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SPECIALIZED RUNGE-KUTTA METHODS
FOR INDEX 2 DIFFERENTIAL-ALGEBRAIC EQUATIONS

LAURENT O. JAY

Abstract. We consider the numerical solution of systems of semi-explicit
index 2 differential-algebraic equations (DAEs) by methods based on Runge-
Kutta (RK) coefficients. For nonstiffly accurate RK coefficients, such as Gauss
and Radau IA coefficients, the standard application of implicit RK methods
is generally not superconvergent. To reestablish superconvergence projected
RK methods and partitioned RK methods have been proposed. In this paper
we propose a simple alternative which does not require any extra projection
step and does not use any additional internal stage. Moreover, symmetry of
Gauss methods is preserved. The main idea is to replace the satisfaction of
the constraints at the internal stages in the standard definition by enforcing
specific linear combinations of the constraints at the numerical solution and at
the internal stages to vanish. We call these methods specialized Runge-Kutta
methods for index 2 DAEs (SRK-DAE 2).

1. Introduction

We consider the following class of semi-explicit differential-algebraic equations
(DAEs)

d

dt
y = f(y, z),(1.1a)

0 = g(y)(1.1b)

where y ∈ R
n are the differential variables, z ∈ R

m are the algebraic variables, and
the functions f : R

n×R
m −→ R

n and g : R
n −→ R

m are assumed to be sufficiently
differentiable. The initial values y0, z0 at t0 are supposed to be given and to be
consistent, i.e., to satisfy g(y0) = 0 and gy(y0)f(y0, z0) = 0. We make the usual
assumption that in a neighborhood of the solution the square matrix gy(y)fz(y, z)
exists and is invertible. The system of DAEs (1.1) is thus of index 2 [2, 6, 7].

For such index 2 DAEs convergence results have been obtained for some classes of
implicit RK (IRK) methods [5, 6, 7, 8]. In this paper, when we discuss convergence
and order of convergence it will only concern the differential variables. The same
order of convergence for the algebraic variables can be reached by obtaining the
z-component through the equation gy(y)f(y, z) = 0. Stiffly accurate IRK methods,
such as Radau IIA, Lobatto IIIA, and Lobatto IIIC methods, preserve their high
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order of convergence, whereas nonstiffly accurate IRK methods, such as Gauss and
Radau IA methods, do not. The main motivation of this paper is to show how the
standard application of nonstiffly accurate IRK methods to semi-explicit index 2
DAEs can be simply modified in order to reestablish superconvergence. For this
purpose projected RK methods [1] and partitioned RK methods [11] have already
been proposed. In this paper we propose a simple alternative to projected and
partitioned Runge-Kutta methods which does not require any extra projection step
and does not use any additional internal stage. Moreover, symmetry of Gauss
methods is preserved. The proposed modification is simple in essence. The main
idea is to replace the satisfaction of the constraints at the internal stages in the
standard definition by enforcing specific linear combinations of the constraints at
the numerical solution and at the internal stages to vanish. We call these methods
specialized Runge-Kutta methods for index 2 DAEs (SRK-DAE2).

In this paper we consider RK coefficients having an invertible RK matrix. For
RK coefficients with a singular RK matrix, more particularly for methods based on
Lobatto coefficients, we refer the reader to [9]. Results obtained in this paper can
be generalized directly to the following class of index 2 implicit DAEs:

d

dt
a(t, y) = f(t, y, z),

0 = g(t, y)

where it is assumed that ay(t, y) and gy(t, y)a−1
y (t, y)fz(t, y, z) exist and are invert-

ible in a neighborhood of a solution; see [9].
The paper is organized as follows. In section 2 the standard definition of Runge-

Kutta methods for index 2 DAEs is given together with projected and partitioned
Runge-Kutta methods. In section 3 specialized Runge-Kutta methods for index 2
DAEs (SRK-DAE2) are introduced, and sufficient conditions for symmetry preser-
vation are given. In section 4 we analyze the existence, uniqueness, local error, and
global convergence of the numerical solution for the class of SRK-DAE2 methods
considered. Finally, a numerical experiment is given in section 5 to illustrate the
superconvergence results.

