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COMPUTATION OF THE NEWTON STEP
FOR THE EVEN AND ODD CHARACTERISTIC POLYNOMIALS
OF A SYMMETRIC POSITIVE DEFINITE TOEPLITZ MATRIX

A. MELMAN

Abstract. We compute the Newton step for the characteristic polynomial
and for the even and odd characteristic polynomials of a symmetric positive
definite Toeplitz matrix as the reciprocal of the trace of an appropriate ma-
trix. We show that, after the Yule–Walker equations are solved, this trace can
be computed in O(n) additional arithmetic operations, which is in contrast
to existing methods, which rely on a recursion, requiring O(n2) additional
arithmetic operations.

1. Introduction

In this paper we propose an efficient way to carry out Newton’s method for the
computation of the roots of the characteristic polynomial and the characteristic
even and odd polynomials of a symmetric positive definite Toeplitz matrix. We
then apply this to improve the complexity of the methods in [11] and [14], where
such an approach is used to compute the smallest eigenvalue of a symmetric positive
definite Toeplitz matrix.

To compute the Newton step, these methods use a recursion for the evaluation
of the characteristic polynomial and its derivative which requires O(n2) arithmetic
operations in addition to solving the Yule–Walker equations. We show that this
recursion can be replaced by a shorter computation, involving the computation of
the trace of an appropriate matrix, and, after solving the Yule–Walker equations,
requiring only O(n) additional arithmetic operations.

The advantage of the methods in [11] and [14] is their relative simplicity. Their
disadvantage is that they are slower than methods based on the secular equation
(see, e.g., [4], [12], and the references therein). The aforementioned reduction in
complexity makes these simpler methods competitive. Our results are also appli-
cable to methods other than Newton’s method.

In Section 2 we present the basic properties of Toeplitz matrices and the notation
we will use. In Section 3 we compute the Newton step for the characteristic poly-
nomial, and in Section 4 we do the same thing for the even and odd characteristic
polynomials. In Section 5 we compare the methods.
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2. Preliminaries

The (i, j)-th element of an n×n symmetric Toeplitz matrix Tn is given by ρ|i−j|
for some vector (ρ0, ρ1, . . . , ρn−1)T ∈ R

n. The matrix Tn satisfies JTnJ = Tn

and is therefore centrosymmetric. We use I for the identity matrix and J for the
exchange, or “flip”, matrix with ones on its southwest-northeast diagonal and zeros
everywhere else. For simplicity’s sake, our notation will not explicitly indicate the
dimensions of the matrices I and J .

An even vector v is defined as a vector satisfying Jv = v and an odd vector w as
one that satisfies Jw = −w. If these vectors are eigenvectors, then their associated
eigenvalues are called even and odd, respectively. It was shown in [3] that, given
a real symmetric centrosymmetric matrix of order n, there exists an orthonormal
basis for R

n, composed of n − �n/2� even and �n/2� odd eigenvectors, where �α�
denotes the integral part of α.

Finally, we note that for any λ ∈ R, the matrix (Tn − λI) is symmetric and
centrosymmetric, whenever Tn is.

For any n × n symmetric Toeplitz matrix Tn we have

Tn =
(

A B
JBJ A

)
or Tn =

⎛
⎝ A s B

sT ρ0 sT J
JBJ Js A

⎞
⎠ ,

depending on whether n is even or odd, respectively. For even n, the blocks in the
matrix Tn have n

2 rows and columns. For odd n, the blocks have n−1
2 rows and

columns. The column vector s has dimension n−1
2 . Since T−1

n is also symmetric
and centrosymmetric, although not necessarily Toeplitz, we have

T−1
n =

(
H1 H2

JH2J JH1J

)
or T−1

n =

⎛
⎝ H1 q H2

qT α qT J
JH2J Jq JH1J

⎞
⎠ ,

depending on whether n is even or odd, respectively, with JH2J = HT
2 , i.e., H2 is

persymmetric.
In what follows, an important role is played by the so-called Yule–Walker equa-

tions. For an n × n symmetric Toeplitz matrix Tn, defined by (ρ0, ρ1, . . . , ρn−1),
this system of linear equations is given by Tny(n) = −tn, where tn = (ρ1, . . . , ρn)T .
There exist several methods to solve these equations. Durbin’s algorithm ([7]) solves
them by recursively computing the solutions to lower-dimensional systems, provided
all principal submatrices are nonsingular. This algorithm requires 2n2 +O(n) flops,
which we define as in [9].

