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LINEAR LAW FOR THE LOGARITHMS
OF THE RIEMANN PERIODS

AT SIMPLE CRITICAL ZETA ZEROS

KEVIN A. BROUGHAN AND A. ROSS BARNETT

Abstract. Each simple zero 1
2

+ iγn of the Riemann zeta function on the

critical line with γn > 0 is a center for the flow ṡ = ξ(s) of the Riemann xi
function with an associated period Tn. It is shown that, as γn → ∞,

log Tn ≥ π

4
γn + O(log γn).

Numerical evaluation leads to the conjecture that this inequality can be re-
placed by an equality. Assuming the Riemann Hypothesis and a zeta zero
separation conjecture γn+1 − γn � γ−θ

n for some exponent θ > 0, we obtain
the upper bound log Tn � γ2+θ

n . Assuming a weakened form of a conjecture

of Gonek, giving a bound for the reciprocal of the derivative of zeta at each
zero, we obtain the expected upper bound for the periods so, conditionally,
log Tn = π

4
γn + O(log γn). Indeed, this linear relationship is equivalent to the

given weakened conjecture, which implies the zero separation conjecture, pro-
vided the exponent is sufficiently large. The frequencies corresponding to the
periods relate to natural eigenvalues for the Hilbert–Polya conjecture. They
may provide a goal for those seeking a self-adjoint operator related to the
Riemann hypothesis.

1. Introduction

If a holomorphic function of a single complex variable f(s) has a simple zero
at so which is a center for the dynamical system ṡ = f(s), then the period of an
orbit encircling so is given by 2πi/f ′(so) [3, Theorem 2.3], and, in particular, is
independent of the orbit. When this is applied to the simple zeros of Riemann’s
function ξ(s), which lie on the critical line s = 1

2 and which coincide with the simple
critical zeros of ζ(s), we see that the periods {τn = 2πi/ξ′( 1

2 +iγn) : ξ( 1
2 +iγn) = 0}

could be of interest since each such (real) number applies to an infinite family of
nested orbits. See Figure 1 where selected periodic orbits surrounding the 27th and
28th zeros of zeta for the flow ṡ = ξ(s) are displayed.

Even though the positions of the zeros on the critical line have a considerable
degree of random variation, the values of the periods are quite constrained, as is
illustrated numerically in Figure 2 and partly proved in Theorem 4.1: The logarithm
of the absolute value of the periods varies linearly with the position of the zero.
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Figure 1. Orbits around the 27th and 28th zero for ż = ξ(z).

In Section 2 the numerical evaluation is developed. Of the 500 zeta zeros studied,
being those with smallest positive t coordinates, the periods always increased with
increasing zero value, with four exceptions. The numerical evidence demonstrates
a relationship between each period and the t-coordinate of the corresponding zero
which is very close to being linear.

In Section 3 some preliminary lemmas are given.
In Section 4 the relationship

log Tn ≥ π

4
γn + O(log γn),

where Tn = (−1)nτn is the absolute value of the period, is proved. An upper bound
is derived subject to the Riemann Hypothesis and a plausible conjecture on zero
separations. Using a weakened form of a conjecture of Gonek (which includes the
Riemann Hypothesis), namely, that there exists a nonnegative real number θ such
that |ζ ′( 1

2 + iγn)|−1 = O(|γn|θ) for all n ∈ N, we derive the precise upper bound
and hence, conditionally,

log Tn =
π

4
γn + O(log γn).

In Section 5 a possible significance of the periods, in the context of the Hilbert–
Polya conjecture, is sketched.

We first define some notations. Let s = σ + it, ξ(s) = u(σ, t) + iv(σ, t). Label
the simple zeros of ξ(s), with a positive t coordinate, going up the critical line as
{γn : n ∈ N}. A particular zero 1

2 + iγn has the corresponding period

τn =
2πi

ξ′( 1
2 + iγn)

.
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Because ξ(s) is real on the critical line, vt( 1
2 , t) = 0, so ξ′( 1

2 + it) = −iut( 1
2 , t).

Therefore Tn = 2π/|ut( 1
2 , γn)|.

