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NEW IRRATIONALITY MEASURES FOR q-LOGARITHMS

TAPANI MATALA-AHO, KEIJO VÄÄNÄNEN, AND WADIM ZUDILIN

Abstract. The three main methods used in diophantine analysis of q-series
are combined to obtain new upper bounds for irrationality measures of the
values of the q-logarithm function

lnq(1 − z) =
∞∑

ν=1

zνqν

1 − qν
, |z| � 1,

when p = 1/q ∈ Z \ {0,±1} and z ∈ Q.

1. Introduction

The main purpose of this article is to improve the earlier irrationality measures
of the values of the q-logarithm function

(1) lnq(1 − z) =
∞∑

ν=1

zνqν

1 − qν
, |z| � 1.

In order to improve the earlier results we shall combine the following three major
methods used in diophantine analysis of q-series:

(1) a general hypergeometric construction of rational approximations to the
values of q-logarithms vs. the q-arithmetic approach ([Z1]);

(2) a continuous iteration procedure for additional optimization of analytic
estimates ([Bo], [MV]);

(3) introducing the cyclotomic polynomials for sharpening least common mul-
tiples of the constructed linear forms in the case when z is a root of unity
([BV], [As], [MP]).

Also, some standard analytic tools (i.e., from [Ha]) for deducing irrationality mea-
sures will be required. We underline that in the corresponding arithmetic study
of the values of the ordinary logarithm (cf. [Ru] for log 2 and [Ha] for other log-
arithms) only feature (1) is mainly applied, but in particular feature (3) has no
ordinary analogues. Thus the present q-problems invoke new attractions in arith-
metic questions.

We present the bounds for irrationality measures by means of certain estimates
for irrationality exponents. Recall that the irrationality exponent of a real irrational
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number γ is defined by the relation

µ = µ(γ) = inf{c ∈ R : the inequality |γ − a/b| � |b|−c has

only finitely many solutions in a, b ∈ Z}.

Our main results include the case of general rational z satisfying |z| � 1 as well as
the case z = −1 of lnq(2). Another special case, z = 1 in (1), of the q-harmonic
series, is considered in [Z2]. Our present methods do not allow us to sharpen the
result in [Z2], where the arithmetic group structure approach (specific for z = 1) is
used.

Theorem 1. Let z ∈ Q be such that 0 < |z| � 1. Then the irrationality exponent
of lnq(1 − z) satisfies the estimate

µ(lnq(1 − z)) � 3.76338419 · · · ,

where q = p−1 and p ∈ Z \ {0,±1}.

Theorem 2. The irrationality exponent of lnq(2) satisfies the estimate

µ(lnq(2)) � 2.93832530 · · · ,

where q = p−1 and p ∈ Z \ {0,±1}.

The estimate in Theorem 1 improves corresponding results of [BV], [MV]; the
estimate in Theorem 2 sharpens results in [As], [Z1].

One important part in the proof of Theorem 2 is the precise knowledge of the
least common multiple Dn(x, z) of the polynomials x − z, x2 − z, . . . , xn − z at
z = −1. This is a special case of a general algebraic result on Dn(x, ω) with a
root of unity ω. The proof of this result, the following Theorem 3, seems to be an
interesting application of cyclotomic polynomials.

Theorem 3. Let ω denote a primitive r-th root of unity for some r � 2. Then in
the polynomial ring Z[ω][x] the following estimate is valid:

(2) degx Dn(x, ω) =
3n2

π2

∏
p|r

p2

p2 − 1

∑∗

l

1
l2

+ O(n log2 n) as n → ∞,

where
∑∗

l stands for summation over integers l in the interval 1 � l � r and
coprime with r.

To the end of Section 3, the integer p stands for 1/q. We recall some standard
q-notation:

(a; q)n :=
n∏

ν=1

(1 − aqν−1),

[n]q! :=
(q; q)n

(1 − q)n
,

[
n
k

]
q

:=
[n]q!

