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CONVOLUTION QUADRATURE TIME DISCRETIZATION
OF FRACTIONAL DIFFUSION-WAVE EQUATIONS

EDUARDO CUESTA, CHRISTIAN LUBICH, AND CESAR PALENCIA

Abstract. We propose and study a numerical method for time discretiza-
tion of linear and semilinear integro-partial differential equations that are in-
termediate between diffusion and wave equations, or are subdiffusive. The
method uses convolution quadrature based on the second-order backward dif-
ferentiation formula. Second-order error bounds of the time discretization and
regularity estimates for the solution are shown in a unified way under weak as-
sumptions on the data in a Banach space framework. Numerical experiments
illustrate the theoretical results.

1. Introduction

In this paper we study time discretization of a class of integro-partial differential
equations whose prototype equation is, for 0 < β < 1,

(1.1)
∂u

∂t
(x, t) =

1
Γ(β)

∫ t

0

(t − τ )β−1∆u(x, τ) dτ + F (x, t, u(x, t),∇u(x, t))

for x in a domain Ω ⊂ Rd and t > 0, taken together with Dirichlet or Neumann
boundary conditions and with the initial condition u(x, 0) = u0(x) for x ∈ Ω.

Since the integral term can be viewed as the β-th integral [32, 34] of ∆u(x, ·),
equation (1.1) is intermediate between the diffusion (β = 0) and the wave (β = 1)
equation [9, 10], and it can be termed a fractional PDE of order α = β + 1 ∈
(1, 2) in time. Equations such as (1.1) describe anomalous diffusion processes and
wave propagation in viscoelastic materials, e.g., [12, 14, 25, 28, 29, 33]. They
have recently attracted increasing interest in the physical, chemical and engineering
literature (see the numerous papers citing [28] or [32]).

Numerical methods for the time discretization of (1.1) have been proposed by
various authors [4, 5, 7, 8, 17, 24, 26, 35, 36, 37]. A usual approach for the time
discretization of (1.1) consists in treating separately the derivative and the integral
term, which are approximated by a standard difference formula and by means of a
suitable quadrature rule, respectively. The traditional analysis of the error, based
on consistency and stability, shows that this approach is likely to exhibit a severe
order reduction, the reason being the lack of regularity in time of the solution,
which is present even in the case of smooth initial data. Precisely, one of the main

Received by the editor January 20, 2004 and, in revised form, September 29, 2004.
2000 Mathematics Subject Classification. Primary 65R20, 65M15; Secondary 26A33, 45K05.
Key words and phrases. Anomalous diffusion, parabolic equation with memory, time discretiza-

tion, convolution quadrature, fractional BDF method, error analysis, regularity.
The first and third authors were supported by Grant MCYT BFM2001-2013 cofinanced by

FEDER funds. The second author was supported by DFG SFB 382.

c©2006 American Mathematical Society

673



674 EDUARDO CUESTA, CHRISTIAN LUBICH, AND CESAR PALENCIA

goals of the present paper is to derive a systematic and computationally affordable
approach to render the time integration of (at least) second order of accuracy under
realistic, weak regularity assumptions.

The paper considers the fractional version of the second-order backward differen-
tiation formula (BDF2) [18, 21], although there are no real difficulties in extending
the scope so as to cover higher-order BDFs. To overcome the order reduction it
is necessary to carry out some corrections to the basic method. One way of doing
this is by corrections that eliminate the consistency error of the nonsmooth terms
in the expansion of u at t = 0 [18, 19]. However, in the framework of the tradi-
tional error analysis based on the consistency of the approximation to the integral
term and on stability, this approach still requires strong spatial regularity and high
compatibility with the boundary conditions. Moreover, the smoothing properties
of the equation are not taken into account.

The main tool used in this paper is convolution quadrature [21, 22], which enables
us to treat the time discretization as a whole, i.e., combining the approximations
to the derivative and to the integral in (1.1). Convolution quadrature allows for a
direct estimate of the error in the linear problem, based on resolvent bounds of the
elliptic operator. Stability is then derived as a corollary. The error analysis uses the
regularity of the data rather than that of the solution. Finally, convolution quad-
rature permits us to introduce in a clear and direct way a specific treatment of the
initial condition and the inhomogeneity which results in an optimal error estimate,
also when the solution fails to possess the regularity required in the traditional
approach. (Cf. [24] for preliminary results along such lines.)