Let s = 1
2 + it and write the ξ definition from Section 2 as

ξ( 1
2 + it) = elog Γ( s

2 )π−s/2 s(s − 1)
2

ζ(s)

= −e� log Γ( s
2 )π−1/4(

t2 + 1/4
2

) × Z(t)

= Y (t) × Z(t),

where

log Γ(s + 1) = (s + 1
2 ) log s − s + c1 + O( 1

s )

Z(t) = eiϑ(t)ζ( 1
2 + it)

ϑ(t) =
t

2
log(

t

2π
) − t

2
− π

8
+ O(

1
t
),

and where here and in what follows the c1, c2, . . . are absolute constants.

2. Numerical evaluation of the periods

We used the Chebyshev method of P. Borwein [2] to evaluate ζ(s). Our version
is described in [3, section 5] in which accuracies for the ζ-zeros γ1 − γ502 better
than 10−10 were demonstrated.

A program was written in MATLAB using the methods of Godfrey [10] for
both the ζ-function and the complex Γ-function. They are available in Godfrey’s
MATLAB site as part of the zeta-function code. In particular, values of the gamma
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Figure 2. Plot of logarithm of the period magnitudes against the
Riemann zeros up to γ502 = 814.1 · · · .
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Table 1. Numerical values of the first 20 γn-values and logarithms
of the periods.

n γn log Tn Tn

1 14.13473 8.4242 4.5562e+003
2 21.02204 12.7793 3.5480e+005
3 25.01086 15.4167 4.9589e+006
4 30.42488 19.3796 2.6089e+008
5 32.93506 21.1554 1.5406e+009
6 37.58618 24.2391 3.3645e+010
7 40.91872 26.9664 5.1445e+011
8 43.32707 28.5531 2.5145e+012
9 48.00515 32.2017 9.6613e+013
10 49.77383 33.6324 4.0399e+014
11 52.97032 35.4970 2.6071e+015
12 56.44625 38.1368 3.6525e+016
13 59.34704 40.8634 5.5814e+017
14 60.83178 41.8135 1.4434e+018
15 65.11254 44.7276 2.6604e+019
16 67.07981 46.4654 1.5124e+020
17 69.54640 48.1391 8.0639e+020
18 72.06716 49.7490 4.0339e+021
19 75.70469 53.0341 1.0775e+023
20 77.14484 54.3339 3.9529e+023

function needed for the definition

ξ(s) =
s

2
(s − 1)Γ(

s

2
)π−s/2ζ(s),

Table 2. Numerical values of the logarithms of the periods and
γn-values showing the four anomalous, decreasing periods as n in-
creases.

n γn log Tn Tn

299 540.63139 415.2032 2.0914e+180
300 541.84744 414.7731 1.3605e+180
301 544.32389 416.2643 6.0437e+180
364 630.80578 485.7808 9.3738e+210
365 632.22514 485.6408 8.1491e+210
366 633.54686 486.1135 1.3075e+211
446 740.57381 571.0652 1.0244e+248
447 741.75734 571.0002 9.5995e+247
448 743.89501 572.2458 3.3357e+248
481 786.46115 606.9047 3.7614e+263
482 787.46846 606.8254 3.4747e+263
483 790.05909 608.9406 2.8810e+264
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Figure 3. The residuals using a slope of π/4.

do not have to be incorporated into a Riemann–Siegel formulation. The values
ξ′( 1

2 + iγn) were found by differencing. Figure 2 gives an illustration of the linear
relation of this paper for zeros up to t = γ502 = 814.1 · · · .
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Figure 4. The first four anomalous deviations from monotonicity (circled).
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Figure 5. The linear periods (below) and residuals (above) using
a slope of π/4.

Figure 3 shows the deviations from the linear law log Tn = α + π
4 γn. There is a

rise, matching an exponential, at low γ-values. The value of α for the fit is −10.0.
Table 1 shows the zeros and periods for 0 < n ≤ 20, where the slope deviates

slightly from π/4, as is seen in Figure 3. The rms deviation for the complete fit is
1.5.