A more efficient method than Durbin’s algorithm is what we will call the split
Durbin algorithm from [6], where it is called the “split Levinson algorithm”. We pre-
fer this terminology because “Durbin” usually refers to the Yule–Walker equations,
which have a special right-hand side, whereas “Levinson” usually refers to a system
with an arbitrary right-hand side. In that we also follow [9]. To briefly explain the
split Durbin algorithm, we define an even solution u(k) of the Yule–Walker equa-
tions Tky(k) = −tk as the solution of Tku(k) = −(tk +Jtk), or u(k) = y(k) +Jy(k),
and an odd solution as the solution of Tkv(k) = −(tk − Jtk), or v(k) = y(k) − Jy(k).
This algorithm is based on the remarkable observation that the solution y(k) can
be written either as a combination of the two successive even solutions u(k) and
u(k−1) or as a combination of the two successive odd solutions v(k) and v(k−1). It is
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therefore sufficient to compute either the even or the odd solutions. For full details,
we refer to [6], or [13] where it is summarized in the same notation as here. The
split Durbin algorithm requires 3

2n2 + O(n) flops.
Finally, we mention that there also exist so-called “superfast methods” to solve

the Yule–Walker equations (see, e.g., [1], [2]). However, for matrices with dimen-
sions up to several hundred, they are less efficient than the algorithms mentioned
here, which are usually referred to as “fast methods”.

Newton’s method for solving f(x) = 0, where f : R → R, is an iterative method,
defined by

xn+1 = xn − f(xn)
f ′(xn)

·

We refer to N(x̄)
�
= −f(x̄)/f ′(x̄) as the Newton step for f at x = x̄.

Throughout this paper, all matrices are assumed to be of dimension n×n, with
n ≥ 3.

3. The Newton step

for the characteristic polynomial

The characteristic polynomial for the symmetric matrix Tn is given by pn(λ)
�
=

det(Tn−λI). If Newton’s method were used to compute the roots of this polynomial,
then the following lemma gives a convenient (and well-known) expression for the
Newton step.

Lemma 3.1. The Newton step for the characteristic polynomial pn(λ) of an n×n
matrix Tn at λ = λ̄, where λ̄ is not one of the eigenvalues of Tn, is given by

(1) N(λ̄) = − pn(λ̄)
(pn(λ̄))′

=
1

tr(Tn − λ̄I)−1
·

�
We now propose to use the Gohberg–Semencul formula (see [8]) for the inverse of

a Toeplitz matrix to evaluate the right-hand side in (1). As in [11], we will assume
that Tn is a symmetric positive definite Toeplitz matrix, which has no eigenvalues
in common with its principal submatrix Tn−1.

With the first row of Tn given by (ρ0, t
T ), we first define

Definition 3.2.
χ(λ)

�
= ρ0 − λ − tT (Tn−1 − λI)−1t .

With w = −JT−1
n−1t, the Gohberg–Semencul formula for the inverse of Tn is then

given by

(2) T−1
n =

1
χ(0)

(
M1M

T
1 − MT

0 M0

)
,

where
(3)

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

w1 0
. . . 0

w2 w1
. . . . . .

...
...

...
. . . 0 0

wn−1 wn−2 . . . w1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, M1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 wn−1 wn−2 . . . w1

0 1 wn−1 . . . w2

...
. . . . . . . . .

...

0
. . . 1 wn−1

0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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In the following theorem, we compute the Newton step, using the Gohberg–
Semencul formula.

Theorem 3.3. The Newton step for the characteristic polynomial pn(λ) of an n×n
symmetric positive definite Toeplitz matrix Tn at λ = λ̄ < λmin(Tn) is given by

N(λ̄) =
χ(λ̄)∑n

j=1(2j − n)w2
j

or, equivalently, by

N(λ̄) =
χ(λ̄)

n +
∑n

2 −1
j=1 (n − 2j)(w2

n−j − w2
j )

(n is even),

N(λ̄) =
χ(λ̄)

n +
∑�n

2 �
j=1 (n − 2j)(w2

n−j − w2
j )

(n is odd),

with χ as in Definition 3.2, and where the first row of Tn is given by (ρ0, t
T ) and

w = (w1, . . . , wn−1) = −J(Tn−1 − λ̄I)−1t. For compactness of writing, we have set
wn = 1.

Proof. If Tn is symmetric positive definite, then for λ̄ < λmin(Tn), so is (Tn − λ̄I).
The Newton step at λ̄ can therefore be determined by computing the trace of
(Tn − λ̄I)−1 using the Gohberg–Semencul formula, which, by Lemma 3.1 and (2),
yields

(4) N(λ̄) =
χ(λ̄)

tr
(
M1MT

1 − MT
0 M0

) ,

where M0 and M1 are as in (3) with w = −J(Tn−1 − λ̄I)−1t.
By simple matrix multiplication, we get

(
M1M

T
1 − MT

0 M0

)
j,j

=
n∑

k=j

w2
k −

n−j∑
k=1

w2
k (1 ≤ j ≤ n − 1),

(
M1M

T
1 − MT

0 M0

)
n,n

= w2
n = 1 .

The trace of
(
M1M

T
1 − MT

0 M0

)
is then given by

tr
(
M1M

T
1 − MT

0 M0

)
= w2

n +
n−1∑
j=1

(
M1M

T
1 − MT

0 M0

)
j,j

= w2
n +

n−1∑
j=1

⎛
⎝ n∑

k=j

w2
k −

n−j∑
k=1

w2
k

⎞
⎠

= w2
n +

n−1∑
j=1

n∑
k=j

w2
k −

n−1∑
j=1

n−j∑
k=1

w2
k .