2. Standard, projected, and partitioned Runge-Kutta methods

for index 2 DAEs

The coefficients of a Runge-Kutta method are given by its weights b :=
(bi)i=1,...,s, its nodes c := (ci)i=1,...,s, and its RK matrix of coefficients A :=
(aij)i,j=1,...,s. The nodes generally satisfy ci =

∑s
j=1 aij (i = 1, . . . , s). In this

paper we will assume the RK matrix A to be invertible.
The standard definition of an s-stage Runge-Kutta method applied to semi-

explicit index 2 DAEs is described as follows [2, 6, 7]. We consider one step with
stepsize hn starting from yn at tn. The numerical solution yn+1 approximating the
exact solution y(t) at tn+1 = tn + hn is given by

(2.1a) yn+1 = yn + hn

s∑
i=1

bif(Yni, Zni)
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where the s internal stages Yni, Zni (i = 1, . . . , s) are the solution of the system of
nonlinear equations

Yni = yn + hn

s∑
j=1

aijf(Ynj , Znj), i = 1, . . . , s,(2.1b)

0 = g(Yni), i = 1, . . . , s.(2.1c)

Notice that the value zn does not enter explicitly the above definition (2.1), but it
just indicates to which solution branch of gy(y)f(y, z) = 0 the internal stages Zni

(i = 1, . . . , s) are close. Therefore it is not necessary to obtain an extremely accurate
value zn+1 in a step-by-step integration. One possibility is to define explicitly zn+1

as

zn+1 = zn +
s∑

i=1

s∑
j=1

biwij(Znj − zn)

where W := (wij)s
i,j=1 denotes the inverse of the RK matrix A, i.e., W := A−1 [6, 7].

The possibility to obtain zn+1 implicitly as satisfying gy(yn+1)f(yn+1, zn+1) = 0 is
generally not taken in practice as it requires the solution of an additional system
of nonlinear equations.

From the above standard application of IRK methods it is important to notice
that from (2.1c) all internal stages Yni (i = 1, . . . , s) satisfy the constraint g(y) =
0, whereas the numerical solution yn+1 generally does not. However, for stiffly
accurate RK methods, i.e., for methods satisfying asi = bi for i = 1, . . . , s we have
yn+1 = Yns. Therefore g(yn+1) = 0 is automatically satisfied for such methods
since from (2.1c) for i = s we have g(Yns) = 0. Superconvergence of stiffly accurate
methods has been demonstrated [6, 7, 8]. For example the s-stage Radau IIA
method converges with global order 2s − 1, and the s-stage Lobatto IIIA and
Lobatto IIIC methods converge with global order 2s − 2. Nonstiffly accurate IRK
methods generally have a reduced order of convergence. For example the s-stage
Gauss and Radau IA methods converge only with global order s [6, 7]. In our
opinion, the loss of superconvergence for nonstiffly accurate RK methods is mainly
due to the fact that the constraint g(y) = 0 is not satisfied at the numerical solution
yn+1.

In this paper we are interested in nonstiffly accurate RK coefficients, i.e., where
the relations asi = bi for i = 1, . . . , s do not hold, e.g., for Gauss coefficients. The
corresponding standard RK methods (2.1) generally fail to be superconvergent for
index 2 DAEs. Two modifications preserving superconvergence have already been
proposed: projected Runge-Kutta methods by Ascher and Petzold [1] and partitioned
Runge-Kutta methods by Murua [11], both described succinctly below.

In a projected RK method [1], see also [7, 10], the numerical solution yn+1 of a
standard Runge-Kutta method (2.1) is projected onto the constraint g(y) = 0 for
example as follows:

ỹn+1 = yn+1 + fz(ỹn+1, zn+1)µ, 0 = g(ỹn+1).

This requires the solution of a system of nonlinear equations. Moreover, a draw-
back of this approach is the fact that the symmetry property of an IRK method
with symmetric coefficients is not preserved. A projection procedure preserving
symmetry is described in [4]. Notice that if projection is done as a post-processing
procedure, the order of a standard RK method can be increased significantly, but
it is generally not optimal [3].
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In a partitioned RK method [11], the standard definition of RK methods (2.1) is
modified by introducing s extra internal stages Ỹni and by replacing the equations
(2.1c) for the constraints as follows:

Ỹni = yn + hn

s∑
j=1

ãijf(Ynj , Znj), 0 = g(Ỹni), i = 1, . . . , s.

The additional RK coefficients ãij satisfy in particular ãsi = bi for i = 1, . . . , s, i.e.,
they are stiffly accurate. To Gauss IRK methods correspond the so-called Gauss-
Lobatto partitioned RK methods [11]. A drawback of this approach is the fact
that for index 2 DAEs of the type (1.2), the s extra internal stages Ỹi are required,
thus doubling for the y-component the number of unknowns and corresponding
nonlinear equations.

