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RUNGE-KUTTA TIME DISCRETIZATIONS
OF NONLINEAR DISSIPATIVE EVOLUTION EQUATIONS

ESKIL HANSEN

Abstract. Global error bounds are derived for Runge-Kutta time discretiza-
tions of fully nonlinear evolution equations governed by m-dissipative vec-
tor fields on Hilbert spaces. In contrast to earlier studies, the analysis pre-
sented here is not based on linearization procedures, but on the fully nonlinear
framework of logarithmic Lipschitz constants in order to extend the classical
B-convergence theory to infinite-dimensional spaces. An algebraically stable
Runge-Kutta method with stage order q is derived to have a global error which
is at least of order q − 1 or q, depending on the monotonicity properties of the
method.

1. Introduction

The aim of this paper is to analyze Runge-Kutta time discretizations of the
evolution equation

u̇ = f(u), u(0) = η,

where u : [0,∞) → X and the vector field f is a nonlinear m-dissipative map [1]
on the real-valued Hilbert space X. Such vector fields are found in a wide range of
applications, e.g., advection-diffusion-reaction processes. Multistep time discretiza-
tions of these evolution equations have been treated in [7], and a similar approach
is taken here when analyzing Runge-Kutta approximations. Earlier studies of time
discretizations on infinite-dimensional spaces have predominantly considered semi-
linear or quasi-linear vector fields; see, e.g., [9, 10, 16]. It is not until recently
that the fully nonlinear setting has been addressed [5, 11, 12]. Here, it is assumed
that the linearization of the vector field is a sectorial map, which is not generally
true for m-dissipative maps. Hence a different approach is needed. Our idea is to
generalize the classical B-convergence theory [3, 4, 6] for Runge-Kutta approxima-
tions of ordinary differential equations to approximations of evolution equations on
infinite-dimensional spaces. This is done by extending the two fundamental analytic
tools of the theory, namely the logarithmic norm of matrices and the monotonicity
condition

〈u − v, f(u) − f(v)〉 ≤ 0.

These tools are merely special cases of the so-called logarithmic Lipschitz constants
which are well defined on infinite-dimensional spaces and therefore enable us to
mimic the proofs of the B-convergence theory in the present context.
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2. Preliminaries

This paper is based on the theory of logarithmic Lipschitz constants which was
developed in [8, 14, 15]. A short summary of the theory follows below. Assume
that X is a real-valued Hilbert space equipped with the inner product 〈·, ·〉X and
the corresponding norm ‖ · ‖X . The map f is a nonlinear map on X with domain
D(f) and range R(f). The Lipschitz constants of f on X are defined as follows.

Definition 2.1. For arbitrary u, v ∈ D(f) define the lub and glb Lipschitz con-
stants of f on X by

LX [f ] := sup
u �=v

‖f(u) − f(v)‖X

‖u − v‖X
, lX [f ] := inf

u �=v

‖f(u) − f(v)‖X

‖u − v‖X
.

The basic properties of the Lipschitz constants are:

Proposition 2.2. Assume that D(f)
⋂

D(g) �= ∅ in property (3) and R(g) ⊆ D(f)
in property (4). Then

(1) LX [f ] ≥ 0,

(2) LX [αf ] = |α|LX [f ],
(3) LX [f + g] ≤ LX [f ] + LX [g],
(4) LX [f ◦ g] ≤ LX [f ]LX [g].

Next, the logarithmic Lipschitz constants are introduced.

Definition 2.3. For arbitrary u, v ∈ D(f), define the lub and glb logarithmic
Lipschitz constants of f on X as

MX [f ] := sup
u �=v

〈u − v, f(u) − f(v)〉X
‖u − v‖2

X

, mX [f ] := inf
u �=v

〈u − v, f(u) − f(v)〉X
‖u − v‖2

X

.

Some of the basic properties of the logarithmic Lipschitz constants are:

Proposition 2.4. Assume that D(f)
⋂

D(g) �= ∅ in property (4). Then
(1) mX [−f ] = −MX [f ],
(2) −LX [f ] ≤ mX [f ] ≤ lX [f ],
(3) mX [αf ] = αmX [f ], α ≥ 0,

(4) mX [f ] + mX [g] ≤ mX [f + g].

Observe that the second property of Proposition 2.4 is a direct consequence of
the Cauchy-Schwarz inequalities.