(5)

The two double sums on the right-hand side of (5) are each the sum of all elements
of a triangular array, summed row by row. If, instead, these elements are summed
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column by column, one obtains

tr
(
M1M

T
1 − MT

0 M0

)
= w2

n + (n − 1)w2
n +

n−1∑
i=1

iw2
i −

n−1∑
i=1

(n − i)w2
i

=
n∑

i=1

(2i − n)w2
i .

Because 2i − n = −(2(n − i) − n), the trace can also be written as

(6) tr
(
M1M

T
1 − MT

0 M0

)
=

⎧⎪⎨
⎪⎩

n +
∑n

2 −1
i=1 (n − 2i)(w2

n−i − w2
i ) (n is even),

n +
∑�n

2 �
i=1 (n − 2i)(w2

n−i − w2
i ) (n is odd) .

Alternatively, one could use the fact that
(
M1M

T
1 − MT

0 M0

)
is centrosymmetric

so that roughly only half of the diagonal elements need to be summed.
Substituting these expressions for tr

(
M1M

T
1 − MT

0 M0

)
back into (4) concludes

the proof. �

This means that, once the (n − 1)-dimensional Yule–Walker system is solved
(this needs to be done at every iteration), yielding (Tn−1 − λ̄I)−1t, only O(n) flops
are necessary to compute the Newton step. The total number of flops depends on
the algorithm one uses for the computation of (Tn−1 − λ̄I)−1t. If the split Durbin
algorithm ([7]) is used, then a total of 3

2n2 + O(n) flops are needed.
This approach is in contrast to the one in [11], where the Newton step is deter-

mined by a recursion, given by

(7) Nk(λ̄) =
βk

βk(Nk−1(λ̄))−1 +
(
1 + ‖y(k−1)‖2

) ,

where the quantities βk are computed in the course of Durbin’s algorithm, y(k−1)

is the solution of the (k − 1)-th Yule–Walker system, and Nk(λ̄) is the Newton
step for the the characteristic polynomial of the k-th principal submatrix of Tn at
λ = λ̄. If Durbin’s algorithm is used, as in [11], this recursion requires 3n2 + O(n)
flops, namely 2n2 + O(n) flops for Durbin’s algorithm and another n2 flops for
the computation of the norms in the recursion formula. We note that using the
split Durbin algorithm for this recursion instead of Durbin’s algorithm would not
be appropriate, as it would increase the number of flops, due to the need for the
solutions of the intermediate Yule–Walker equations.

Therefore, our approach here roughly cuts the number of flops per Newton it-
eration in half when compared to the method in [11]. Moreover, since there is no
need in our approach to compute the solutions of the intermediate Yule–Walker
equations as in (7), any method which yields (Tn−1− λ̄I)−1t can now be used. This
is very important because the so-called superfast methods for this problem (see,
e.g., [1] and [2]) have a complexity of only O(n ln2 (n)) versus O(n2) flops for the
fast algorithms that we mentioned before. This would provide a dramatic speedup.

Remark. It may be better numerically to compute quantities of the form a2 − b2,
which appear in the previous theorem and elsewhere in this paper, as (a−b)(a+b).
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4. The Newton step

for the even and odd characteristic polynomials

As we mentioned in the preliminaries, symmetric Toeplitz matrices have even
and odd eigenvalues, which, as we will see, are the roots of the even and odd char-
acteristic polynomials, respectively. In [14], the smallest even and odd eigenvalues
are determined by applying Newton’s method to the even and odd characteristic
polynomials. As in the case of the characteristic polynomial (which has both the
even and odd eigenvalues as its zeros), a recursion is used to achieve this and, as
we will show, this recursion, too, can be replaced by a trace computation. We start
with the following lemma, which is a special case of Lemma 3 in [3].

Lemma 4.1. For a symmetric Toeplitz matrix Tn, defined by (ρ0, . . . , ρn−1)T when
n is even, the following holds:

KTnKT =
(

A − BJ 0
0 A + BJ

)
, with K = 1√

2

(
I −J
I J

)
.

When n is odd, then

KTnKT =

⎛
⎝ A − BJ 0 0

0T ρ0

√
2sT

0
√

2s A + BJ

⎞
⎠, with K =

1√
2

⎛
⎝ I 0 −J

0T
√

2 0T

I 0 J

⎞
⎠. �

The matrix K satisfies KKT = I = KT K. The matrix Tn can therefore be
split into two parts. The eigenvalues associated with A−BJ are odd, and the ones
associated with the part containing A + BJ are even. This means that the charac-
teristic polynomial of Tn can be factored into two polynomials, one corresponding
to the even and the other to the odd eigenvalues, i.e.,

det(Tn − λI) = det(A − BJ − λI)det(A + BJ − λI) (even dimension)

and

det(Tn−λI) = det(A−BJ−λI)det
(

ρ0 − λ
√

2sT
√

2s A + BJ − λI

)
(odd dimension).