[k]q! [n − k]q!
=

(q; q)n

(q; q)k · (q; q)n−k
,

where k = 0, 1, . . . , n and n = 0, 1, 2, . . . .
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2. Hypergeometric construction

Let n0, n1, n2, and m be positive integers satisfying n1 � n0, n2 � n0. The
additional condition n2 − n0 � m � n2 will be required to further simplify the
explanation (the choices m < n2 − n0 and m > n2 do not correspond to nice
approximations to the q-logarithm). First, consider the rational function

R̃q(T ) =
∏n0

k=1(1 − qkT )∏n0
k=1(1 − qk)

·
∏n2

k=1(1 − qk)∏n2
k=0(1 − qk+n1+1T )

· Tn2−n0

=
(qT ; q)n0

(q; q)n0

· (q; q)n2

(qn1+1T ; q)n2+1
· Tn2−n0 ,

which is of order O(T−1) as T → ∞. This may be decomposed into the sum of
partial fractions:

R̃q(T ) =
n2∑

k=0

Ak(q)
1 − qk+n1+1T

,

where the standard procedure of determining coefficients gives us

Ak(q) = (−1)n0qn0(n0+1)/2−n0(k+n1+1)

[
k + n1

n0

]
q

× (−1)kqk(k+1)/2

[
n2

k

]
q

· q−(n2−n0)(k+n1+1)

= (−1)k+n0pn0(n0+1)/2

[
k + n1

n0

]
p

· p−n2k+k(k−1)/2

[
n2

k

]
p

· p(n2−n0)(k+n1+1)

for k = 0, 1, . . . , n2. Setting Rq(T ) = R̃q(T ) · Tm0+1, where m0 = m − n2 + n0, we
introduce the quantity

Iq(z) = zn1+1
∞∑

t=0

ztRq(T )
∣∣
T=qt .

Since Rq(T ) has zeros at the points T = q−1, q−2, . . . , q−n0 , after reordering of the
summation we may write

Iq(z) =
n2∑

k=0

Ak(q)q−(k+n1+1)(m0+1)z−k
∞∑

t=−n0

zt+k+n1+1q(t+k+n1+1)(m0+1)

1 − qt+k+n1+1

=
n2∑

k=0

Ak(q)p(k+n1+1)(m0+1)z−k
∞∑

l=k+n1−n0+1

zlql(m0+1)

1 − ql
.

The last inner sum may be computed as follows:
∞∑

l=k+n1−n0+1

zlql(m0+1)

1 − ql
=

∞∑
l=k+n1−n0+1

zlql

1 − ql
−

∞∑
l=k+n1−n0+1

zl(ql − ql(m0+1))
1 − ql

;

writing the first sum on the right-hand side as

∞∑
l=1

zlql

1 − ql
−

k+n1−n0∑
l=1

zlql

1 − ql
= lnq(1 − z) −

k+n1−n0∑
l=1

zlql

1 − ql
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and the second sum as
∞∑

l=k+n1−n0+1

zl
m0∑
j=1

qjl =
m0∑
j=1

∞∑
l=k+n1−n0+1

(qjz)l =
m0∑
j=1

(qjz)k+n1−n0+1

1 − qjz
,

we finally obtain

Iq(z) = A(p, z) lnq(1 − z) + A′(p, z) + A′′(p, z),

where

A(p, z) =
n2∑

k=0

Ak(q)p(k+n1+1)(m0+1)z−k

= (−1)n0pn0(n0+1)/2+(m+1)(n1+1)

×
n2∑

k=0

(−1)kp−n2k+(m+1)k+k(k−1)/2

[
k + n1

n0

]
p

[
n2

k

]
p

z−k,

A′(p, z) =
n2∑

k=0

Ak(q)p(k+n1+1)(m0+1)z−k
k+n1−n0∑

l=1

zl

pl − 1

= (−1)n0pn0(n0+1)/2+(m+1)(n1+1)