Lemma 2.5. If lX [f ] > 0, then f is injective and LX [f−1] = lX [f ]−1.

Proof. Definition 2.1 trivially yields that f is injective when lX [f ] > 0, which
implies that f−1 : R(f) → D(f) is well defined. For every u1, u2 ∈ D(f) let
v1 := f(u1), v2 := f(u2). Then

lX [f ]−1 = sup
u1 �=u2

‖u1 − u2‖X

‖f(u1) − f(u2)‖X
= sup

v1 �=v2

‖f−1(v1) − f−1(v2)‖X

‖v1 − v2‖X
= LX [f−1].

�
Lemma 2.5 together with the inequality mX [f ] ≤ lX [f ] yields the following

corollary.

Corollary 2.6. If mX [f ] > 0, then f is injective and LX [f−1] ≤ mX [f ]−1.
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3. Direct product spaces

Introduce the Hilbert space Xs, i.e., the direct product of s spaces X, equipped
with the inner product 〈·, ·〉D,X and the corresponding norm ‖ · ‖D,X . Elements
U ∈ Xs are denoted as U = (U1, . . . , Us)T with Ui ∈ X, and the inner product is
defined by

〈U, V 〉D,X :=
s∑

i=1

di〈Ui, Vi〉X ,

where D = diag(d1, . . . , ds) and di > 0 for i = 1, . . . , s. Note that we drop the
subscript X in 〈·, ·〉D,X when X = R in order to simplify the notation. The error
analysis requires only two types of maps on Xs: to every map f on X relate the
map F : D(f)s → Xs defined as F(U)i := f(Ui) for i = 1, . . . , s. Furthermore, to
every real matrix A = {aij}s

i,j=1 relate the linear map A : Xs → Xs defined as

(AU)i :=
s∑

j=1

aijUj for i = 1, . . . , s.

Relating the logarithmic Lipschitz constants of F to the constants of f , as presented
in the lemma below, follows trivially from the definition of 〈·, ·〉D,X .

Lemma 3.1. MD,X [F ] = MX [f ] and mD,X [F ] = mX [f ].

Similar relations hold between the logarithmic Lipschitz constants of A and A.

Lemma 3.2. MD,l2 [A] = MD[A] and mD,l2 [A] = mD[A].

Proof. It is sufficient to prove the first equality. If the elements of U ∈ ls2 are
denoted as Ui = (U1

i , U2
i , . . .) ∈ l2, then

〈U,AU〉D,l2 =
s∑

i=1

di

∞∑
k=1

Uk
i

s∑
j=1

aijU
k
j =

∞∑
k=1

s∑
i=1

diU
k
i

s∑
j=1

aijU
k
j ≤ MD[A]‖U‖2

D,l2
.

Hence, MD,l2 [A] ≤ MD[A], and as

MD,l2 [A] ≥ sup
{U∈ls2\0|Ui=(U1

i ,0,0,...)}

〈U,AU〉D,l2

‖U‖2
D,l2

= MD[A],

the equality holds. �

Corollary 3.3. If X is a separable (infinite-dimensional) Hilbert space, then
MD,X [A] = MD[A] and mD,X [A] = mD[A].

Proof. As X is separable, there exists a linear bijection φ : X → l2 such that
〈u, v〉X = 〈φu, φv〉l2 . Due to the linearity of φ,

〈U,AU〉D,X =
s∑

i=1

di〈φUi, φ

s∑
j=1

aijUj〉l2 =
s∑

i=1

di〈φUi,

s∑
j=1

aijφUj〉l2 = 〈V,AV 〉D,l2 ,

where Vi := φUi. The desired equalities are now obtained, as φ is a bijection. �

Naturally, Corollary 3.3 is also valid for finite-dimensional Hilbert spaces, which
follows by replacing l2 by (Rdim X , ‖ · ‖l2) in the proofs. The same type of results as
in Lemma 3.1 and Corollary 3.3 can also be derived for the Lipschitz constants, but
they are omitted, as f may have LX [f ] = ∞ and LD,X [A] is obviously bounded for
all s.
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4. Problem setting

Let X be a real-valued separable Hilbert space and consider the nonlinear evo-
lution equation

(4.1) u̇ = f(u), u(0) = η ∈ D(f),

where u : [0,∞) → D(f) and the vector field f is a nonlinear map on X with
MX [f ] ≤ 0 and R(I −hf) = X for all h > 0. Such vector fields are usually referred
to as m-dissipative [1].