In both the even and the odd case, we can write this concisely as pn(λ) =
pe

n(λ)po
n(λ). We note that the index n refers to the matrix Tn and not necessarily

to the degree of the polynomial to which it is attached. Throughout this paper,
the superscripts “e” and “o” refer to even and odd, respectively. The even and
odd eigenvalues of Tn interlace the even and odd eigenvalues, respectively, of its
principal submatrix Tn−2 (see, e.g., [5]). As in [14], we will assume that the smallest
eigenvalue of Tn is not an eigenvalue of Tn−2.

We now compute the Newton step for the aforementioned even and odd charac-
teristic polynomials in terms of the trace of an appropriate matrix.

Lemma 4.2. The Newton step for the even and odd characteristic polynomials of
an n × n symmetric Toeplitz matrix

Tn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
A B

JBJ A

)
(n is even),

⎛
⎝ A s B

sT ρ0 sT J
JBJ Js A

⎞
⎠ (n is odd),
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at λ = λ̄, where λ̄ is not one of the eigenvalues of Tn, is given by

Ne(λ̄) = − pe
n(λ̄)

(pe
n(λ̄))′

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

tr(A−λ̄I+BJ)−1 (n is even),

1

tr
⎛
⎝ ρ0 − λ̄

√
2sT

√
2s A − λ̄I + BJ

⎞
⎠−1 (n is odd)

and

No(λ̄) = − po
n(λ̄)

(po
n(λ̄))′

=
1

tr
(
A − λ̄I − BJ

)−1 ·

Proof. Denoting the even and odd eigenvalues of Tn by {λe
j}n

j=1 and {λo
j}n

j=1, re-
spectively, and assuming that λ̄ is not an eigenvalue of Tn, we can write the odd

characteristic polynomial as po
n(λ) =

∏�n
2 �

j=1 (λo
j − λ). We then have

(8) − (po
n(λ̄))′

po
n(λ̄)

=

∑�n
2 �

i=1

∏�n
2 �

j=1,j �=i(λ
o
j − λ̄)∏�n

2 �
j=1 (λo

j − λ̄)
=

�n
2 �∑

j=1

1
λo

j − λ̄
·

However, the odd eigenvalues of Tn are the eigenvalues of (A − BJ), and therefore,
the odd eigenvalues of

(
Tn − λ̄I

)
are the eigenvalues of

(
A − λ̄I − BJ

)
. Conse-

quently,
�n

2 �∑
j=1

1
λo

j − λ̄
= tr

(
A − λ̄I − BJ

)−1
.

This, together with (8), proves the theorem for the odd Newton step. The statement
for the even Newton step follows analogously. �

Remark. In [14], it was shown that the even and odd Newton steps are at least as
large in magnitude as the Newton step for the characteristic polynomial. How-
ever, the previous lemma gives us an intuitive argument to expect, in fact, a
doubling of the magnitude initially, i.e., when the iterates are still relatively far
from the smallest eigenvalue. Since pn(λ̄) = pe

n(λ̄)po
n(λ̄), we have that (pn(λ̄))′ =

(pe
n(λ̄))′po

n(λ̄) + pe
n(λ̄)(po

n(λ̄))′ and therefore that

(pn(λ̄))′

pn(λ̄)
=

(pe
n(λ̄))′

pe
n(λ̄)

+
(po

n(λ̄))′

po
n(λ̄)

,

or, when n is even,

(9)
1

N(λ̄)
=

1
Ne(λ̄)

+
1

No(λ̄)
= tr(A − λ̄I + BJ)−1 + tr(A − λ̄I − BJ)−1 .

An analogous expression is obtained when n is odd. When λ̄ is relatively far from
the smallest eigenvalue, there is, in general, no reason to assume that the even
and odd eigenvalues of (A − λ̄I)−1 would be distributed very differently, so that
tr(A−λ̄I+BJ)−1 ≈ tr(A−λ̄I−BJ)−1, or Ne(λ̄) ≈ No(λ̄). From (9), we then have
that Ne(λ̄) ≈ No(λ̄) ≈ 2N(λ̄), so that one could expect a significant reduction in
the number of Newton steps. The numerical experiments in [14] show clear evidence
of this.

Before we can compute the even and odd Newton steps explicitly, we need a few
more results. We first have the following lemma.
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Lemma 4.3. (1) For a nonsingular symmetric Toeplitz matrix T of even dimension
with

T =
(

A B
JBJ A

)
and T−1 =

(
H1 H2

JH2J JH1J

)
,

the following holds:

(A − BJ)−1 = H1 − H2J and (A + BJ)−1 = H1 + H2J .

(2) For a nonsingular symmetric Toeplitz matrix T of odd dimension with

T =

⎛
⎝ A s B

sT ρ0 sT J
JBJ Js A

⎞
⎠ and T−1 =

⎛
⎝ H1 q H2

qT α qT J
JH2J Jq JH1J

⎞
⎠ ,

the following holds:

(A−BJ)−1 = H1−H2J and
(

ρ0

√
2sT

√
2s A + BJ

)−1

=
(

α
√

2qT
√

2q H1 + H2J

)
.

Proof. (1) When the dimension of T is even and with K as in Lemma (4.1), we
have

KTKT =
(

A − BJ 0
0 A + BJ

)
.