The main objective of this paper is to present a new and simpler approach to
retain superconvergence by a proper modification of the standard definition (2.1) of
RK methods for index 2 DAEs. This new approach has some advantages over the
two modifications described above. First, unlike projected RK methods, symmetry
of Gauss methods is preserved and the classical order of convergence of Radau IA
methods is preserved. Secondly, unlike partitioned RK methods, the new approach
does not use any additional internal stage. In the next section, we describe these
new methods in detail.

3. Specialized Runge-Kutta methods for index 2 DAEs

In this section we describe a simple alternative to projected and partitioned
Runge-Kutta methods in order to preserve superconvergence of nonstiffly accurate
RK methods. The new methods are called specialized Runge-Kutta methods for
index 2 DAEs (SRK-DAE2). The difference to standard IRK methods (2.1) is in
(2.1c). Ideally we would like to satisfy g(yn+1) = 0 and g(Yni) = 0 for i = 1, . . . , s.
This is generally not possible since there are only s algebraic variables Zn1, . . . , Zns

for s+1 sets of constraints. The main idea is as follows. Instead of having yn+1 and
all internal stages Yni (i = 1, . . . , s) satisfying the constraint g(y) = 0, we enforce s
linear combinations of g(yn+1) and g(Yni) (i = 1, . . . , s) to be equal to zero.

Definition 3.1. One step of an s-stage specialized Runge-Kutta method applied to
the system of index 2 DAEs (1.1) (SRK-DAE2) with stepsize hn starting from yn, zn

at tn is given by yn+1 where yn+1 and the s internal stages Yni, Zni (i = 1, . . . , s)
are the solution of the system of nonlinear equations

Yni = yn + hn

s∑
j=1

aijf(Ynj , Znj), i = 1, . . . , s,(3.1a)

yn+1 = yn + hn

s∑
i=1

bif(Yni, Zni),(3.1b)

0 =
s∑

j=1

ωijg(Ynj) + ωi,s+1g(yn+1), i = 1, . . . , s,(3.1c)

where the coefficients ωij are those of a matrix Ω ∈ R
s×(s+1).
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Using tensor matrix product notation, the equations (3.1c) can be expressed as

(Ω ⊗ Im)

⎛⎜⎜⎜⎝
g(Yn1)

...
g(Yns)
g(yn+1)

⎞⎟⎟⎟⎠ = 0.

Notice that we can multiply the matrix Ω from the left by any invertible s×s matrix
without changing the definition of SRK-DAE2 methods. The major difficulty is to
find matrices Ω ∈ R

s×(s+1) such that the order of the SRK-DAE2 method is as high
as possible and also such that other properties, such as symmetry, are preserved.
To ensure existence and uniqueness of the SRK-DAE2 solution we will assume the
square matrix Ωα ∈ R

s×s to be invertible, see Theorem 4.1 below, where the matrix
α is defined as

α :=
(

A
bT

)
∈ R

(s+1)×s.

Moreover, we will assume bi �= 0, ci �= cj for i �= j, and the matrix A to be
invertible. We use the following notation: ei ∈ R

s denotes the i-th unit vec-
tor (i = 1, . . . , s), e := (1, 1, . . . , 1)T ∈ R

s, 0s := (0, 0, . . . , 0)T ∈ R
s, es+1 :=

(0, 0, . . . , 0, 1)T ∈ R
s+1, Is := diag(1, 1, . . . , 1) ∈ R

s×s, B := diag(b1, b2, . . . , bs) ∈
R

s×s, C := diag(c1, c2, . . . , cs) ∈ R
s×s, and ck := Cke = (ck

1 , ck
2 , . . . , ck

s)T ∈ R
s.

Runge-Kutta coefficients generally satisfy some simplifying assumptions, expressed
here in vector notation

B(p) : bT ck−1 =
1
k

for k = 1, . . . , p,

C(q) : Ack−1 =
1
k

ck for k = 1, . . . , q,

D(r) : bT Ck−1A =
1
k

(bT − bT Ck) for k = 1, . . . , r,

for some nonnegative integer values p, q, and r. For given Runge-Kutta coefficients
satisfying the simplifying assumption D(r), we define the nonnegative integer value

ρ := min(r, s − 1) ≤ s − 1.