Table 2 includes the zeros and periods for γ300 = 541.847 · · · , γ365 = 632.225 · · · ,
γ447 = 741.757 · · · , and γ482 = 787.468 · · · , where, anomalously, we find log Tn <
log Tn−1 which are the only examples below γ502 where the period decreases. These
are plotted with an expanded scale in Figure 4. An alternative calculation was
devised to extend the modest upper value of t ∼ 800 to t ∼ 34000. The same linear
relationship was found to hold. The symbolic ζ-calculations of MapleTM were
combined with Godfrey’s implementation of Lanczos’ Γ-function method. Earlier
values t ≤ 814.1 · · · were confirmed. The results are presented in increments of 500
in Figure 5.

3. Preliminary lemmas

Lemma 3.1. As t → ∞

� log Γ(
1
2 + it

2
) = −1

8
log(9 + 4t2) − π

4
t + c2 + O(

1
t
).

Proof. This follows directly from Stirling’s approximation given in Section 1 above.
�

Lemma 3.2. As t → ∞, |ϑ′(t)| = O(log t).

Proof. This follows directly from the expression for ϑ(t) given above or see [8, Page
125]. �
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Lemma 3.3. As t → ∞, |ζ( 1
2 + it)| = O(t1/6 log3/2 t).

Proof. This is [17, Page 99]. �

Lemma 3.4. As t → ∞,

|ζ ′( 1
2 + it)| = O(t1/4 log2 t)

and |ζ ′′( 1
2 + it)| = O(t1/4 log4 t).

Proof. These bounds follow from the upper bound for ζ(k)( 1
2 + it), derived using

the approximate functional equation and Cauchy’s integral formula for the nth
derivative given in [13, Page 57], namely,

|ζ(k)( 1
2 + it)| ≤

∣∣∣ ∑
n≤

√
t/2π

logk n

n1/2+it

∣∣∣ + logk t
∑

1≤j≤k

∣∣∣ ∑
n≤

√
t/2π

logj n

n1/2−it

∣∣∣

+ O(t−1/4 logk t). �

Lemma 3.5. As t → ∞, Z ′(t) = O(t1/4 log2 t).

Proof. This follows directly from Z(t) = eiϑ(t)ζ( 1
2 + it) after differentiating and

using Lemmas 3.2 and 3.4. �

4. Lower and upper bounds for the linear relationship

Theorem 4.1. For n ∈ N,

log Tn ≥ π

4
γn + O(log γn).

Proof. We first have

|ut( 1
2 , t)| = |ξ′( 1

2 + it)|

and

iξ′( 1
2 + it) = Y ′(t)Z(t) + Y (t)Z ′(t).

Since Z(γn) = 0,
|ξ′( 1

2 + iγn)| = |Y (γn)| × |Z ′(γn)|.
So

log |ut( 1
2 , γn)| = log |Y (γn)| + log |Z ′(γn)|.

By Lemma 3.1,

log |Y (t)| = � log Γ
( 1

2 + it

2

)
− 1

4
log π + log

(1
8

+
t2

2

)

= −π

4
t + log

( 1 + 4t2

(9 + 4t2)1/8

)
+ c3 + O

(1
t

)
.

Therefore, by Lemma 3.5,

log |ut( 1
2 , γn)| ≤ −π

4 γn + O(log γn),

and therefore
log Tn ≥ π

4
γn + O(log γn). �
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Finding upper bounds for the periods appears to be a much more difficult prob-
lem. Assuming the Riemann Hypothesis (RH) and a plausible zero separation
hypothesis, we make some progress on this issue. Later we show how the upper
bound follows (indeed is equivalent to) a weakened form of a conjecture of Gonek.

Fujii [9] has shown that there exists a λ > 1 such that for n in a set of positive
density

γn+1 − γn

2π/ log γn
≥ λ.