Setting Y1 = A − BJ and Y2 = A + BJ , we obtain that KT−1KT =
(

Y −1
1 0

0 Y −1
2

)
,

from which we get

T−1 = KT

(
Y −1

1 0
0 Y −1

2

)
K =

1
2

(
Y −1

1 + Y −1
2

(
Y −1

2 − Y −1
1

)
J

J
(
Y −1

2 − Y −1
1

)
J

(
Y −1

1 + Y −1
2

)
J

)
.

Therefore,

T−1 =
(

H1 H2

JH2J JH1J

)
=

1
2

(
Y −1

1 + Y −1
2

(
Y −1

2 − Y −1
1

)
J

J
(
Y −1

2 − Y −1
1

)
J

(
Y −1

1 + Y −1
2

)
J

)
,

which leads to

2H1 = Y −1
1 + Y −1

2 and 2H2 =
(
Y −1

2 − Y −1
1

)
J .

From this we obtain

(A − BJ)−1 = Y −1
1 = H1 − H2J and (A + BJ)−1 = Y −1

2 = H1 + H2J .

This proves the first part of the lemma.
(2) When the dimension of T is odd and with K as in Lemma (4.1), we have

KTKT =

⎛
⎝ A − BJ 0 0

0T ρ0

√
2sT

0
√

2s A + BJ

⎞
⎠ .

Setting Y = A − BJ and
(

ρ0
√

2sT

√
2s A+BJ

)−1

=
(

σ xT

x C

)
, we obtain that

KT−1K =

⎛
⎝ Y −1 0 0

0T σ xT

0 x C

⎞
⎠ ,

and therefore that

T−1 = KT

⎛
⎝ Y −1 0 0

0T σ xT

0 x C

⎞
⎠ K.
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This means that

T−1 =

⎛
⎝ H1 q H2

qT α qT J
JH2J Jq JH1J

⎞
⎠=

1
2

⎛
⎝ Y −1 + C

√
2x −Y −1J + CJ√

2xT 2σ
√

2xT J

−JY −1 + JC
√

2Jx JY −1J + JCJ

⎞
⎠,

so that

Y −1 + C = 2H1 , −Y −1 + C = 2H2J , σ = α , and x =
√

2q .

Finally, from this we obtain

(A − BJ)−1 = Y −1 = H1 − H2J and C = H1 + H2J .

This concludes the proof. �
Lemma 4.4. With M0, M1 and {w}n−1

j=1 as in (3), and setting w0 = 0 and wn = 1
for compactness of writing, the antitrace of

(
M1M

T
1 − MT

0 M0

)
can be computed in

O(n) flops and is given by

antitr
(
M1M

T
1 −MT

0 M0

)
=

{
2(S1−S0) (n is even),

2(S1−S0)+w2
n+

∑�n
2 �

j=1

(
w2

n−j−w2
j

)
(n is odd),

with S0 and S1 defined by the following:

(1) S0
�
=

�n
2 �∑

m=1

qmwm−1, where qm
�
=

�n
2 �∑

j=m

wn−2j+m satisfies the recursion

qm = qm+2 + wn−m + wn−2�n
2 �+m, with

{
q�n

2 � = wn−�n
2 �,

q�n
2 �−1 = wn−�n

2 �−1 + wn−�n
2 �+1 .

(2) S1
�
=

�n
2 �∑

m=1

pmwn−m+1, where pm
�
=

�n
2 �∑

j=m

w2j−m satisfies the recursion

pm = pm+2 + wm + w2�n
2 �−m, with

{
p�n

2 � = w�n
2 �,

p�n
2 �−1 = w�n

2 �−1 + w�n
2 �+1 .

Furthermore, pm and qm satisfy

qm =
{

pm (n is even),
pm−1 − wm−1 (n is odd).

Proof. We start by considering M1M
T
1 . From simple matrix multiplication, we

have

(M1M
T
1 )j,n−j+1 =

j∑
k=1

wj−1+kwn−j+k , for 1 ≤ j ≤
⌊n

2

⌋
.

When n is odd, we obtain for j =
⌊

n
2

⌋
+ 1:

(M1M
T
1 )�n

2 �+1,�n
2 �+1 =

n−�n
2 �∑

k=1

w2

�n
2 �+k

=
�n

2 �+1∑
k=1

w2

�n
2 �+k

= w2
n +

�n
2 �∑

k=1

w2
n−k .

We now define

S1 =
�n

2 �∑
j=1

j∑
k=1

wj+k−1wn−j+k .
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Since antitr(M1M
T
1 ) =

∑n
j=1(M1M

T
1 )j,n−j+1, we have that antitr(M1M

T
1 ) = 2S1

when n is even and that antitr(M1M
T
1 ) = 2S1 + (M1M

T
1 )�n

2 �+1,�n
2 �+1 when n is

odd. Furthermore, S1 is the sum of the elements of a triangular array, summed row
by row with row index j. Instead, we compute this sum by summing the diagonals.
Setting m = j − k + 1, we obtain

S1 =
�n

2 �∑
m=1

�n
2 �∑

j=m

w2j−mwn−m+1

=
�n

2 �∑
m=1

(
wn−m+1

�n
2 �∑

j=m

w2j−m

)

=
�n

2 �∑
m=1

pmwn−m+1 ,

where pm =
∑�n

2 �
j=m w2j−m. The quantities pm can be computed recursively: since

pm+2 =
�n

2 �∑
j=m+2

w2j−m−2 =
�n

2 �∑
j=m+2

w2(j−1)−m =
�n

2 �−1∑
i=m+1

w2i−m

=

( �n
2 �∑

i=m

w2i−m

)
− wm − w2�n

2 �−m ,

we have
pm = pm+2 + wm + w2�n

2 �−m .