To deal with the constraints (1.1b), for SRK-DAE2 methods we will consider the
relations

(3.2) 0 = g(yn+1), 0 =
s∑

i=1

bic
k−1
i g(Yni), k = 1, . . . , ρ,

instead of (2.1c). For ρ = 0 we only have the relation 0 = g(yn+1). An important
point is that the second set of relations in (3.2) can be rewritten equivalently as

0 = hn

s∑
i=1

bi(cihn)k−1g(Yni), k = 1, . . . , ρ,

which can be interpreted as a discretization of

0 =
∫ tn+hn

tn

(t − tn)k−1 · g(y)dt.
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There is a total of ρ + 1 equations in (3.2). This corresponds to having a matrix Ω
in (3.1c) with ρ + 1 rows equal to the first ρ + 1 rows of the following matrix:

(3.3) Ω̃0 :=

⎛⎜⎜⎜⎝
0T

s 1
bT 0
...

...
bT Cs−2 0

⎞⎟⎟⎟⎠ ∈ R
s×(s+1).

When r ≤ s − 2, we have ρ = r ≤ s − 2; thus there are at most s − 1 equations in
(3.2). In this situation there is some additional freedom in choosing the remaining
s − ρ − 1 equations. A natural choice is to take (3.2) for k = 1, . . . , s − 1, i.e.,
Ω = Ω̃0, but this is not a requirement. The choice of Ω̃0 is equivalent to

Ω̂0 :=

⎛⎜⎜⎜⎝
1 0 · · · 0
1 −1 0
...

. . .
...

1 0 · · · −(s − 1)

⎞⎟⎟⎟⎠ Ω̃0 =

⎛⎜⎜⎜⎝
0T

s 1
−bT 1

...
...

−(s − 1)bT Cs−2 1

⎞⎟⎟⎟⎠ ∈ R
s×(s+1).

For the local error analysis of SRK-DAE2 methods, see section 4; without loss of
generality Ω can be assumed to satisfy Ωα = Is. We can consider for example

(3.4) Ω0 := M−1Ω̂0 =
(

A−1 0s

)
+ M−1e

(
−bT A−1 1

)
∈ R

s×(s+1)

where M , assumed to be invertible, is given by

(3.5) M := Ω̂0α =

⎛⎜⎜⎜⎝
bT

bT − bT A
...

bT − (s − 1)bT Cs−2A

⎞⎟⎟⎟⎠ .

When the simplifying assumption D(s − 1) is satisfied this matrix M reduces to

(3.6) M = V B =

⎛⎜⎜⎜⎝
bT

bT C
...

bT Cs−1

⎞⎟⎟⎟⎠
where

V :=

⎛⎜⎜⎜⎝
eT

cT

...
cs−1T

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 1 . . . 1
c1 c2 . . . cs

...
... . . .

...
cs−1
1 cs−1

2 . . . cs−1
s

⎞⎟⎟⎟⎠ ∈ R
s×s.

From our assumptions on the weight vector b and the node vector c this matrix
M = V B is invertible since V is a Vandermonde matrix.

More generally we will consider

(3.7) Ω :=
(

A−1 0s

)
+ N−1u

(
−bT A−1 1

)
∈ R

s×(s+1)
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where u ∈ R
s satisfies ui = 1 for i = 1, . . . , ρ + 1 and N ∈ R

s×s is any invertible
matrix of the form

(3.8) N :=

⎛⎜⎜⎜⎜⎜⎝
bT

bT C
...

bT Cρ

∗

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
bT

bT − bT A
...

bT − ρbT Cρ−1A
∗

⎞⎟⎟⎟⎟⎟⎠ .

The choice (3.4) corresponds to u = e and N = M of (3.5). Using the matrix
Ω directly as given in (3.7) is easier when analyzing the order of the method, see
Theorem 4.4, whereas using the equivalent form, see (3.3),

(3.9) Ω̃ =

⎛⎜⎜⎜⎜⎜⎝
0T

s 1
bT 0
...

...
bT Cρ 0
∗ ∗

⎞⎟⎟⎟⎟⎟⎠ ∈ R
s×(s+1)

is easier when analyzing symmetry, see Theorem 3.3, and is also more natural to
interpret and to write down; see (3.2).

Theorem 3.2. Under the notation and assumptions of section 3 we have the fol-
lowing relations for the matrix Ω in (3.7):

Ωα = Is,(3.10)

bT Ω = eT
s+1.(3.11)

• When in addition the simplifying assumptions B(p) and C(q) are satisfied,
then for 1 ≤ k ≤ min(q, p) we have

(3.12) Ω
(

ck

1

)
= kck−1.