×
n2∑

k=0

(−1)kp−n2k+(m+1)k+k(k−1)/2

[
k + n1

n0

]
p

[
n2

k

]
p

z−k
k+n1−n0∑

l=1

zl

pl − 1
,

A′′(p, z) =
n2∑

k=0

Ak(q)p(k+n1+1)(m0+1)zn1−n0+1
m0∑
j=1

p−j(k+n1−n0)

pj − z

= (−1)n0zn1−n0+1pn0(n0+1)/2+(n0+1)(m+1)
m0∑
j=1

1
pj − z

×
n2∑

k=0

(−1)kp−n2k+k(k−1)/2

[
k + n1

n0

]
p

[
n2

k

]
p

(pm+1−j)n1−n0+k

= zn1−n0+1pn0(n0+1)/2+(n0+1)(m+1)+(n2+1)(n1−n0)
m0∑
j=1

1
pj − z

×
n1∑

k=0

(−1)kp(n0−k)(n0−k+1)/2

[
k + n2

n0

]
p

[
n1

k

]
p

(pm−j ; p−1)n2−n0+k

(the last step uses Lemma 3 from [Z1]).
Since m � n2, we have

M1 =
n0(n0 + 1)

2
+ (m + 1)(n1 + 1) + min

0�k�n2

{
−n2k + (m + 1)k +

k(k − 1)
2

}

=
n0(n0 + 1)

2
+ (m + 1)(n1 + 1) − (n2 − m)(n2 − m − 1)

2
;

set also

M2 =
n0(n0 + 1)

2
+ (n0 + 1)(m + 1) + (n2 + 1)(n1 − n0),
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and by Dn(p, z) denote the least common multiple of the polynomials p − z,
p2 − z, . . . , pn − z. Then the above formulae yield the inclusions

p−M1zn2 · A(p, z) ∈ Z[p, z], p−M1zn2Dn1+n2−n0(p, 1) · A′(p, z) ∈ Z[p, z],

p−M2Dm0(p, z) · A′′(p, z) ∈ Z[p, z]

(by noticing that (pm−j; p−1)n2−n0+k = 0 if m − j − n2 + n0 − k � 0); hence

(3) p−MD̂n1+n2−n0,m0(p, z) · Iq(z) ∈ Z[p, z] lnq(1 − z) + Z[p, z],

where M = min{M1, M2} = M1 and D̂n,m(p, z) denotes a common multiple of the
polynomials Dn(p) = Dn(p, 1) and Dm(p, z). It is known [Ge] that the polynomial
Dn(p) is the product of the first n cyclotomic polynomials

(4) Φl(p) =
l∏

k=1
(k,l)=1

(p − e2πik/l) ∈ Z[p], l = 1, 2, 3, . . . ,

so that the usual choice of D̂n,m(p, z) is as follows:

(5) D̂n,m(p, z) = Dn(p) ·
m∏

j=1

(pj − z).

However, if z is a root of unity, there is a better choice instead; we discuss this type
of question in Sections 3 and 4 below.

Finally, we would like to mention that the quantity Iq(z) is in fact the value of
the Heine series,

Iq(z) = zn1+1 · (q; q)n1(q; q)n2

(q; q)n1+n2+1
· 2φ1

(
qn0+1, qn1+1

qn1+n2+2

∣∣∣∣ q, qm+1z

)
(see [GR]), and that the construction in [MV] corresponds to the following choice
of the parameters: n0 = n2 = n, n1 = n + 1, and m = K − 1.

3. Analytic and arithmetic valuation

Writing

A(p, z) = (−1)n0p−n0(n0+1)/2+(n0+m+1)(n1+1)

×
n2∑

k=0

(−1)kp(n0+m+1)k−k(k+1)/2

[
k + n1

n0

]
q

[
n2

k

]
q

z−k

and using

max
0�k�n2

{
(n0 + m + 1)k − k(k + 1)

2

}
= (n0 + m + 1)n2 −

n2(n2 + 1)
2

(since n0 + m + 1 > n2), we conclude that

(6) |A(p, z)| = |p|−n0(n0+1)/2−n2(n2+1)/2+(n0+m+1)(n1+n2+1)+O(n0+n1+n2+m),

where the constant in O depends on z only. Similarly,

(7) |Iq(z)| = |p|O(n0+n1+n2+m).
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The general asymmetry of our construction yields the existence of a common
divisor Π(p) = Πn0,n1,n2(p) ∈ Z[p] of the polynomials[

k + n1

n0

]
p

[
n2

k

]
p

, k = 0, 1, . . . , n2,

[
k + n2

n0

]
p

[
n1

k

]
p

, k = 0, 1, . . . , n1,

and hence of the coefficients A(p, z), A′(p, z), A′′(p, z) after multiplication by
p−M · D̂n1+n2−n0,m0(p, z) in (3). Namely, using representations[

k + n1

n0

]
p

[
n2

k

]
p

=
[n1]p! [n2]p!