The initial values are easily computed from the definition of pm. They are

p�n
2 � = w�n

2 � and p�n
2 �−1 = w�n

2 �−1 + w�n
2 �+1 .

Because of the recursion for pm, the computation of S1 can be carried out in O(n)
flops.

The corresponding result for MT
0 M0 with

S0 =
�n

2 �∑
j=1

j∑
k=1

wn−j−k+1wj−k

follows from the observation that M0 is obtained from MT
1 by replacing wj with

wn−j . The computation of S0 can therefore also be carried out in O(n) flops.
To establish the relationship between qm and pm, we reverse the summation

order in the computation of qm, obtaining

qm =
�n

2 �∑
j=m

wn−2j+m =
�n

2 �∑
j=m

wn−2(�n
2 �+m−j)+m =

�n
2 �∑

j=m

wn−2�n
2 �+2j−m .

When n is even, it follows immediately that

qm =
�n

2 �∑
j=m

w2j−m = pm.
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When n is odd, we have

qm =
�n

2 �∑
j=m

w2j−m+1

=
�n

2 �∑
j=m−1

w2j−(m−1) − w2(m−1)−m+1

= pm−1 − wm−1 .

This completes the proof. �

Theorem 4.5. The Newton steps for the even and odd characteristic polynomials
pe

n(λ) and po
n(λ) at λ = λ̄ < λmin(Tn) of an n × n symmetric positive definite

Toeplitz matrix Tn, are given by the following expressions.
For even n:

Ne(λ̄) =
χ(λ̄)

n
2 + p1 +

∑n
2 −1
j=1

((
n
2 − j

)
(wj + wn−j) + pj+1

)
(wn−j − wj)

,

No(λ̄) =
χ(λ̄)

n
2 − p1 +

∑n
2 −1
j=1

((
n
2 − j

)
(wj + wn−j) − pj+1

)
(wn−j − wj)

·

For odd n:

Ne(λ̄) =
χ(λ̄)

n+1
2 +

∑�n
2 �

j=1

((
n+1

2 − j
)
(w2

n−j − w2
j ) + pj(wn−j+1 − wj) + w2

j

) ,

No(λ̄) =
χ(λ̄)

n−1
2 +

∑�n
2 �

j=1

((
n−1

2 − j
)
(w2

n−j − w2
j ) − pj(wn−j+1 − wj) − w2

j

) ·

In these expressions, χ is as in Definition 3.2, the first row of Tn is given by
(ρ0, t

T ) and w = (w1, . . . , wn−1) = −J(Tn−1 − λ̄I)−1t. The quantities pj are as
defined in Lemma 4.4. For compactness of writing, we have set w0 = 0 and wn = 1.

Proof. We start with the even Newton step in the case where n is even. Setting

Tn − λ̄I =
(

A − λ̄I B
JBJ A − λ̄I

)

and

(Tn − λ̄I)−1 =
(

H1 H2

JH2J JH1J

)
,

we have, from Lemma 4.2, that

Ne(λ̄) =
1

tr
(
A − λ̄I + BJ

)−1 .



828 A. MELMAN

From Lemma 4.3 we obtain that
(
A − λ̄I + BJ

)−1 = H1 + H2J , and, therefore,
that

(Ne(λ̄))−1 = tr
(
A − λ̄I + BJ

)−1

= tr (H1 + H2J)

= tr (H1) + antitr (H2)

=
1
2
tr

(
Tn − λ̄I

)−1 +
1
2

antitr
(
Tn − λ̄I

)−1
.

(10)

We have from the Gohberg–Semencul formula (2) that χ(λ̄)(Tn − λ̄I)−1 =
M1M

T
1 − MT

0 M0, where M0 and M1 are given by (3). From (10) and with
Lemma 4.4 we therefore obtain

χ(λ̄)(Ne(λ̄))−1 =
1
2
tr(M1M

T
1 − MT

0 M0) +
1
2

antitr(M1M
T
1 − MT

0 M0)

=
n

2
+

n
2 −1∑
j=1

(n

2
− j

)
(w2

n−j − w2
j ) +

n
2∑

j=1

(pjwn−j+1 − qjwj−1)

=
n

2
+

n
2 −1∑
j=1

(n

2
− j

)
(w2

n−j − w2
j ) +

n
2∑

j=1

pj(wn−j+1 − wj−1)

=
n

2
+

n
2 −1∑
j=1

(n

2
− j

)
(w2

n−j − w2
j ) +

n
2 −1∑
j=0

pj+1(wn−j − wj)

=
n

2
+ p1 +

n
2 −1∑
j=1

((n

2
− j

)
(w2

n−j − w2
j ) + pj+1(wn−j − wj)

)

=
n

2
+ p1 +

n
2 −1∑
j=1

((n

2
− j

)
(wn−j + wj) + pj+1

)
(wn−j − wj) ,

which establishes the result for the even Newton step.
For the odd Newton step, we have, from Lemma 4.2, that

No(λ̄) =
1

tr
(
A − λ̄I − BJ

)−1 .