Definition 4.1. A function u : [0,∞) → D(f) is said to be a strong solution of
equation (4.1) on [0,∞) if u(0) = η and u̇ = f(u) a.e. on (0,∞).

Proposition 4.2. The function u : t → etf (η) is the unique strong solution of
equation (4.1), where etf is a nonlinear, nonexpansive semigroup on D(f) defined
as

etf (η) := lim
n→∞

(
I − t

n
f

)−n

(η).

See, for example, Theorem 31.A and Corollary 31.1 in [17] for the proof and
further properties of the semigroup etf . Extensions of these results to Banach
spaces are treated in [1, 2].

Example 4.3. Let Ω be a bounded region in R
m and define the evolution triple

(V, X, V ∗) by V ⊂ X = X∗ ⊂ V ∗, where X := L2(Ω) and V := W 1,p
0 (Ω) with

2 ≤ p < ∞. Consider the map ∆p : C∞
0 (Ω) → X defined as

∆p : u →
m∑

i=1

∂i(|∂iu|p−2∂iu),

and its energetic extension ∆E,p : V → V ∗, i.e.,

∆E,p : u → −
∫

Ω

m∑
i=1

(|∂iu|p−2∂iu)∂i(·)dx.

Then, the map f : D → X, with D := ∆−1
E,p(X∗) and 〈f(u), ·〉X = ∆E,p(u) for all

u ∈ D, fits into our framework; see Sections 26.5 and 31.5 in [17] for details and
generalizations.

The Runge-Kutta approximation un+1 ∈ X of u(tn+1) for n ≥ 0 is defined by
the difference equation

(4.2)

⎧⎨
⎩

Ui = un + h
∑s

j=1 aijf(Uj), i = 1, . . . , s,

un+1 = un + h
∑s

i=1 bif(Ui),

where u0 := η and tn := nh. To every Runge-Kutta method we relate the vectors
b := (b1, . . . , bs)T and c := (c1, . . . , cs)T together with the matrix A := {aij}s

i,j=1.
In the error analysis below the following consistency (C1), (C2), and stability (S)
assumptions are needed:

(C1) The analytic solution u ∈ Cq+1([0,∞), X) satisfies u̇ = f(u) everywhere on
[0,∞).



RUNGE-KUTTA DISCRETIZATIONS OF EVOLUTION EQUATIONS 635

(C2) The coefficients of the Runge-Kutta method satisfy the algebraic relations
(order conditions)

s∑
i=1

bic
k−1
i = 1/k and

s∑
j=1

aijc
k−1
j = ck

i /k for k = 1, . . . , q.

(S) The matrix S := {biaij + bjaji − bibj}s
i,j=1 has mI [S] ≥ 0 and the coeffi-

cients bi ≥ 0 for i = 1, . . . , s.

Assumption (S) is usually referred to as algebraic stability [6]. Next, for every
n ≥ 0, introduce the local stage residuals Li ∈ X and the local residual l ∈ X
defined as

(4.3)

⎧⎨
⎩

Li := u(tn + cih) − u(tn) − h
∑s

j=1 aijf(u(tn + cjh)), i = 1, . . . , s,

l := u(tn+1) − u(tn) − h
∑s

i=1 bif(u(tn + cih)).

Theorem 4.4. If assumptions (C1) and (C2) hold, then ‖Li‖X and ‖l‖X are
O(hq+1).

Proof. Assumption (C1) implies that f(u(tn + cih)) can be written as a Taylor
expansion of order q, since integration by parts is possible in the context of Bochner
integrals. Thus, the proof follows by a Taylor expansion of Li and l, where the terms
of order less than or equal to q cancel out, due to assumption (C2). �

Example 4.5. Assumption (C1) is for example valid if f is linear and η ∈ D(fq+1);
see [13]. The Gauss, Radau I/IIA, and Lobatto IIIC methods all satisfy assumptions
(C2) and (S); see [3, 6].

