (a.k.a. dihedral group D4) with respect to
M = 2I2:

(3.13) D4 =
{
±

[
1 0
0 1

]
,±

[
0 −1
1 0

]
,±

[
1 0
0 −1

]
,±

[
0 1
1 0

]}
.

• D6 with respect to M = M√
3 :=

[
1 −2
2 −1

]
.

• D4 with respect to M = MQuincunx :=
[
1 1
1 −1

]
.
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Note that (2.10) is satisfied in each case.

3.1. G = {[1], [−1]}, M = [2], supp(a) = [−2, 2], r = 1, k = 7. In this case, the
following two distinct solutions which satisfy the sum rules of order 8 (i.e., k = 7)
are found:

a1(0) =
[

63/64 0
0 3/8

]
, a1(1) =

[
1/2 −15/16
1/16 −7/32

]
,

a1(2) =
[

1/128 0
−7/256 1/16

]
, a2(0) =

[
41/48 0

0 19/96

]
,

a2(1) =
[

1/2 −7/12
5/56 −1/24

]
, a2(2) =

[
7/96 −77/384

25/1344 −19/384

]
,

ai(−α) = N−1ai(α)N,

where N = diag([1,−1]).
Using the procedure explained in steps (iv)–(v) above, we found that

φa1 ∈ [W σ
2 (R)]2×1 ∩ [Cσ−0.5(R)]2×1, ∀ σ < 4.5,

and
φa2 ∈ [W σ

2 (R)]2×1 ∩ [Cσ−0.5(R)]2×1, ∀ σ < 6.5.
From computation both schemes seem to produce spline functions of piecewise
degree 7 polynomials. See Figures 3–5 for graphical evidence.

Discussion. It is well known that in the scalar case (r = 0) if one solves for the
mask supported at [−2, 2] satisfying the highest possible sum rule order, then one
gets the subdivision mask a = [· · · 0, 1, 4, 6, 4, 1, 0 · · · ]/8, which satisfies the sum
rules of order 4 and φa is the cubic B-spline. Since a1 and a2 are found using a
similar principle and they both occur to generate spline functions, we question how
to characterize such spline functions.

It is known that multiple-knot spline functions, i.e., functions in

Sk,m := {f ∈ Ck−m(R) : f |(α,α+1) ∈ Πk, ∀ α ∈ Z},
can be computed using vector subdivision schemes; see, e.g., [25, 8]. Taking a
slightly different approach, the authors observe that, based on the Deboor algo-
rithm [3], Sk,m can be generated by a subdivision scheme of Lagrange type of
multiplicity m, defined as follows:

Definition 3.1. A subdivision scheme S := Sa,M is of Lagrange type of multiplic-
ity m if for any initial sequence v ∈ [l0(Zs)]1×m there exists fv ∈ C(Rs) such that
limn→∞ maxα∈Zs max1≤i≤m |fv(M−nα) − (Snv)(α)i| = 0, and, moreover, fv �= 0
for some v �= 0.

For example, the spline space S7,2 is generated by φa3 where supp(a3) = [−2, 2]
and

a3(0) =


101

192
21
64

21
64

101
192


 , a3(1) =


 5

32
1
32

49
96

29
96


 ,

a3(2) =


 1

128 0
47
384

1
64


 , a3(−α) = Ja3(α)J, J =

[
0 1
1 0

]
.
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Figure 3. φa1 and their derivatives: (from top to bottom, left
then right) (φa1)(l)1 (solid blue line), (φa1)(l)2 (dashed red line) for
l = 0, 1, . . . , 6. It is evident from these plots that φa1 consists
of piecewise degree 7 polynomial functions with C3 knots at the
integers. While the functions are not C4 at the knots, the plots
suggest that φ(5)

a1 and φ(6)
a1 are continuous, i.e., φ(l)

a1 (α+) = φ
(l)
a1 (α−)

for l = 5, 6 and α ∈ Z.
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Figure 4. φa2 and their derivatives: (from top to bottom, left
then right) (φa2)(l)1 (solid blue line), (φa2)(l)2 (dashed red line) for
l = 0, 1, . . . , 6. It is evident from these plots that φa2 consists of
piecewise degree 7 polynomials with C5 knots at the integers.

Notice that there exists a linear transform TLagrange→Hermite, independent of the
x0 and h > 0 below, such that for any f ∈ Πr we have

[f(x0), hf ′(x0), . . . , hrf (r)(x0)]T

= TLagrange→Hermite × [f(x0), f(x0 + h), . . . , f(x0 + rh)]T .
(3.14)
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By virtue of (3.14), we expect that under appropriate technical assumptions1 on
a Lagrange type subdivision scheme, it can be transformed into a Hermite type
scheme by applying a constant similarity transform on the mask. A detailed
formulation and analysis on this matter is out of the scope of this article, and
we view it as a heuristics at this point. Using this heuristics, we discover that

a2(α) = Ta3(α)T−1, where T =
[

1
2

1
2− 1

7
1
7

]
. Consequently, φa2 = Tφa3 and

span{φa2(· − α) : α ∈ Z} = span{φa3(· − α) : α ∈ Z} = S7,2.