From Lemma 4.3 we obtain that

(
A − λ̄I + BJ

)−1 = H1 − H2J.

Analogously to the even case, we then obtain

χ(λ̄)(No(λ̄))−1 =
1
2
tr(M1M

T
1 − MT

0 M0) −
1
2

antitr(M1M
T
1 − MT

0 M0) ,

and the rest of the proof proceeds exactly as in the even case.
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When n is odd, we have, with (6) and with Lemma 4.4, that

χ(λ̄)(Ne)−1(λ̄)

=
1
2
tr(M1M

T
1 − MT

0 M0) +
1
2

antitr(M1M
T
1 − MT

0 M0)

=
1
2
tr(M1M

T
1 − MT

0 M0) +
1
2

+
1
2

�n
2 �∑

j=1

(w2
n−j − w2

j ) + S1 − S0

=
n

2
+
�n

2 �∑
j=1

(n

2
− j

)
(w2

n−j − w2
j )

+
1
2

+
1
2

�n
2 �∑

j=1

(w2
n−j − w2

j ) +
�n

2 �∑
j=1

(pjwn−j+1 − qjwj−1)

=
n + 1

2
+

�n
2 �∑

j=1

(
n + 1

2
− j

)
(w2

n−j − w2
j )

+
�n

2 �∑
j=1

(pjwn−j+1 − (pj−1 − wj−1)wj−1)

=
n + 1

2
+

�n
2 �∑

j=1

(
n + 1

2
− j

)
(w2

n−j − w2
j )

+
�n

2 �∑
j=1

pj(wn−j+1 − wj) + w2

�n
2 � +

�n
2 �−1∑
j=1

w2
j

=
n + 1

2
+

�n
2 �∑

j=1

((
n + 1

2
− j

)
(w2

n−j − w2
j ) + pj(wn−j+1 − wj) + w2

j

)
,

which is what we needed to prove. As in the case for even n, the odd Newton step
follows analogously from

χ(λ̄)(No)−1(λ̄)

=
1
2
tr(M1M

T
1 − MT

0 M0) −
1
2

antitr(M1M
T
1 − MT

0 M0)

=
1
2
tr(M1M

T
1 − MT

0 M0) −
1
2
− 1

2

�n
2 �∑

j=1

(w2
n−j − w2

j ) − S1 + S0 . �

As before, this means that once the (n − 1)-dimensional Yule–Walker system
is solved (this needs to be done at every iteration), i.e., once (Tn−1 − λ̄I)−1t is
computed, only O(n) flops are necessary to compute both the even and odd Newton
steps. The total number of operations depends on the method used for the Yule–
Walker system. If the split Durbin algorithm is used ([6]), then a total of 3

2n2+O(n)
flops needs to be carried out.
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This approach contrasts with the one in [14], where the even and odd Newton
steps are determined by the following recursions:

Ne
k =

ρ0 + ρk−1 − λ̄ + t̃ T u(k−2)(
Ne

k−2

)−1 (
ρ0 + ρk−1 − λ̄ + t̃ T u(k−2)

)
+

(
1 + 1

2‖u(k−2)‖2
) ,(11)

No
k =

ρ0 − ρk−1 − λ̄ + t̃ T v(k−2)(
No

k−2

)−1 (
ρ0 − ρk−1 − λ̄ + t̃ T v(k−2)

)
+

(
1 + 1

2‖v(k−2)‖2
) ,(12)

where Ne
k (λ̄) and No

k (λ̄) are the even and odd Newton steps, respectively, for the
characteristic polynomial of the k-th principal submatrix of Tn at λ = λ̄, and uk and
vk are the k-th even and odd solutions of the Yule–Walker equations, respectively.
The quantities t̃ T u(k−2) and t̃ T v(k−2) are computed in the course of Durbin’s or
the split Durbin algorithm. The algorithm in [14] uses bounds to predict the parity
of the smallest eigenvalue, resulting in two phases: Phase I during which the parity
of the smallest eigenvalue is unknown and both the even and odd Newton steps
need to be computed, and phase II during which only the even or only the odd
Newton step needs to be computed, depending on the predicted parity. If Durbin’s
algorithm is used in phase I, as in [14], this recursion requires 11

4 n2 + O(n) flops,
namely 2n2 + O(n) flops for Durbin’s algorithm and another 3

4n2 + O(n) flops for
the computation of uk and vk from yk and for the norms in the recursion formula.
As in the case of the algorithm in [11], using the split Durbin method would increase
the computational cost in phase I. In phase II the split Durbin algorithm is used,
resulting in 7

4n2+O(n) flops, namely 3
2n2+O(n) flops for the split Durbin algorithm

and 1
4n2 + O(n) flops for the extra scalar products.