5. Existence of a unique approximation

Introduce the nonlinear map F : D(f)s → Xs related to the vector field f and
the linear map A : Xs → Xs related to the matrix A. Then equation (4.2) can be
written as ⎧⎨

⎩
(I − hAF)(U) = Y,

un+1 = un + h
∑s

i=1 bif(Ui),

where U := (U1, . . . , Us)T and Y := (un, . . . , un)T. Thus, proving that there exists
a unique solution of (4.2) is reduced to proving that the map I−hAF : D(f)s → Xs

is a bijection.

Lemma 5.1. If E : Xs → Xs and µ ∈ (0, LD,X [E ]−1), then I + µ(E − hF) :
D(f)s → Xs is a bijection for all h > 0.

Proof. By the hypotheses imposed on f , mD,X [I − hF ] ≥ 1 − hMX [f ] ≥ 1 and
R(I − hF) = Xs for all h > 0. Corollary 2.6 therefore implies that (I − hF)−1 :
Xs → D(f)s is well defined and

LD,X [(I − hF)−1] ≤ (1 − hMX [f ])−1 ≤ 1

for all h > 0. Thus, for all Y ∈ Xs and µ > 0

(I + µ(E − hF))(U) = Y ⇔ U = (I − µhF)−1(Y − µE(U))
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Table 1. Optimal D-matrices for a selection of Runge-Kutta methods.

Method D mD[A−1]
Gauss B(C−1 − I) > 0 for all s
Radau IA B(I − C) > 0 for all s
Radau IIA BC−1 > 0 for all s
Lobatto IIIC B > 0 for s = 2 and

= 0 for s ≥ 3

and LD,X [(I−µhF)−1(Y −µE(·))] < 1 when µ < LD,X [E ]−1. Banach’s fixed-point
theorem now yields that for every Y ∈ Xs there exists a unique U ∈ D(f)s such
that (I + µ(E − hF))(U) = Y . �

Theorem 5.2. If A is invertible and there exists a positive diagonal matrix D
such that mD[A−1] − hMX [f ] > 0 for all h > 0, then I − hAF : D(f)s → Xs is a
bijection.

Proof. Let Y ∈ Xs. Then

(I − hAF)(U) = Y ⇔ (I + µ(A−1 − hF))(U) = µA−1Y + U.

By Lemma 5.1 with E = A−1 and µ ∈ (0, LD,X [A−1]−1), the map I+µ(A−1−hF) :
D(f)s → Xs is a bijection. Furthermore,

mD,X [I + µ(A−1 − hF)] ≥ 1 + µ(mD[A−1] − hMX [f ]) > 1,

and Corollary 2.6 gives that LD,X [(I + µ(A−1 − hF))−1] < 1. Hence, the map

U → (I + µ(A−1 − hF))−1(W + U)

is a contraction on Xs for all W ∈ Xs, and the proof follows again by Banach’s
fixed-point theorem. �

Example 5.3. The hypotheses imposed on the matrix A in Theorem 5.2 are ful-
filled for the Gauss, Radau I/IIA, and Lobatto IIIC methods with the matrix D
specified in Table 1, where B := diag(b1, . . . , bs) and C := diag(c1, . . . , cs); see the
proof of Theorem 14.5 in [6].

6. Global error analysis

For every n ≥ 0 define v as one Runge-Kutta step starting from the analytic
solution, i.e.,

(6.1)

⎧⎨
⎩

Vi = u(tn) + h
∑s

j=1 aijf(Vj), i = 1, . . . , s,

v = u(tn) + h
∑s

i=1 bif(Vi).

The global error en+1 := u(tn+1) − un+1 can then be split into

en+1 = u(tn+1) − v + v − un+1,

and deriving bounds of the term u(tn+1) − v are related to the consistency of the
method, whereas the term v − un+1 can be bounded if the method is stable.
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Theorem 6.1. If assumptions (C1) and (C2) hold, A is invertible, and there exists
a positive diagonal matrix D such that mD[A−1] − hMX [f ] > 0 for all h > 0, then

‖u(tn+1) − v‖X ≤ C

(
1 +

LD,X [A−1]
mD[A−1] − hMX [f ]

)
hq+1,

where the positive constant C is independent of n, mD[A−1], and hMX [f ].