[n0]p! [n1 + n2 − n0]p!
·
[
k + n1

k

]
p

[
n1 + n2 − n0

n2 − k

]
p

,

k = 0, 1, . . . , n2,[
k + n2

n0

]
p

[
n1

k

]
p

=
[n1]p! [n2]p!

[n0]p! [n1 + n2 − n0]p!
·
[
k + n2

k

]
p

[
n1 + n2 − n0

n1 − k

]
p

,

k = 0, 1, . . . , n1,

and the knowledge that p-binomial coefficients are polynomials from Z[p] having
only cyclotomic polynomials as irreducible factors, we may take

Π(p) =
n1+n2−n0∏

l=1

Φl(p)�(l),

where

�(l) = max
{

0,

⌊
n1

l

⌋
+

⌊
n2

l

⌋
−

⌊
n0

l

⌋
−

⌊
n1 + n2 − n0

l

⌋}
and � · � denotes the integer part of a number (see [Z1], the proof of Lemma 5).
These arguments allow us to sharpen the inclusions (3) as follows:

p−MD̂n1+n2−n0,m0(p, z) · Πn0,n1,n2(p)−1 · Iq(z) ∈ Z[p, z] lnq(1 − z) + Z[p, z].

Finally, set

n0 = α0n, n1 = α1n, n2 = α2n, m = �αn�,
where the parameter n tends to ∞. Then

lim
n→∞

log |A(p, z)|
n2 log |p| = C1, lim

n→∞

log |Iq(z)|
n2 log |p| = 0

by (6), (7), and

(8) lim
n→∞

log |pMD̂n1+n2−n0,m0(p, z)−1 · Πn0,n1,n2(p)|
n2 log |p| = C0

with the choice (5), where

C1 = C1(α) = −α2
0 + α2

2

2
+ (α0 + α)(α1 + α2),

C0 = C0(α) =
α2

0

2
+ α1α − (α2 − α)2

2

− 3
π2

(
(α1 + α2 − α0)2 −

∫ 1

0

�0(x)d(−ψ′(x))
)
− (α − α2 + α0)2

2

(9)

and
�0(x) = max

{
0, �α1x� + �α2x� − �α0x� − �(α1 + α2 − α0)x�

}
.



NEW IRRATIONALITY MEASURES FOR q-LOGARITHMS 885

Then µ(lnq(1−z)) � C1(α)/C0(α) provided that α2−α0 � α � α2 and C0(α) > 0.
It is important that the parameters α0, α1, α2 should be positive integers to ensure
validity of the above formula for C0(α) (namely, its integration part due to [Z1],
Lemma 1). Thus after making a suitable choice for these three parameters we can
minimize the quantity C1(α)/C0(α) with respect to the remaining parameter α,
which may take any (even irrational) value in the interval α2 − α0 � α � α2.
This idea comes from [MV], and, as in that work, there is no difficulty in mim-
imizing C1(α)/C0(α) since C1(α) depends linearly and C0(α) quadratically on the
parameter α.

Proof of Theorem 1. Taking α0 = 6, α1 = α2 = 7, so that �0(x) = 1 for x ∈ [0, 1)
lying in the following set:[

1
7 , 1

6

)
∪

[
2
7 , 1

3

)
∪

[
3
7 , 1

2

)
∪

[
4
7 , 5

8

)
∪

[
5
7 , 3

4

)
∪

[
6
7 , 7

8

)
,

and then α = 5.63997199 · · · , we arrive at the estimate

µ(lnq(1 − z)) � 3.76338419 · · ·
of the theorem. �

4. Cyclotomic background

We will agree from the beginning to deal with the cyclotomic polynomials Φl(x)
and least common multiples Dn(x, z) and D̂n,m(x, z) as polynomials in the vari-
able x, and to keep the substitution x = p ∈ Z \ {0,±1} for final arithmetic results.
As follows from definition (4), deg Φl(x) = ϕ(l), Euler’s totient function. Therefore,
the degree of the polynomial Dn(x) = Dn(x, 1) =

∏n
l=1 Φl(x) may be computed by

application of Mertens’ formula

(10) deg Dn(x) =
∑

1�l�n

ϕ(l) =
3
π2

n2 + O(n log n) as n → ∞;

hence

lim
n→∞

log |Dn(p)|
n2 log |p| =

3
π2

.