Clearly, our approach here significantly reduces the number of arithmetic oper-
ations when compared to the method in [14], especially in phase I of that method.
Our results can also be used for other methods, such as the double Newton method
or Laguerre-type methods. In addition, there is, strictly speaking, no need anymore
to predict the parity of the smallest eigenvalue, as the computation of the Newton
steps requires no more than O(n) flops, so that both the even and odd steps can be
computed without significantly affecting the flop count. However, the parity predic-
tor phase does seem to enhance numerical stability. Finally, we remark that, since
there is no need in our approach to compute the solutions of the intermediate Yule–
Walker equations as in (11) and (12), any method which yields (Tn−1 − λ̄I)−1t can
be used. As we mentioned before, this is very important because of the availability
of superfast methods for this problem.

5. Numerical results

In this section, we compare the number of flops for the various methods, using
the numerical results from [14]. These provide us with the average number of
iterations (for a sample size of 500) needed to compute the smallest eigenvalue of
a matrix of the form T = µ

∑n
k=1 ξkT2πθk

, where n is the dimension of T , and θk,
ξk are uniformly distributed random numbers in (0, 1). The parameter µ is chosen
such that Tkk = 1 for k = 1, ..., n, and (Tθ)ij = cos(θ(i − j)). These matrices are
positive, semi-definite and Toeplitz, and even though they could theoretically be
singular, we did not encounter such cases, nor did we encounter cases where the
smallest eigenvalue of Tn was an eigenvalue of Tn−1 or where the smallest even or
odd eigenvalue of Tn was an eigenvalue of Tn−2.
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Table 1. Comparison of the algorithms using 500 random matri-
ces for each dimension.

Dimension Mastronardi–Boley Even-Odd
iterations flops flops iterations flops flops

(recursion) (trace) (recursion) (trace)

256 12.83 2.5 × 106 1.3 × 106 7.56 ( 2.96 + 4.60 ) 1.1 × 106 0.7 × 106

512 14.77 1.2 × 107 0.6 × 107 8.56 ( 3.29 + 5.27 ) 0.48 × 107 0.3 × 107

1024 14.06 4.4 × 107 2.2 × 107 7.51 ( 3.33 + 4.17 ) 1.7 × 107 1.2 × 107

In Table 1 we present the theoretical total number of flops carried out to compute
the smallest eigenvalue, based on the number of iterations, the dimension of the
matrix, and the complexity of the method used to compute the Newton step. In
calculating the number of flops, we neglected the O(n) term, and we note that
the resulting numbers are in complete agreement with the flop count in [14]. The
stopping criterion required the absolute accuracy of the computed eigenvalues to
be ε = 10−14, or for the value of the characteristic polynomial to become negative.
This resulted, on average, in a relative accuracy of better than 10−6.

The three columns under “Mastronardi–Boley” refer to the method in [11]. They
contain, respectively, the number of iterations (i.e., the number of Newton steps),
the total number of flops when the Newton step is computed using the recursion
(7), and the total number of flops when the Newton step is computed using our
method. Similarly, the three columns under “Even-Odd” refer to the method in
[14]. The first column contains the number of iterations, i.e., the number of Newton
steps, with, in parentheses, the number of iterations in phase I (the parity predictor
phase) and phase II. An entry such as 5 (2 + 3) therefore means five iterations, two
in phase I and three in phase II. The second column contains the total number of
flops when the Newton step is computed using the recursions (11) and (12) and the
third column gives the total number of flops when the appropriate (even or odd)
Newton step is computed using our method.

We stress that these numerical comparisons serve only as an illustration for our
new way of computing a key quantity in the methods from [11] and [14]. Our results
here only change the amount of work per iteration, not the number of iterations,
which makes it easy to use the comparisons already reported in [11] and [14] to
conclude that, at least for the type of matrices that were considered here, the results
are competitive with those obtained for methods based on secular equations.

There are also methods, such as the one decribed in [10], that use polynomial
interpolation rather than Newton’s method for the computation of the smallest root
of the characteristic polynomial. Judging from the numerical results there, which
were for the same test matrices as ours, such methods appear to be better than
the method in [11], although they fall short of the method we have presented here.
On the other hand, our results can improve the method in [10], provided that the
interpolation techniques that are used there do not break down numerically, which
may happen when the matrices have an unfavorable eigenvalue distribution.

However, a large-scale program of numerical experiments is needed to thoroughly
compare all existing methods with their modifications across different eigenvalue
distributions. This is beyond the scope of the present work.
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Summarizing, we can say that the method in [11], which was simple but relatively
slow, has been greatly enhanced in two stages. In the first stage, the even-odd split
was used in [14] to reduce the number of Newton steps, whereas in the second stage,
the number of arithmetic operations to compute the Newton step was drastically
reduced in the work presented here. This has resulted in a method which is three
and a half to four times faster than the original one in [11]. Further improvements
can be achieved by considering double Newton steps or methods other than New-
ton’s method, such as Laguerre-type methods. All these methods benefit from our
results here.
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