Moreover, if the simplifying assumption D(s − 1) is satisfied, then this
equality holds for 1 ≤ k ≤ max(min(q, p), p − s + 1).

• Alternatively, when in addition the simplifying assumption D(r) is satisfied,
then for 1 ≤ k ≤ ρ = min(r, s − 1) we have

(3.13) bT CkΩ = bT Ω − k
(

bT Ck−1 0
)
.

Proof. The first relation (3.10) is obtained by direct calculation as follows:

Ω
(

A
bT

)
= A−1A + N−1u(−bT A−1A + bT ) = Is.

Since the first row of N is bT we have bT N−1 = eT
1 ; thus bT N−1u = 1. Hence, we

obtain the second relation (3.11) as follows:

bT Ω =
(

bT A−1 0
)

+ bT N−1u
(
−bT A−1 1

)
= eT

s+1.

For the third relation (3.12) we have

Ω
(

ck

1

)
= A−1ck + N−1u(−bT A−1ck + 1).

Using successively the relations A−1ck = kck−1 for k = 1, . . . , q coming from
C(q) and bT ck−1 = 1/k for k = 1, . . . , p from B(p) gives the desired result for
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1 ≤ k ≤ min(q, p). When in addition D(s − 1) is satisfied the matrix Ω can be
expressed as Ω = Ω0 of (3.4) with M = V B of (3.6). The equality (3.12) is thus
equivalent to

Ω̂0

(
ck

1

)
= kV Bck−1.

For 1 ≤ k ≤ p − s + 1 both sides simplify to

k

⎛⎜⎜⎜⎝
1/k

1/(k + 1)
...

1/(k + s − 1)

⎞⎟⎟⎟⎠ .

For the fourth relation (3.13) we have

bT CkΩ =
(

bT CkA−1 0
)

+ bT CkN−1u
(
−bT A−1 1

)
.

The result follows from the relations bT CkA−1 = bT A−1−kbT Ck−1 for k = 1, . . . , r
from D(r), from bT CkN−1 = eT

k+1 for k = 1, . . . , ρ coming directly from (3.8), and
finally from (3.11). �

In the following theorem we give sufficient conditions for a SRK-DAE method
to preserve symmetry.

Theorem 3.3. Assume symmetric RK coefficients, i.e.,

as+1−i,s+1−j + aij = bj = bs+1−j for i, j = 1, . . . , s,(3.14a)
ci = 1 − cs+1−i for i = 1, . . . , s.(3.14b)

Then the corresponding SRK-DAE2 method (3.1) applied to the index 2 DAEs (1.1)
with matrix Ω given by (3.3), or equivalently (3.4), is symmetric.

Proof. We can assume yn to satisfy g(yn) = 0 since the constraint g(y) = 0 is
satisfied at each timestep. Exchanging hn ↔ −hn, yn ↔ yn+1, tn ↔ tn + hn, we
obtain the adjoint SRK-DAE2 method with coefficients b∗i = bs+1−i, c∗i = 1−cs+1−i,
and a∗

ij = bs+1−j − as+1−i,s+1−j in (3.1a)-(3.1b); i.e.,

Y ∗
ni = yn + hn

s∑
j=1

a∗
ijf(Y ∗

nj , Z
∗
nj), i = 1, . . . , s,(3.15a)

y∗
n+1 = yn + hn

s∑
i=1

b∗i f(Y ∗
ni, Z

∗
ni).(3.15b)

From the assumption g(yn) = 0 we obtain g(y∗
n+1) = 0 for the adjoint method. For

the constraints we have

0 =
s∑

i=1

bic
k−1
i g(Y ∗

n,s+1−i), k = 1, . . . , s − 1,

which can be reexpressed thanks to (3.14) as

0 =
s∑

i=1

bs+1−ic
k−1
s+1−ig(Y ∗

ni) =
s∑

i=1

bi(1 − ci)k−1g(Y ∗
ni), k = 1, . . . , s − 1.
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Developing (1 − ci)k−1 we obtain by induction on k,

(3.15c) 0 =
s∑

i=1

bic
k−1
i g(Y ∗

ni), k = 1, . . . , s − 1.