In the paper, equation (1.1) is written as an abstract, parabolic, evolution equa-
tion in a Banach space. This allows us to consider general elliptic operators other
than the Laplacian and to study the errors in Lp-norms, 1 ≤ p ≤ +∞. The precise
analytical framework and notation are given in Section 2, while convolution quad-
rature is presented, in a self-contained form, in Section 3. The numerical method
is considered first in Section 4, in the setting of linear, non-homogeneous problems.
Here, together with basic estimates for smooth and non-smooth data, auxiliary es-
timates in fractional norms, needed for non-linear problems, are also established.
In Section 5 we comment on the class of non-linear problems we consider, as well
as on the regularity of their solutions. In Section 6 we introduce and analyze the
numerical method for non-linear problems. This section makes an extensive use of
the results for the linear case given in Section 4. Since the lack of regularity of the
solutions is one of the main motivations of the paper, we have included the proof
of the regularity results in Section 7. The regularity analysis and the error analysis
of the numerical method are both based on the operational calculus in a unified
way. In Section 8 we consider the adaptation of the method to the situation of
subdiffusion, which replaces the integral term in (1.1) by its time derivative, and in
this way corresponds to α = β+1 ∈ (0, 1). The final Section 9 gives some numerical
illustrations.

2. Analytical framework and notation

2.1. Abstract setting. We consider (1.1) as an evolution equation on a Banach
space X (such as X = Lp(Ω)) and study the abstract initial-value problem on X,

(2.1) u′(t) +
1

Γ(β)

∫ t

0

(t − τ )β−1Au(τ ) dτ = f(t), 0 < t ≤ T, u(0) = u0,
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where 0 < β < 1, u0 ∈ X, and t �→ f(t) ∈ X is a continuous inhomogeneity. Later
we will turn to the semilinear problem where f(t) is replaced by a nonlinearity
F (t, u(t)). We assume that −A is a sectorial operator on X [13, 31]; that is,
a densely defined closed operator on X whose resolvent is analytic in a sector
| arg(λ − a)| < θ with θ > 1

2π and bounded by

(2.2) ‖(λ + A)−1‖ ≤ M0

|λ| for | arg(λ − a)| < θ.

We will assume a < 0 for convenience (because we can then use fractional powers
of A instead of those of A + σI for some σ > a) and, as an essential condition,

(2.3) θ > 1
2πα with α = β + 1.

Let us mention examples of operators A that fall into this framework and that are
used in the physics literature; see for example [13, 28, 31]:

• the negative Laplacian A = −∆ on Rd or on a domain Ω ⊂ Rd together
with Dirichlet or Neumann boundary conditions,

• fractional powers of the negative Laplacian on Rd, A = (−∆)ν/2 with
ν > 0,

• the Fokker-Planck operator given by Au = −∆u−∇ · (u∇V ) for a smooth
potential V .

Typically, the space discretizations of such operators also satisfy the resolvent
bound (2.2), with a constant M0 and angle θ independent of the space discretization
parameter; see, e.g., [1, 2].

The integral operator in (2.1) is the fractional integral of order β, and with ∂
symbolizing time differentiation, the problem (2.1) is written more compactly as

u′ + ∂−βAu = f, u(0) = u0,

or upon integrating from 0 to t and writing α = β + 1, as

(2.4) u + ∂−αAu = u0 + ∂−1f.

In most of the paper we consider this equation in the situation

(2.5) 1 < α < 2.

The case 0 < α < 1 (which corresponds to taking the derivative of the integral term
in (2.1)) is equally of interest, and the extension of our results to this case is given
in Section 8. Equation (2.4) will be the starting point for further development.
Before that, it is convenient to extend the operational notation.

2.2. Operational calculus notation. Let K(s) be a complex-valued or operator-
valued function that is analytic in a sector with opening angle to the positive real
axis greater than 1

2π, and there bounded by

(2.6) ‖K(s)‖ ≤ M |s − σ|−µ for | arg(s − σ)| < ϕ, with ϕ > 1
2π,

for some real µ, M , and σ. Then, K(s) is the Laplace transform of a distribution
k on the real line which vanishes for t < 0, has its singular support empty or
concentrated in t = 0, and which is an analytic function for t > 0. If µ ≤ 0 is an
integer, then the singular part of k is determined by the polynomial part P (s) of
K(s) for s → ∞ and given as P (∂)δ0, where ∂ again denotes time differentiation
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and δ0 is Dirac’s delta at t = 0. For t > 0, the analytic function k(t) is given by
the inversion formula

(2.7) k(t) =
1

2πi

∫
Γ

K(s) est ds, t > 0,

with Γ a contour in the sector of analyticity, parallel to its boundary and oriented
with increasing imaginary part. On substituting w = (s − σ)t in the integral and
replacing the resulting contour for w ∈ t(Γ − σ) by an equivalent, t-independent
contour, this formula and the bound (2.6) immediately imply the following bound,
which we formulate as a lemma because it is used frequently.