Proof. Define the vectors Z := (u(tn + hc1), . . . , u(tn + hcs))T, V := (V1, . . . , Vs)T,
and L := (L1, . . . , Ls)T. Then equations (4.3) and (6.1) yield the relations

(6.2)

⎧⎨
⎩

L = (I − hAF)(Z) − (I − hAF)(V ),

u(tn+1) − v = h
∑s

i=1 bi(f(Zi) − f(Vi)) + l,

where ‖Li‖X and ‖l‖X are of O(hq+1) by Theorem 4.4. Thus,

‖u(tn+1) − v‖X ≤ (s max
1≤i≤s

|bi|) max
1≤i≤s

h‖f(Zi) − f(Vi)‖X + ‖l‖X .

The proof now follows if the term maxi h‖f(Zi)−f(Vi)‖X is bounded by maxi‖Li‖X .
To this end, apply the functional ‖A−1(·)‖D,X to the first equation of (6.2) and
observe that

lD,X [A−1 − hF ] ≥ mD,X [A−1 − hF ] ≥ mD[A−1] − hMX [f ] > 0,

which implies the inequality

‖Z − V ‖D,X ≤ LD,X [A−1]
mD[A−1] − hMX [f ]

‖L‖D,X .

Furthermore, as h(F(Z)−F(V )) = A−1(Z−V −L), one also obtains the inequality

h‖F(Z) −F(V )‖D,X ≤ LD,X [A−1]
(

1 +
LD,X [A−1]

mD[A−1] − hMX [f ]

)
‖L‖D,X .

The desired bound is now obtained, as the norms U → max1≤i≤s ‖Ui‖X and ‖·‖D,X

are equivalent on Xs. �

Theorem 6.2. If assumption (S) holds, i.e., bi ≥ 0 and mI [S] ≥ 0, then

‖v − un+1‖X ≤ ‖en‖X .

Proof. Subtracting equation (4.2) from (6.1) gives⎧⎨
⎩

E = (I − hAF)(V ) − (I − hAF)(U),

v − un+1 = en + h
∑s

i=1 bi(f(Vi) − f(Ui)),

where E := (en, . . . , en)T. For compact notation, define ∆U := V − U and
∆F := F(V ) −F(U). Then

‖v−un+1‖2
X = 〈en + h

s∑
i=1

bi∆Fi, en + h

s∑
j=1

bj∆Fj〉X

= ‖en‖2
X + 2h

s∑
i=1

bi〈Ei, ∆Fi〉X + h2
s∑

i,j=1

bibj〈∆Fi, ∆Fj〉X

= ‖en‖2
X + 2h

s∑
i=1

bi〈∆Ui, ∆Fi〉X − h2
s∑

i,j=1

(biaij + bjaji − bibj)〈∆Fi, ∆Fj〉X .
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Let S : Xs → Xs be the linear map related to the matrix S. Thus, by the definition
of 〈·, ·〉D,X ,

s∑
i,j=1

(biaij + bjaji − bibj)〈∆Fi, ∆Fj〉X = 〈∆F ,S∆F〉I,X .

The proof now follows as biMX [f ] ≤ 0, and mI,X [S] = mI [S] ≥ 0. �

Finally, by combining Theorems 6.1 and 6.2, one obtains the convergence results
below.

Corollary 6.3. If the hypotheses of Theorems 6.1 and 6.2 are fulfilled, then

‖en‖X ≤ Ctn

(
1 +

LD,X [A−1]
mD[A−1] − hMX [f ]

)
hq.

Proof. By the derived consistency and stability bounds, we have

‖en+1‖X ≤ ‖en‖X + C

(
1 +

LD,X [A−1]
mD[A−1] − hMX [f ]

)
hq+1.

As e0 = 0, the proof now follows by an n-fold repetition of the inequality above. �

Note that the convergence orders derived in Corollary 6.3, i.e.,

‖en‖X =
{

O(hq) if mD[A−1] > 0 and MX [f ] ≤ 0,
O(hq−1) if mD[A−1] = 0 and MX [f ] < 0,

are the same as the ones obtained when applying the B-convergence theory to
Runge-Kutta approximations of ordinary differential equations; see Theorem 15.3
in [6].

7. Generalization of the error analysis

The error analysis can be generalized to vector fields satisfying the conditions

MX [f ] < ∞ and R(I − hf) = X ∀h > 0 s.t. hMX [f ] < 1.