From (3.14) the equations (3.15a) and (3.15b) are of the same form as (3.1a) and
(3.1b) respectively since under the assumptions (3.14) we have b∗i = bi, c∗i = ci,
and a∗

ij = aij . The equations (3.15c) for the constraints are also of the same form
as (3.2) for k = 1, . . . , s − 1. Therefore, we must have Y ∗

ni = Yni and Z∗
ni = Zni for

i = 1, . . . , s, and y∗
n+1 = yn+1. Symmetry has thus been proved. �

As a direct corollary to this theorem we have that for Gauss coefficients the
corresponding Gauss SRK-DAE2 methods are symmetric. For s = 1 the Gauss
SRK-DAE2 method of order 2 reads as follows:

Yn1 = yn +
hn

2
f(Yn1, Zn1), yn+1 = yn + hnf(Yn1, Zn1), 0 = g(yn+1),

which can be reexpressed as a system of implicit equations for yn+1 and Zn1 as

yn+1 = yn + hnf

(
1
2
(yn + yn+1), Zn1

)
, 0 = g(yn+1).

With 0 = g(Yn1) instead of 0 = g(yn+1) to treat the constraint (1.1b), the standard
Gauss IRK method has only order 1. Using the form (3.2), for s = 2 the Gauss
SRK-DAE2 method of order 4 reads as follows:

Yn1 = yn + hn

(
1
4
f(Yn1, Zn1) +

(
1
4
−

√
3

6

)
f(Yn2, Zn2)

)
,

Yn2 = yn + hn

((
1
4

+
√

3
6

)
f(Yn1, Zn1) +

1
4
f(Yn2, Zn2)

)
,

yn+1 = yn + hn

(
1
2
f(Yn1, Zn1) +

1
2
f(Yn2, Zn2)

)
,

0 =
1
2
g(Yn1) +

1
2
g(Yn2),

0 = g(yn+1).

With 0 = g(Yn1) and 0 = g(Yn2) instead of 0 = 1
2g(Yn1)+ 1

2g(Yn2) and 0 = g(yn+1)
to treat the constraint (1.1b), the standard Gauss IRK method has only order 2.

For a certain class of RK coefficients, including Lobatto coefficients, we have
proposed in [9] a similar modification for semi-explicit index 2 DAEs. Instead of a
matrix Ω as defined in (3.7), a different matrix Q is used in [9]. It can be shown
that for Lobatto coefficients this matrix Q is equivalent to the matrix Ω0 through
the relation Q = A3Ω0 when taking the RK matrix A = A3 in the definition (3.4)
of Ω0 (here we have used the notation of [9], for Lobatto methods the RK matrix
A3 corresponds to Lobatto IIIC coefficients).

4. Analysis of SRK-DAE2 methods

In this section, to simplify the notation we will remove the index n in the def-
inition (3.1) or replace it by 0 when necessary. Existence and uniqueness of the
system of nonlinear equations of SRK-DAE2 methods (3.1) is shown in the follow-
ing theorem.
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Theorem 4.1. Suppose that y0 = y0(h), z0 = z0(h) satisfy

(4.1) g(y0) = O(h2), gy(y0)f(y0, z0) = O(h),

and that gy(y)fz(y, z) exists and is invertible in a neighborhood of (y0, z0). Assume
that for the SRK-DAE2 method (3.1) the matrix Ωα ∈ R

s×s is invertible. Then for
h ≤ h0 there exists a locally unique SRK-DAE2 solution that satisfies

Yi − y0 = O(h) i = 1, . . . , s, y1 − y0 = O(h), Zi − z0 = O(h) i = 1, . . . , s.

Proof. The proof of this theorem can be done by application of the implicit function
theorem, as in the proof of [7, Theorem VII.4.1]. To simplify the notation we denote
Ys+1 := y1. Dividing the right-hand side of (3.1c) by h we obtain the equations

(4.2) 0 =
1
h

s+1∑
j=1

ωijg(Yj), i = 1, . . . , s.

Inserting the relations

Yj − y0 = h
s∑

k=1

αjkf(Yk, Zk), j = 1, . . . , s + 1,

coming from (3.1a)-(3.1b), in the development

g(Yj) = g(y0) +
∫ 1

0

gy(y0 + τ (Yj − y0))dτ · (Yj − y0) ,

the equations (4.2) can be reexpressed as
(4.3)

0 =
1
h

s+1∑
j=1

ωijg(y0) +
s+1∑
j=1

s∑
k=1

ωijαjk

(∫ 1

0

gy(y0 + τ (Yj − y0))dτ · f(Yk, Zk)
)

for i = 1, . . . , s. By the assumptions (4.1), at h = 0 these equations (4.3) are
satisfied since we have Yi(0) = y0 for i = 1, . . . , s+1 and Zi(0) = z0 for i = 1, . . . , s.