This is the formula used in computing the right-hand side of (8). We will also
require the following summation formulae for Euler’s totient function:

(11)
∑

1�j�n

ϕ(2j) =
4
π2

n2 + O(n log n),
∑

0�j�n

ϕ(2j + 1) =
8
π2

n2 + O(n log n)

as n → ∞ (for n real and not necessarily integral); see also the general formula (14)
below.

Lemma 1. In the polynomial ring Z[x] the following estimate is valid:

(12) deg Dn(x,−1) =
4
π2

n2 + O(n log n) as n → ∞.

First proof. Since xk − 1 =
∏

l|k Φl(x), we have

xk + 1 =
x2k − 1
xk − 1

=

∏
l|2k Φl(x)∏
l|k Φl(x)

=
∏
l|2k
l�k

Φl(x) =
∏
l|k

k/l is odd

Φ2l(x), k = 1, . . . , n.
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Therefore, xk + 1 divides
∏n

l=1 Φ2l(x) for k = 1, . . . , n and, clearly, Φ2l(x) divides
xl + 1 for l = 1, . . . , n. Thus Dn(x,−1) =

∏n
l=1 Φ2l(x) and application of the first

formula in (11) leads to the desired result. �

Second proof. This proof follows the ideas of proving Lemma 2 in [MP]; we indicate
it to make clear the ideas of proving Theorem 3 below.

For each n > 0 (not necessarily integral!), denote by Ln(x) the least common
multiple of the polynomials xk + 1, where k runs over positive odd integers in the
interval 1 � k � n. Since xk + 1 = −((−x)k − 1) = −

∏
l|k Φl(−x) for k odd, we

obtain

Ln(x) =
∏

1�l�n
l is odd

Φl(−x) =
�n/2�∏
j=0

Φ2j+1(−x);

hence

(13) deg Ln(x) =
2
π2

n2 + O(n log n) as n → ∞,

by the second formula in (11). Clearly, Ln/2(x2) gives the least common multiple
of the polynomials xk + 1, where k runs over positive even integers in the interval
1 � k � n not divisible by 4; then Ln/4(x4) gives the least common multiple of the
polynomials xk + 1, where k ≡ 4 (mod 8) runs in the interval 1 � k � n, and so on.
If exponents of 2 in the prime decompositions of the numbers k and j are different,
then polynomials xk +1 and xj +1 have no common complex roots; hence they are
coprime over C[x] and as a consequence over Z[x] as well. Therefore, we arrive at
the formula

Dn(x,−1) = Ln(x)Ln/2(x2)Ln/4(x4)Ln/8(x8) · · · ,

where the product on the right contains only a finite number O(log n) of factors,
and the (almost desired) estimate for the degree of Dn(x,−1),

deg Dn(x,−1) =
4
π2

n2 + O(n log2 n) as n → ∞,

follows from an accurate substitution of formula (13). �

Corollary. If n/2 � m � n, then a common multiple D̂n,m(x,−1) (over Z[x]) of
the polynomials Dn(x) and Dm(x,−1) may be taken in such a way that

deg D̂n,m(x,−1) =
1
π2

(2n2 + 4m2) + O(n log n) as n → ∞.