On the other hand, Figure 3 suggests that

span{φa1(· − α) : α ∈ Z} � S7,4.

In fact, from the classical work on splines by Schoenberg, the shift-invariant space
S7,4 requires four linearly independent functions to generate. So it is impossible
that equality holds above. Moreover, Figure 3 strongly suggests that φa1 , while not
four times continuously differentiable, has the property that φ(l)

a1 (α+) = φ
(l)
a1 (α−)

for l = 5, 6 and α ∈ Z, but a general function in S7,4 does not satisfy this property.
All these suggest that φa1 generates a proper subspace of S7,4.

3.2. G = D4, M = 2I2, supp(a) = [−2, 2]2, r = 1, k = 6. One family of solutions
obtained from our solver is

a(0, 0) = diag
[

9
16
,−8t+

9
64
,−8t+

9
64

]
, a(2, 0) =




15
128 − 15

128 − 30t 0
39

1280 − 3
128 − 8t 0

0 0 4t


 ,

a(1, 1) =




1
4 − 15

64 − 15
64

3
80

1
128 − 3

64

3
80 − 3

64
1

128


 , a(1, 0) =




51
128 − 15

64 0
39
640

3
64 0

0 0 9
128


 ,

a(1, 2) =




13
256 − 15

128 − 15
128

9
1280 − 1

64 − 3
128

33
2560 − 9

256 − 7
256


 .

In Figure 5(a) we plot ν2(a,M) for t ∈ [0.001, 0.01]. It shows that ν2(a,M) = 5 on
a subinterval. We also obtain other multiple-parameter families of solutions which
satisfy the sum rules of order 7; however, by optimizing the objective ν2(a,M) func-
tion over these parameters, we did not discover schemes with L2 Sobolev smoothness
higher than 5.

1For instance, it is clearly necessary that m = #Λr and that the limit function f be r-th times

continuously differentiable. But even under these assumptions, there are still lurking possibilities
such as that the Lagrange type scheme is made up of m copies of a single scalar subdivision
scheme. The condition ν∞(a,M) > r would avoid the latter and guarantee f ∈ Cr at the same
time.
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Figure 5. (a) ν2(a,M) for t ∈ [0.001, 0.01], where a is the 1-
parameter mask in Section 3.2, (b) color map of ν2(a,M) for
(t1, t2) ∈ [−0.01, 0.01]× [−0.72,−0.62], where a is the 2-parameter
mask in Section 3.3; the white dot is the computed optimizer
(t1, t2) ≈ (−0.003667,−0.6860).

3.3. G = D6, M = 2I2, supp(a) ⊂ [−2, 2]2, r = 1, k = 4. We consider the small-
estD6-symmetric supports which contain {(0, 0), (0, 1), (0, 2), (1, 2)}, i.e., supp(a) =
{(0, 0),±(0, 2),±(2, 0),±(2, 2),±(1, 0),±(1, 2),±(0, 1),±(2, 1),±(1, 1),±(1,−1), },
|supp(a)| = 19. In this case, our solver again gives us several sets of multi-parameter
families of solutions. One such family is

a(0, 0) = diag
[
47
32

+
9t2
8
,−1 − 24t1 − 3t2

2
,−1 − 24t1 − 3t2

2

]
,

a(2, 0) =



− 5

64 − 3
16 t2 − 1

2 − 1
2 t2

1
4 + 1

4 t2

− 1
32 − 1

16 t2 − 5
16 − 4t1 − 3

8 t2
5
16 + 8t1 + 3

8 t2

0 0 5
16 + 12t1 + 3

8 t2


 ,

a(1, 1) =




21
32 + 3

8 t2 − 3
4 − 3

4 t2 − 3
4 − 3

4 t2

3
16 + 3

16 t2 − 5
16 − 1

2 t2 − 1
8 − 1

8 t2

3
16 + 3

16 t2 − 1
8 − 1

8 t2 − 5
16 − 1

2 t2


 ,

a(1,−1) =



− 5

32 − 3
8 t2 − 3

4 − 3
4 t2

3
4 + 3

4 t2

− 1
32 − 1

16 t2 − 3
16 − 1

4 t2
1
8 + 1

8 t2

1
32 + 1

16 t2
1
8 + 1

8 t2 − 3
16 − 1

4 t2


 .