Lemma 2.1. If K(s) is analytic and bounded by (2.6), then there exists B > 0,
which depends only on M , µ, and ϕ, such that the inverse Laplace transform k(t)
is bounded by

(2.8) ‖k(t)‖ ≤ B tµ−1 eσt for t > 0.

In particular, k(t) is locally integrable if µ > 0.
We define K(∂) as the operator of (distributional) convolution with the kernel k:

K(∂)g = k ∗ g. If µ > 0, this is given by the convolution integral

(2.9) K(∂)g(t) =
∫ t

0

k(τ ) g(t − τ ) dτ, t > 0,

for functions g(t) that are continuous in t ≥ 0 (and extended by 0 to t < 0) and
for µ > −m (m a positive integer) by the differentiated convolution integral, with
K̃(s) = s−mK(s),

(2.10) K(∂)g(t) = ∂mK̃(∂)g(t) =
(

d

dt

)m ∫ t

0

k̃(τ ) g(t − τ ) dτ, t > 0,

for functions g(t) that are m-times continuously differentiable in t ≥ 0. This nota-
tion extends the fractional-order differentiation notation already used above. For
two functions K1(s) and K2(s) of the above type, the associativity of convolution
and the convolution rule of Laplace transforms give us the basic relation

(2.11) K2(∂)K1(∂)g = (K2K1)(∂)g.

An equivalent identity is

(2.12) K2(∂)(k1 ∗ g) =
(
K2(∂)k1

)
∗ g.

2.3. Resolvent bounds. In the present paper, the role of K(s) will be taken by
s−1(I + s−αA)−1 and by Aν(I + s−αA)−1 for various fractional powers ν. Here we
have the following bounds.

Lemma 2.2. For a sectorial operator with (2.2), (2.3) there is a constant M ,
which depends only on M0 and θ in (2.2), such that the following bounds hold in
the operator norm on X, uniformly for | arg(s)| < θ/α (by (2.3), θ/α > 1

2π):

‖Aν(I + s−αA)−1‖ ≤ M |s|αν , 0 ≤ ν ≤ 1,(2.13)
‖Aν(I + s−αA)−1 − Aν‖ ≤ M |s|αν , −1 ≤ ν ≤ 0,(2.14)

‖Aν(I + s−αA)−1 − Aν + s−αAν+1‖ ≤ M |s|αν , −2 ≤ ν ≤ −1.(2.15)
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Proof. For 0 ≤ ν ≤ 1 we write

Aν(I + s−αA)−1 = sαν · (s−αA)ν(I + s−αA)−1,

which yields the estimate; see [13, Chap. 1]. For −1 ≤ ν ≤ 0 we use the identity

(2.16) (I + s−αA)−1 = I − s−αA(I + s−αA)−1

so that

Aν(I + s−αA)−1 = Aν − s−αAν+1(I + s−αA)−1,

and the stated bound thus follows from the previous case. For −2 ≤ ν ≤ −1 we
use the identity (2.16) twice to obtain

Aν(I + s−αA)−1 = Aν − s−αAν+1 + s−2αAν+2(I + s−αA)−1,

which reduces the result again to the first case. �

2.4. Mild solutions and regularity. When we apply K(∂) = (I + ∂−αA)−1 to
both sides of (2.4), it follows from (2.11) that every solution u ∈ C1([0, T ], X) ∩
C([0, T ], D(A)) of (2.4) is given by

(2.17) u = (I + ∂−αA)−1(u0 + ∂−1f).