Since [17, Page 214] γn ∼ 2πn/ log n, Fujii’s result implies for all ε > 0 and n
sufficiently large and in a subset of positive density that γn+1 − γn ≥ 1/γε

n. Here
we assume that for some θ > 0 for all n ∈ N

γn+1 − γn 	 1
γθ

n

,

where the implied constant depends on θ, but is absolute once θ has a numerical
value. Call this assumption the “zero separation conjecture” or ZSC. Of course,
if it is true, it implies all zeros are simple. It supports the notion of Montgomery
that the zeros tend to “repel”, but does allow zeros to be very close. In [11] Gonek
suggests θ = 1/3 + ε might be the optimal choice.

Theorem 4.2. Assume RH and ZSC. Then for all n ∈ N,

log Tn 
 γ2+θ
n .

Proof. Using the shifted product representation for ξ(s),

ξ(z + 1
2 ) = ξ( 1

2 )
∏

n∈N
(1 + z2

γ2
n
)

leads to the value of the derivative at a zero,

ut( 1
2 , γn) =

2ξ( 1
2 )

γn

∏
j∈N,j �=n

(1 − γ2
n

γ2
j

)

|ut( 1
2 , γn)| =

2ξ( 1
2 )

γn

∏
1≤j<n

(
γ2

n

γ2
j

− 1)
∏
n<j

(1 − γ2
n

γ2
j

)

=
2ξ( 1

2 )
γn

Xn × Yn, say.

Because the number of zeros up to level T is less than T log T/2π, it follows that

Xn =
∏

1≤j<n

(
γn + γj

γj
)(

γn − γj

γj
) ≥

(γn − γn−1

γn

)γn log γn .

Therefore, by the assumption ZSC,

(1) − log Xn 
 (θ + 1)γn log2 γn.

Also, because − log(1 − x) ≤ x/(1 − x) for 0 ≤ x < 1 and

Yn =
∏
j>n

(1 − γ2
n

γ2
j

), then

− log Yn =
∑
j>n

− log(1 − γ2
n

γ2
j

) ≤
∑
j>n

γ2
n

γ2
j − γ2

n

.(2)
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But ∑
j>n

1
γ2

j − γ2
n

=
∑

γ2
j < 10

9 γ2
n

1
γ2

j − γ2
n

+
∑

γ2
j ≥ 10

9 γ2
n

1
γ2

j − γ2
n

= S1 + S2, say.

Since, in S2, γj
2 − γ2

n ≥ γ2
j − 9

10γ2
j = 1

10γ2
j ,

S2 ≤
∑

γ2
j ≥ 10

9 γ2
n

10
γ2

j


 log2 γn

γn
.

The sum S1 is finite with largest term being the first, which is

1
(γn+1 + γn)(γn+1 − γn)


 γθ
n

2γn
.

The number of terms is bounded by
∫ √

10/9γn

γn

log t dt = O(γnlog γn),

so
S1 
 γθ

n log γn

and therefore by (2)

(3) − log Yn 
 γ2
n(γθ

n log γn +
log2 γn

γn
) 
 γ2+θ

n .

It follows from (1) and (3) that

log Tn 
 − log |ut( 1
2 , γn)| 
 γ2+θ

n . �
Gonek [11] defines

Θ = inf{θ : |ζ ′( 1
2 + iγn)|−1 = O(|γn|θ) for all n}.

Then [12] the Riemann Hypothesis implies Θ ≥ 0 and the averaged Mertens hy-
pothesis ([17, Section 14.29]) implies Θ ≤ 1. Gonek, on the basis of an analogy with
eigenvalue statistics for random unitary matrices, conjectures Θ = 1/3. Hughes,
Keating and O’Connell [12], following Gonek, surmise that Θ = 1/3 is in line with
Montgomery’s pair correlation conjecture [14, 16], which suggests Θ ≥ 1/3. To
summarise this heuristic argument, the pair correlation conjecture [14] statement
is that for fixed a, b with 0 < a ≤ b < ∞, as T → ∞,

|{(γ, γ′) : 0 < γ, γ′ ≤ T, 2πa
log T ≤ γ − γ′ ≤ 2πb

log T }|
T log T/(2π)

∼
∫ b

a

(
1 −

( sin πx

πx

)2)
dx.