Using the optimization code developed in [14], we found that the empirical optimal
L2 Sobolev smoothness among this family is 4.8103, and the optimizing parameter
values (t1, t2) ≈ (−0.003667,−0.6860) seem to be unique. Figure 5(b) shows a
color map of ν2(a,M) for (t1, t2) ∈ [−0.01, 0.01] × [−0.72,−0.62]. Another set of
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solutions obtained by our symbolic solver is

a(0, 0) = diag
[
6t3 +

11
32
,
1
2
− 24t2 − 24t1,

1
2
− 24t2 − 24t1

]
,

a(2, 0) =




−t3 + 7
64 −8t2 4t2

− 1
3 t3 + 1

32 −4t1 − 1
3 t3 − 5t2 + 1

16
1
3 t3 + 5t2 − 1

16 + 8t1
0 0 1

3 t3 + 5t2 − 1
16 + 12t1


 ,

a(1, 1) =




2t3 + 9
32 −4t3 −4t3

t3 − 8
3 t3 + 3

16 − 2
3 t3

t3 − 2
3 t3 − 8

3 t3 + 3
16


 ,

a(1,−1) =



− 2t3 + 7

32 −4t3 4t3

− 1
3 t3 + 1

32 − 4
3 t3 + 1

16
2
3 t3

1
3 t3 − 1

32
2
3 t3 − 4

3 t3 + 1
16


 .

Optimizing ν2(a,M) over this family gives the optimal L2 Sobolev smoothness
4.8188, attained at parameter values (t1, t2, t3) = (−0.0043, 0.0191, 0.0603).

3.4. G = D6, M = M√
3, supp(a) ⊂ [−2, 2]2, r = 1, k = 6. We consider the

smallest D6-symmetric supports which contain {(0, 0), (0, 1), (0, 2), (1, 2)}; we have
|supp(a)| = 19.

A unique solution which satisfies the sum rules of order 7 is found using our
solver, with the following rather peculiar form:

a(0, 0) =



− 11

6 θ + 119
108 0 0

0 − 3
2θ

2 + 169
108θ − 31

81 3θ2 − 169
54 θ + 62

81

0 −3θ2 + 169
54 θ − 62

81 − 169
108θ + 3

2θ
2 + 31

81


 ,

a(0, 2) =




5
18θ − 17

324 − 73
36θ + 8

27 + 9
2θ

2 73
18θ − 16

27 − 9θ2

1
12θ − 11

648 − 535
648θ + 7

4θ
2 + 29

243
535
324θ − 7

2θ
2 − 58

243

1
24θ − 11

1296 − 413
648θ + 5

4θ
2 + 22

243
535
648θ − 7

4θ
2 − 29

243


 ,

a(0, 1) =



− 5

18θ + 125
324 − 4

3θ + 16
27

8
3θ − 32

27

− 2
9θ + 1

9
1
2θ

2 − 277
324θ + 52

243 −θ2 + 277
162θ − 104

243

1
18 − 1

9θ
11
2 θ

2 − 995
324θ + 104

243 − 1
2θ

2 + 277
324θ − 52

243


 ,

a(1, 2) =




11
36θ − 11

648 0 9
2θ

2 + 7
27 − 97

36θ

5
72θ − 5

1296
79
81θ − 65

486 − 2θ2 − 607
648θ + 49

486 + 7
4θ

2

0 158
81 θ − 65

243 − 4θ2 − 79
81θ + 2θ2 + 65

486


 ,

where θ ≈ 0.2587 is the unique real root of the polynomial 972θ3−744θ2+197θ−18.
By computation, we have ν2(a,M) = 5.76867 and, consequently, φ ∈ C4.
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In comparison, for the scalar scheme a(0, 0) = 1/3, a(1, 2) = 1/9, a(0, 1) = 2/9,
a(0, 2) = 1/9 with the same D6-symmetric support, φa is a C3 (quartic) box-spline.
For other scalar schemes under the settings of this section, see [20, Table 3].

3.5. G = D4, M = MQuincunx, supp(a) = [−1, 1]2, r = 1, k = 8. In the case
G = D4, M = MQuincunx, supp(a) = [−1, 1]2 but with r = 0, the mask a(0, 0) =
1/2, a(1, 1) = a(−1, 1) = a(−1,−1), a(1,−1) = 1/8, a(1, 0) = a(0, 1) = a(−1, 0) =
a(0,−1) = 1/4 is known to generate a box spline φ which is a C4 piecewise degree 6
polynomial [26, 4]. This box spline is used in [26] for building free-form subdivision
surfaces. In fact this mask satisfies the sum rules of order 4 and ν2(a,M) = 4. Due
to the linear dependence of the shifts of this box-spline, (3.10) would not give a
sharp L2 smoothness exponent. However, from the spline property of φ we have

φ ∈ [W 5.5−ε
2 (R2)]3×1 ∩ [C5−ε(R2)]3×1, ∀ ε > 0.