This formula expresses u as a temporal convolution and also makes sense under
weak regularity assumptions on the data, e.g., u0 ∈ X and f ∈ L1(0, T ; X), which
do not imply the above-mentioned regularity of u. The formula (2.17) then defines
a generalized or mild solution of (2.4) or (2.1). We mention in passing that (2.17)
can be rewritten as

u(t) = k(t)u0 +
∫ t

0

k(t − τ ) f(τ ) dτ,

where k(t) is the inverse Laplace transform of K(s) = s−1(I + s−αA)−1. The
bounds of Lemma 2.2, used together with Lemma 2.1, give regularity estimates
of the mild solution. For example, we obtain the following result with regularity
conditions on the data that we will consider repeatedly in this paper. Here and in
what follows, Xρ denotes, for ρ ≥ 0, the domain of Aρ:

(2.18) Xρ = D(Aρ) with norm ‖v‖ρ = ‖Aρv‖.

Lemma 2.3. If u0 ∈ X2/α, f(0) ∈ X1/α, and f ∈ C2([0, T ], X), then the mild
solution u defined by (2.17) is of the form

u(t) = u0 + tf(0) − tα

Γ(α + 1)
Au0 + v(t),

where v ∈ C2([0, T ], X) with v(0) = v′(0) = 0. Moreover, for ρ with 0 ≤ αρ < 1,
we have u ∈ C2((0, T ], Xρ) with u(0) = u0, u′(0) = f(0), and

‖u′′(t)‖ρ ≤ C t−r with r = max(αρ, 2 − α) < 1.

The proof consists of several applications of Lemmas 2.2 and 2.1 and is given in
Section 7.
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3. Convolution quadrature

A convolution quadrature [21, 22] approximates the continuous convolution
K(∂)g(t) by a discrete convolution with a time step size h > 0,

(3.1) K(∂h)g(t) =
∑

0≤jh≤t

ωj g(t − jh), t > 0,

where the quadrature weights ωj are determined by their generating power series

(3.2)
∞∑

j=0

ωjζ
j = K

(δ(ζ)
h

)
.

Here K(s) is again the Laplace transform of the convolution kernel, and δ(ζ) is a
rational function, chosen as the quotient of the generating polynomials of a linear
multistep method. For concreteness, in this paper we consider the second-order
backward differentiation formula, for which

(3.3) δ(ζ) = (1 − ζ) + 1
2 (1 − ζ)2.

The discrete kernel given by
κn = ωn/h

satisfies a bound of the same type as the continuous kernel.

Lemma 3.1 ([22, (2.6)] (or [21, (5.4)] in the case µ > 0)). Under condition (2.6)
we have the analogue of (2.8): there exist B > 0 and σ̃ of the same sign as σ,
which depend only on M , µ, ϕ, and σ, such that

(3.4) ‖κn‖ ≤ B tµ−1eσ̃t for t = nh, n = 1, 2, 3, . . . .

For n = 0, (3.2) and (2.6) directly imply ‖κ0‖ = ‖K(δ(0)/h)/h‖ ≤ B hµ−1.
An important property is that the relations (2.11) and (2.12) are maintained in

the discretization:

K2(∂h)K1(∂h)g = (K2K1)(∂h)g,(3.5)

K2(∂h)(k1 ∗ g) =
(
K2(∂h)k1

)
∗ g.(3.6)

Note, however, that (3.5) and (3.6) are not the same expressions, in contrast to
their continuous analogues. While (3.6) holds for any choice of weights in (3.1), the
relation (3.5) requires a construction of the type (3.2).

The approximation properties of (3.1)–(3.3) are described in the following result,
which considers the particular, but essential case g(t) = tγ−1 c for real γ > 0, with
a time-independent c, a scalar or vector or operator as needed. Here we often write
K(∂h)g(t) = K(∂h)τγ−1c(t), where τ (t) = t is the symbol of the identity function.
(For γ < 1 the sum in (3.1) is understood to be over 0 ≤ jh ≤ t − h to avoid the
evaluation of g very close to the singularity at 0.)

Lemma 3.2 ([22, Theorem 2.2] (or [21, Theorem 5.2] in the case µ > 0)). Assume
that K(s) is analytic and bounded as in (2.6), and let g(t) = tγ−1c. Then, the
error of the convolution quadrature approximation (3.1) with (3.2), based on the
second-order backward differentiation formula (3.3), is bounded by

(3.7) ‖K(∂h)g(t) − K(∂)g(t)‖ ≤
{

C tµ−1hγ , 0 < γ ≤ 2,

C tµ+γ−3h2, γ ≥ 2,

where the constant C does not depend on h and t ∈ (0, T ] with fixed T < ∞.
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In view of (3.6) and (2.12), this result yields an estimate of the approximation
error for all functions g(t) which can be written as an expansion in powers of t with
a remainder term that can be expressed as a convolution of a power function with
a locally integrable function. In particular, this is the case for the Taylor expansion
of smooth functions with the remainder term in integral form:

g(t) = g(0) + tg′(0) + τ ∗ g′′(t) (with τ (t) = t).