Proof. The polynomials xk + 1 for 1 � k � n/2 divide both Dn(x) and Dm(x,−1).
Therefore we may take

D̂n,m(x,−1) =
Dn(x)Dm(x,−1)

D�n/2�(x,−1)
,

and estimates (10), (12) give the desired result. �

Remark. The above choice of D̂n,m(x,−1) sharpens the choice in [Z1], Lemma 8.
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Proof of Theorem 2. Using the above corollary of Lemma 1 we may replace the
constant C0 in (9) by

C ′
0 = C ′

0(α) =
α2

0

2
+ α1α − (α2 − α)2

2

− 1
π2

(
2(α1 + α2 − α0)2 + 4(α − α2 + α0)2 − 3

∫ 1

0

�0(x)d(−ψ′(x))
)

,

with the result µ(lnq(2)) � C1/C ′
0 � 2.93832530 · · · obtained by using the values

α0 = 4, α1 = α2 = 5, α = 4.09112737 · · · . In this case, �0(x) = 1 for x ∈ [0, 1)
belonging to the following set:[

1
5 , 1

4

)
∪

[
2
5 , 1

2

)
∪

[
3
5 , 2

3

)
∪

[
4
5 , 5

6

)
.

This proves Theorem 2. �

5. Common multiples involving cyclotomic polynomials

The number p will be used to denote a prime. We will require the asymptotic
formula

(14)
n∑

j=0

ϕ(rj + b) =
3r

π2
n2

∏
p|r

p2

p2 − 1
+ O(n log n) as n → ∞,

where 1 � b � r and (b, r) = 1 (see [Ba] and [MP]).

Proof of Theorem 3. For each n > 0 (not necessarily integral!) and any integer b
satisfying 1 � b � r and (b, r) = 1, denote by Ln,b(x) the least common multiple
of the polynomials xk − ω, where k runs over integers in the interval 1 � k � n
satisfying k ≡ b (mod r). The polynomials xk − ω and xj − ω, where k and j
are integers coprime with r and k �≡ j (mod r), have no common roots; hence
these polynomials are coprime over C[x]. This, in particular, yields that the ϕ(r)
polynomials Ln,b(x), 1 � b � r, (b, r) = 1, are pairwise coprime over C[x] and over
Z[ω][x] ⊂ C[x] as well; hence

(15) Ln(x) =
∏

1�b�r
(b,r)=1

Ln,b(x)

is the least common multiple of the polynomials xk −ω, where k runs over integers
satisfying 1 � k � n coprime with r. Having this common multiple and concluding
as in the second proof of Lemma 1, we obtain

(16) Dn(x, ω) =
∞∏

s1=0

· · ·
∞∏

sm=0

Ln/(p
s1
1 ···psm

m )

(
xp

s1
1 ···psm

m
)
,

where p1, . . . , pm are all distinct prime divisors of the number r. Note that, in
spite of infinite products in (16), only a finite number [O(log n)] of the factors differ
from 1.

In order to compute the polynomials Ln,b(x), we start by noting the formula

xrj+b − ω = ω
(
(ωax)rj+b − 1

)
= ω

∏
d|rj+b

Φd(ωax),
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where ab ≡ −1 (mod r). Therefore, assigning the numbers bl in the interval 1 �
bl � r to each l, 1 � l � r, (l, r) = 1, by the rule lbl ≡ b (mod r) (as in [MP]) we
obtain

∏
1�l�r
(l,r)=1

�n/(rl)�−1∏
j=0

Φrj+bl
(ωax)

∣∣∣ Ln,b(x)
∣∣∣ ∏

1�l�r
(l,r)=1

�n/(rl)�∏
j=0

Φrj+bl
(ωax)

(where “|” means “divides”, as before); hence

degx Ln,b =
∑∗

l

(�n/(rl)�∑
j=0

ϕ(rj + bl) + O(n log n)
)

=
∑∗

l

(
3r

π2

(
n

rl

)2 ∏
p|r

p2

p2 − 1
+ O(n log n)

)

=
3n2

π2r

∏
p|r

p2

p2 − 1

∑∗

l

1
l2

+ O(n log n) as n → ∞,

by (14). Using (15) we obtain

degx Ln =
3n2ϕ(r)

π2r

∏
p|r

p2

p2 − 1

∑∗

l

1
l2

+ O(n log n) as n → ∞.

Finally, computing the degree of the polynomial Dn(x, ω) in (16) with the help of
the relation

∞∑
s1=0

· · ·
∞∑

sm=0

1
ps1
1 · · · psm

m
=

(
1 − 1

p1

)−1

· · ·
(

1 − 1
pm

)−1

=
r

ϕ(r)

gives the desired result (2). This proves Theorem 3. �
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