Using tensor matrix product notation the Jacobian of (3.1a), (3.1b), and (4.3)
with respect to Y1, . . . , Ys, Ys+1, Z1, . . . , Zs is equal at h = 0 to(

Is+1 ⊗ In O
∗ Ωα ⊗ gy(y0)fz(y0, z0)

)
,

and is therefore invertible. �

The goal now is to obtain a local error estimate for the differential variables
y1 compared to the exact solution y(t) at t0 + h passing through consistent initial
values y0, z0 at t0. In this paper we will not define once again the whole tree theory
for semi-explicit index 2 DAEs which can be found for example in [6, 7]. Definitions
of trees t ∈ LDAT2 and related quantities ρ(t), γ(t), etc., are as in [6, Section 5]
and [7, Section VII.5]. We only mention the main results, ideas, and differences.

Without loss of generality we can assume Ωα = Is; see Theorem 4.1 and (3.10).
Defining ki(h) := hf(Yi, Zi) for i = 1, . . . , s and using the notation Ys+1 := y1 we
can rewrite (3.1a)-(3.1b) as

Yi = y0 +
s∑

j=1

αijkj , i = 1, . . . , s + 1.
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First we give some expressions for the derivatives of ki and Zi which are similar to
those given in [6, Theorem 5.7] and [7, Theorem VII.5.6].

Theorem 4.2. Assuming Ωα = Is, for i = 1, . . . , s we have

k
(q)
i (0) =

∑
t∈LDAT2y

ρ(t)=q

γ(t)Φi(t)F (t)(y0, z0),

Z
(q)
i (0) =

∑
u∈LDAT2z

ρ(u)=q

γ(u)Φi(u)F (u)(y0, z0),

where the coefficients Φi(t) and Φi(u) are given recursively by Φi(τ ) = 1 and

Φi(t) =
s∑

µ1=1

· · ·
s∑

µm=1

αiµ1 · · ·αiµm
Φµ1(t1) · · ·Φµm

(tm)Φi(u1) · · ·Φi(un)

if t = [t1, . . . , tm, u1, . . . , un]y,

Φi(u) =
s+1∑
j=1

s∑
µ1=1

· · ·
s∑

µm=1

ωijαjµ1 · · ·αjµm
Φµ1(t1) · · ·Φµm

(tm)

if u = [t1, . . . , tm]z.(4.4)

A proof of this theorem can be obtained along the lines of [6, Theorem 5.7] and
[7, Theorem VII.5.6]; it is therefore omitted. A direct consequence is:

Theorem 4.3. The numerical solution y1(h) of (3.1) satisfies

y
(q)
1 (0) =

∑
t∈LDAT2y

ρ(t)=q

γ(t)
s∑

i=1

biΦi(t)F (t)(y0, z0).

For the local error we obtain:

Theorem 4.4. Consider the semi-explicit system of index 2 DAEs (1.1) with con-
sistent initial values (y0, z0) at t0 and such that gy(y)fz(y, z) exists and is invert-
ible in a neighborhood of the exact solution. Consider an SRK-DAE2 method (3.1)
having an invertible RK matrix A, with RK coefficients satisfying the simplifying
assumptions B(p), C(q), and D(r), and with matrix Ω as in (3.7) or equivalently
(3.9). Then we have

y1 − y(t0 + h) = O(hµ+1)

where µ := min(p, 2σ, 2q+2, q+ρ+1) with ρ := min(r, s−1), and σ := q if r ≤ s−2
or σ := max(q, p − s + 1) if r ≥ s − 1. If the function f(y, z) of (1.1a) is linear
in z, then the values 2σ and 2q + 2 in µ can be changed respectively to 2σ + 1 and
2q + 3.

Proof. A proof of this theorem can be obtained along the lines of [6, Theorem 5.9]
and [7, Theorem VII.5.10]; details are therefore omitted. We only mention some
major differences.