Note that
(
K(∂h) − K(∂)

)
(τ ∗ g′′)(t) =

(
(K(∂h) − K(∂))τI

)
∗g′′(t).

Here, the problem is that the constant term c = g(0) yields only a first-order
error bound (γ = 1):

‖K(∂h)1c(t) − K(∂)1c(t)‖ ≤ C tµ−1 h.

This causes difficulty unless K(∂)1c(t) =
∫ t

0
k(τ )c dτ is available analytically. We

describe two general approaches that improve the situation. In the first approach,
we write for some ν ≥ 1 the identity

K(∂)1c(t) = K(∂)∂ν(∂−ν1)c(t) = K(∂)∂ν τν

Γ(ν + 1)
c(t).

By Lemma 3.2 with γ = ν + 1 ≥ 2 and µ replaced by µ − ν, we thus obtain a
second-order approximation to K(∂)1c(t):

(3.8) ‖K(∂h)∂ν
h

τν

Γ(ν + 1)
c(t) − K(∂)1c(t)‖ ≤ C tµ−2 h2.

The second approach, which considers approximations only at gridpoints tn = nh,
takes half the value of the function g at t = 0, or in other terms, replaces g by 1hg,
where 1h(t) is a function with 1h(0) = 1

2 and 1h(t) = 1 for t ≥ h. An alternative,
sometimes more convenient, choice is 1h(0) = 0, 1h(h) = 3

2 , and 1h(t) = 1 for
t ≥ 2h. We then take the initial-point correction

(3.9) K(∂h)(1hg) (tn) = ωn 1h(0)g(0) + ωn−11h(h)g(h) + · · · + ω0 g(tn)

as the approximation instead of K(∂h)g(tn).
The second choice of 1h turns out to yield 1h = ∂h∂−11 at gridpoints tn, so that

here the second approach coincides with the first approach with ν = 1.
More generally, a possible choice is 1h(tn) = qn where qn = 1+O(rn), with r < 1

and h
∑∞

0 qn e−nh = 1 + O(h2). In particular, this holds for
∑∞

0 qnζn = δ(ζ)−1.
For every such choice of 1h, [22, Theorem 2.1] (or [21, Theorem 4.1] in the case
µ > 0) gives us, with the proof of [21, Corollary 4.2], a bound of the same type
as (3.8):

(3.10) ‖K(∂h)1hc(t) − K(∂)1c(t)‖ ≤ C tµ−2 h2 at t = tn.

4. Time discretization of the linear equation

4.1. Construction of the numerical method. We consider a numerical method
for the time discretization of (2.1), constructed with the convolution quadrature
based on the second-order backward difference formula. In view of the causal
nature of both the method and the error estimates we will obtain, there is no loss
of generality in assuming that f : [0, +∞) → X. Starting with the integral equation
(2.4), viz.,

u + ∂−αAu = u0 + ∂−1f,
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suggests that we consider the numerical approximation uh : [0, +∞) → X, h > 0,
to u defined by the discrete equation

(4.1) uh + ∂−α
h Auh = u0 + ∂−1

h f.

By (3.5) this is equivalent to the direct convolution quadrature discretization of the
solution formula (2.17), viz.,

u = (I + ∂−αA)−1(u0 + ∂−1f),

by

(4.2) uh = (I + ∂−α
h A)−1(u0 + ∂−1

h f).

Unfortunately, if either u0 �= 0 or f(0) �= 0, then here Lemma 3.2 (to be used with
γ = 1) gives only a first-order error bound, and such an order reduction is indeed
observed numerically. In order to overcome this barrier we must modify the scheme
by treating u0 and f0 = f(0) in a specific way.

To this end, we start from the solution formula (2.17). Setting g = f − f(0), so
that we can substitute f = f0 + g with g(0) = 0, and noting that

(I + ∂−αA)−1 = I − (I + ∂−αA)−1∂−αA,

it turns out, assuming for the moment that u0 ∈ D(A),

(4.3) u = u0 + (I + ∂−αA)−1(−∂−αAu0 + ∂−1f0 + ∂−1g).