Then a is set to 0 and b small so that the integral may be approximated by π2b3.
Even though the conjecture is true for T → ∞, assuming it holds for “small” T

leads to the inequality b 	 T−1/3 so γn+1 − γn 	 γ
−1/3
n . Finally assuming the

reverse of an argument similar to that used in Theorem 4.3 below holds, we are led
to suppose Θ 	 1/3.

Here we assume the Riemann Hypothesis and just Θ < ∞, namely, that there
exists a θ ≥ 0 such that

|ζ ′( 1
2 + iγn)|−1 = O(|γn|θ)

for all n ∈ N. We call this assumption WG or weak Gonek.
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Theorem 4.3. Assume the Riemann Hypothesis and WG. Then for all n

log Tn ≤ π

4
γn + O(log γn).

Proof. Using Stirling’s approximation to the Gamma function with ρn = 1
2 + iγn,

log Tn = log 2π − log |ξ′( 1
2 + iγn)|

= log 2π − log |ρn(ρn − 1)
2

| − log |π−ρn/2| − log |Γ(ρn/2)| − log |ζ ′(ρn)|

= − log |Γ(1/4 + iγn/2)| − log |ζ ′(ρn)| + O(log γn)

=
π

4
γn + log(1/|ζ ′(ρn)|) + O(log γn),

and the result follows. �

The final equation in this proof can then be used to show

Corollary 4.1. Assume the Riemann Hypothesis. Then WG is true if and only if

log Tn ≤ π

4
γn + O(log γn).

Theorem 4.4. Assume the Riemann Hypothesis. Then if WG is true there exists
θ1 > 0 such that, for all n ∈ N,

γn+1 − γn 	 1
γθ1

n

.

Proof. Expand f(t) = ζ( 1
2 + it), using Taylor’s theorem about γn as far as γn+1.

There is an η between γn and γn+1 such that

f(γn+1) = f(γn) + if ′(γn)(γn − γn+1) − 1
2f ′′(η)(γn − γn+1)2,

so γn+1 − γn = 2|f ′(γn)|/|f ′′(η)|.
By Lemma 3.4

|ζ ′′( 1
2 + iη)| 
 η1/4 log4 η ≤ γ

1/4
n+1 log4 γn+1 
 γ

1/4
n log4 γn.

Hence

γn+1 − γn 	 1

γθ
nγ

1/4
n log4 γn

	 1

γ
θ+1/4+ε
n

,

so we can choose θ1 = θ + 1/4 + ε. �

5. Hilbert–Polya conjecture

The well-known approach to proving the Riemann Hypothesis, attributed to
Polya and Hilbert [15], is that there is a naturally occurring Hermitian operator
whose eigenvalues are the zeros of ξ( 1

2 + it), which are therefore real [7, Page 345].
There have been many attempts to find such an operator [1], but none so far has
been completely successful. The normal interpretation of the heights of the zeros
{γn : n ∈ N} is that they correspond to frequencies of some, to be determined,
vibrating system.

Consideration of the phase portraits described in [5, 6] in the light of the con-
stancy of the period for rotation about each simple zero on the critical line [3,
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Theorem 2.3], gives rise to the notion that an alternative set of potential eigenval-
ues might be related to these periods {Tn : n ∈ N} in the usual manner:

fn =
1
Tn

=
λn

2π
=

|ut( 1
2 , γn)|
2π

≈ e−
πγn

4

2π
,

so λi ≈ e−
πγi
4 . This approach has the following features:

(a) The eigenvalues have a natural relationship to ζ(s).
(b) The eigenvalues are the natural frequencies occurring in the flow ṡ = ξ(s).
(c) The lowest zero corresponds to the largest eigenvalue and therefore to the

mode of highest energy and largest frequency. This is quite natural, since the values
of ξ(s) with s real and with values which are large and positive might be regarded
as exerting a strong attractive pull on the flow, and would be expected to generate
the greatest energy in the closest pair of zeros, in which corresponding frequencies
become the “fundamental” modes. This “attractor” concept is strongly reinforced
by the structure of the separatrices which all tend to the real axis [5, Theorem
3.2]. This is much more satisfactory than the normal approach in which the energy
increases as the distance away from the real axis increases.
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