Denoting W := A−1, the simplifying assumptions C(q) and D(r) can be ex-
pressed in terms of the inverse W as follows:

IC(q) : Wck = kck−1 for k = 1, . . . , q,

ID(r) : bT CkW = bT W − kbT Ck−1 for k = 1, . . . , r.
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The stiff accuracy assumption asi = bi (i = 1, . . . , s) would lead to bT W = eT
s . The

relations IC(q), ID(r), and bT W = eT
s are crucial in the proofs of [6, Theorem

5.9] and [7, Theorem VII.5.10]. In our situation, the numerical solution y1 = Ys+1

also plays a role in order to obtain the expansions (4.4). We cannot apply directly
the simplifying assumptions IC(q), ID(r), and bT W = eT

s , but similar ones where
the matrix Ω replaces the matrix W and the matrix α replaces the matrix A. To
WA = Is corresponds (3.10), to IC(q) corresponds (3.12), to ID(r) corresponds
(3.13), and to bT W = eT

s corresponds (3.11). As in the proof of [6, Theorem 5.9] and
[7, Theorem VII.5.10] we make repeated application of the simplifying assumptions
B(p), C(q), and D(r), and also of the relations (3.11)-(3.12)-(3.13) to obtain the
desired result. The values of σ and ρ in µ come as consequences of (3.12) and (3.13)
respectively. �

Following for example [7, Theorem VII.4.5], global convergence of SRK-DAE2
methods can be obtained:

Theorem 4.5. Consider the semi-explicit system of index 2 DAEs (1.1) with con-
sistent initial values (y0, z0) at t0 and such that gy(y)fz(y, z) exists and is invertible
in a neighborhood of the exact solution. Consider a SRK-DAE2 method (3.1) with
matrix Ω such that Ωα ∈ R

s×s is invertible, and with local error order µ, i.e.,
y1 − y(t0 + h) = O(hµ+1). Then the SRK-DAE2 method is convergent of order µ,
i.e., its global error satisfies

yn − y(tn) = O(hµ)

for |tn − t0| ≤ Const and h := max(|h1|, . . . , |hn|).

A direct consequence of Theorem 4.5 is the superconvergence of Gauss and Radau
IA SRK-DAE2 methods:

Corollary 4.6. Consider the semi-explicit system of index 2 DAEs (1.1) with
consistent initial values (y0, z0) at t0 and such that gy(y)fz(y, z) exists and is
invertible in a neighborhood of the exact solution. For |tn − t0| ≤ Const and
h := max(|h1|, . . . , |hn|), the global error of the s-stage symmetric Gauss SRK-
DAE2 method with matrix Ω as in (3.3), or equivalently (3.4), satisfies

yn − y(tn) = O(h2s).

For the s-stage Radau IA SRK-DAE2 method with matrix Ω as in (3.3), or equiv-
alently (3.4), the global error satisfies

yn − y(tn) = O(h2s−1).

Proof. The s-stage Gauss coefficients satisfy the simplifying assumptions B(2s),
C(s), and D(s). These coefficients are also known to be symmetric [7]. From
Theorem 3.3, the s-stage Gauss SRK-DAE2 method is therefore symmetric. The
s-stage Radau IA coefficients satisfy the simplifying assumptions B(2s − 1),
C(s − 1), and D(s). The global superconvergence estimates are a direct conse-
quence of Theorem 4.4 and Theorem 4.5. �

Notice that with our approach the superconvergence of Radau IA SRK-DAE2
methods is one order higher than for projected Radau IA methods [7, 10].
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Figure 1. Global error of the 2-stage Gauss SRK-DAE2 method
of order 4 applied with constant stepsizes to the test problem (5.1).

5. A numerical experiment

To illustrate the superconvergence results, we have applied the 2-stage Gauss
SRK-DAE2 method with constant stepsize h to the following semi-explicit system
of index 2 DAEs: (

y′
1

y′
2

)
=

(
y1y

2
2z2

1

y2
1y

2
2 − 3y2

2z1

)
,(5.1a)

0 = y2
1y2 − 1.(5.1b)

For the initial conditions y1(0) = 1, y2(0) = 1 at t0 = 0 the exact solution to this
test problem is given by

y1(t) = et, y2(t) = e−2t, z1(t) = e2t.

In Figure 1 we have plotted the global errors at tn = 1 with respect to different
stepsizes h. Logarithmic scales have been used so that a curve appears as a straight
line of slope k whenever the leading term of the global error is of order k, i.e., when
‖yn − y(tn)‖ = O(hk). For the 2-stage Gauss SRK-DAE2 method of order 4 we
observe a straight line of slope 4, thus confirming the order of convergence predicted
by Corollary 4.6.
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