Such vector fields can be interpreted as maps which can be shifted to m-dissipative
maps, i.e., f − MX [f ]I is m-dissipative. The analytic solution of the related evo-
lution equation is still given by the function u : t → etf (η), where the nonlinear
semigroup etf , defined in Proposition 4.2, satisfies

LX

[
etf

]
≤ etMX [f ];

see [1, 2] for proofs and further results. As the error analysis has already been
made for m-dissipative maps, we now consider vector fields and stepsizes satisfying
MX [f ] ∈ (0,∞) and 1 − hMX [f ] > 0. Proving that there exists a unique Runge-
Kutta approximation again follows if the map I−hAF : D(f)s → Xs is a bijection.

Lemma 7.1. If E : Xs → Xs and µ ∈ (0, (LD,X [E ] + hMX [f ])−1), then I +
µ(E − hF) : D(f)s → Xs is a bijection for all h > 0.

Proof. As µhMX [f ] < 1, Corollary 2.6 yields that (I − µhF)−1 : Xs → D(f)s is
well defined and

LD,X [(I − µhF)−1(Y − µE(·))] ≤ µLD,X [E ](1 − µhMX [f ])−1 < 1,

when µ < (LD,X [E ] + hMX [f ])−1. The rest of the proof follows as in Lemma
5.1. �
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Lemma 7.1 and a µ in the interval (0, (LD,X [A−1] + hMX [f ])−1) imply that
the proof of Theorem 5.2 is valid in the present context, which yields that the map
I−hAF is a bijection for all h > 0 such that mD[A−1]−hMX [f ] > 0. Furthermore,
just as etf is no longer nonexpansive when MX [f ] > 0, the stability properties of
the Runge-Kutta approximation are weakened.

Theorem 7.2. If mD[A−1] − hMX [f ] > 0 and assumption (S) holds, then

‖v − un+1‖X ≤ (1 + C0h)‖en‖X ,

where the positive constant C0 is independent of n.

Proof. The proof of Theorem 6.2 gives the relation

(7.1) E = (I − hAF)(V ) − (I − hAF)(U)

and, as MX [f ] > 0, the inequality

‖v − un+1‖2
X ≤ ‖en‖2

X + 2hMX [f ](s max
1≤i≤s

bi) max
1≤i≤s

‖Vi − Ui‖2
X .

The same technique as in Theorem 6.1 may be used, i.e., applying the functional
‖A−1(·)‖D,X to (7.1) and observing that lD,X [A−1 − hF ] ≥ mD[A−1] − hMX [f ],
which implies the bound

‖V − U‖D,X ≤ LD,X [A−1]
mD[A−1] − hMX [f ]

‖E‖D,X .

The desired stability result follows as the norms U → max1≤i≤s ‖Ui‖X and ‖ · ‖D,X

are equivalent on Xs and
√

1 + x ≤ 1 + x for x ≥ 0. �

In conclusion, for MX [f ] ∈ (0,∞) the error analysis requires a stepsize restriction
h ∈ (0, h0], where

min{1, mD[A−1]} − h0MX [f ] > 0,

and one has a global error bound as presented below.

Corollary 7.3. If h ∈ (0, h0] and the hypotheses of Theorems 6.1 and 7.2 are
fulfilled, then

‖en‖X ≤ C
eC0tn − 1

C0

(
1 +

LD,X [A−1]
mD[A−1] − hMX [f ]

)
hq.

Proof. If h ∈ (0, h0], then the proof of Theorem 6.1 is valid for MX [f ] ∈ (0,∞),
which together with Theorem 7.2 yields the bound

‖en+1‖X ≤ (1 + C0h)‖en‖X + C

(
1 +

LD,X [A−1]
mD[A−1] − hMX [f ]

)
hq+1.

As e0 = 0, the proof now follows by an n-fold repetition of the inequality above,
together with the observation that

∑n
i=0(1 + C0h)i ≤ (eC0(n+1)h − 1)/C0h. �

8. Conclusions

Global error bounds are derived for Runge-Kutta time discretizations of fully
nonlinear evolution equations governed by m-dissipative vector fields on Hilbert
spaces. The analysis is carried out using the theory of logarithmic Lipschitz con-
stants, which enable us to extend the classical B-convergence theory of ordinary
differential equations to our infinite-dimensional setting. The convergence orders
derived here are the same as the ones obtained when applying the B-convergence
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theory to approximations of ordinary differential equations, i.e., algebraically stable
Runge-Kutta methods with stage order q have a convergence order of at least q− 1
or q, depending on the monotonicity properties of the methods.
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