We now consider r = 1. Using our solver, we found the following unique mask
satisfying the sum rules of order 9:

a(0, 0) =




1
2 0 0

0 1
16

1
16

0 1
16 − 1

16


 , a(1, 1) =




1
8 − 1

4 − 1
4

1
32 − 1

16 − 1
16

0 1
32 − 1

32


 ,

a(1, 0) =




1
4 − 1

2 0
1
32 − 1

32
1
32

1
32 − 1

32 − 1
32


 .

By (3.10)–(3.11), we found by computation that ν2(a,M) = 8.5 and therefore,

φa ∈ [W 8.5−ε
2 (R2)]3×1 ∩ [C7.5−ε(R2)]3×1, ∀ ε > 0.

It is, however, unknown at this point whether the components of φa are spline
functions, although by plotting the divided differences of φa, we observe empirically
that they are piecewise degree 10 polynomials.

4. Concluding remarks and open questions

We have introduced in this article the notion of noninterpolatory Hermite sub-
division schemes in a general dimension. Using the strong convergence theory of
refinable functions, we have obtained a constructive sufficient condition on the mask
of noninterpolatory Hermite subdivision schemes. We have also studied symmetry
conditions for such schemes. A number of symmetric bivariate schemes with small
supports have been constructed with their regularity exponents computed.

4.1. Connection to interpolatory Hermite schemes. A refinable Hermite in-
terpolant φ = (φµ)µ∈Λr which is also in Ck, k ≥ r, must have an accuracy order
of k + 1: span{g(· − α) : α ∈ Zs} ⊇ Πk where g =

∑
α∈Zs y(α)φ(· − α) for a

y ∈ [l0(Zs)]1×#Λr which satisfies

Yν :=
(−iD)ν

ν!
ŷ(0) =

{
eT

ν , |ν| ≤ r,
0, r < |ν| ≤ k.(4.1)
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By [16, Proposition 2.1], the mask of φ satisfies

a(Mα) = δα,0 S(M−1,Λr).(4.2)

Since the Yν , r < |ν| ≤ k, are no longer variables, (4.1) and (4.2) turn the generally
nonlinear system of equations (3.8) and (3.9) into a linear system of equations, and
the latter can be shown to be identical to the (seemingly different) linear system of
equations used in [16, Section 3] for constructing interpolatory Hermite subdivision
schemes.

4.2. Dual noninterpolatory Hermite schemes. As it turns out, the symmetry
conditions studied in Section 2.1 are related to what the CAGD community calls
primal subdivision schemes or vertex-based schemes. It is possible to construct dual
(a.k.a. face-based) noninterpolatory Hermite subdivision schemes by formulating a
different symmetry condition; we plan to report results in this direction elsewhere
[15].

4.3. Open questions. Several analysis questions pertaining to Hermite type sub-
division schemes are open at the time of the writing of this article:

(1) Is the sufficient condition in Theorem 2.2 also necessary?
This question has been answered negatively in [15].

(2) If a is the mask of a Hermite type subdivision scheme and φ is the associated
refinable function vector, can we guarantee that φ cannot satisfy another
refinement equation

φ(x) =
∑

β

b(β)φ(Mx − β)

with b �= a?
We are interested in this uniqueness property because if it holds, then,

by the discussion after the proof of Proposition 2.3, the three symmetry
conditions (1)–(3) in Proposition 2.3 are equivalent.

In the scalar case r = 0, the uniqueness property is clear: since φ̂(ω) =
â(M−Tω)φ̂(M−Tω),

â(ω) =
∑
α

a(α)e−i〈ω,α〉/| detM |,

and φ̂(ω) �= 0 except on a countable number of points, it follows that
â(ω) = φ̂(MTω)/φ̂(ω) holds at an infinite number of points ω. But the
trigonometrical polynomial â is uniquely determined by its values at a finite
number of points; thus the uniqueness property holds.

In general, consider â(ω)φ̂(ω + 2πβ) = φ̂(MT (ω + 2πβ). Then we have
the uniqueness property if

(4.3) span{φ̂(ω + 2πβ) : β ∈ Zs} = C#Λr for an infinite number of ω ∈ Rs.

One may find condition (4.3) somewhat familiar since it is known [19]
that stability of the integer shifts of φ is equivalent to the condition

span{φ̂(ω + 2πβ) : β ∈ Zs} = C#Λr for all ω ∈ Rs,(4.4)

which is clearly stronger than (4.3).
(3) Is it the case that the solutions of the system (3.8)–(3.9) contain all the

possible Hermite type schemes with the given constraints?
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