Now it is natural to introduce the approximations defined by

(4.4) uh = u0 + (I + ∂−α
h A)−1(−∂−αAu0 + ∂−1f0 + ∂−1

h g),

i.e., by keeping the exact contributions

∂−αAu0 (t) =
tα

Γ(α + 1)
Au0, ∂−1f0 (t) = tf0,

instead of replacing them by ∂−α
h Au0 and ∂−1

h f0, as we did in (4.1).
From a practical point of view, it is essential to implement (4.4) as a time-

stepping algorithm. After applying the operator (I + ∂−α
h A) to both sides of (4.4)

we get the equivalent formulation

(4.5) (I + ∂−α
h A)(uh − u0) = −∂−αAu0 + ∂−1f0 + ∂−1

h g.

For a function v : [0, +∞) → X and real µ, we have by definition

∂−µ
h v(t) = hµ

∑
0≤jh≤t

q
(µ)
j v(t − jh), t ≥ 0,

where the quadrature weights q
(µ)
j , j ≥ 0, are provided by the expansion

δ(ζ)−µ =
∞∑

j=0

q
(µ)
j ζj ,

or upon rewriting (3.3) as δ(ζ) = 3
2 (1 − ζ)(1 − 1

3ζ), by the explicit formula

(4.6) q
(µ)
j = (−1)j

(
2
3

)µ j∑
l=0

3−l

(
−µ

j − l

)(
−µ

l

)
.
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From these remarks, setting tn = nh, un = uh(tn), fn = f(tn), n ≥ 0, we see that
at a nodal point tn > 0 the method (4.5) reads

un − u0 + hαA
n∑

j=1

q
(α)
n−j(uj − u0)(4.7)

= − tαn
Γ(α + 1)

Au0 + tnf0 + h

n∑
j=1

q
(1)
n−j(fj − f0),

which is an implicit equation for un, n ≥ 1, once uj , 0 ≤ j ≤ n − 1, have been
computed. The equation for un is of the form

(I + hαq
(α)
0 A)un = ξ + Aη,

where ξ, η ∈ X. Since q
(α)
0 = (2/3)α > 0, this equation possesses a unique solution,

formally given by

un = (I + hαq
(α)
0 A)−1ξ + A(I + hαq

(α)
0 A)−1η.

This expression shows that un depends continuously on u0 and fj , 0 ≤ j ≤ n.
Actually, we deduce that the method is well defined even for u0 ∈ X, i.e., for initial
data not in D(A).

A direct implementation of N time steps of the method requires the solution
of N linear systems, of O(N2) linear operations with vectors, and storing O(N)
vectors. In forthcoming work it is shown how this can be reduced to O(N log N)
vector operations and to storing O(log N) vectors in active memory; cf. also [23]
for a related fast convolution algorithm.

The method (4.7) can be rewritten in a form that makes the correction to (4.1)
clearly visible:

(4.8) un + hα
n∑

j=1

q
(α)
n−jAuj + hαq̃(α)

n Au0 = u0 + h
n∑

j=1

q
(1)
n−jfj + hq̃(1)

n f0

with

q̃(µ)
n =

nµ

Γ(µ + 1)
−

n∑
j=1

q
(µ)
n−j .

The correction weights q̃
(µ)
n for µ = α and 1 can be interpreted as ensuring that

the quadratures on both sides of (4.8) become exact for constant functions. By
Lemma 3.2 for K(s) = s−µ and γ = 1, we have hµq̃

(µ)
n = O(tµ−1

n h). Moreover,
for tn bounded away from 0 we have actually, by [21, Corollary 4.2], hµq̃

(µ)
n =

1
2hµq

(µ)
n + O(h2). If we replace hµq̃

(µ)
n by 1

2hµq
(µ)
n for all n in (4.8), we obtain a

trapezoidal rule initial-point correction to (4.1) in the style of (3.9) (with 1h(0) = 1
2

and 1h(t) = 1 for t ≥ h). For tn > 0 this is identical to the scheme that uses the
approximation (3.9) in (4.3):

(4.9) uh = u0 + (I + ∂−α
h A)−1(−∂−α

h A1hu0 + ∂−1
h 1hf0 + ∂−1

h g).

With the second choice of 1h mentioned in Section 3 (1h(0) = 0, 1h(h) = 3
2 ,

1h(t) = 1 for t ≥ 2h), which yields uh(0) = u0, the approximation (4.9) is pre-
cisely the numerical method of [24]. Since for that particular choice of 1h we have
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1h = ∂h∂−11 at grid-points tn, the method of [24] can be written in a way that
looks even closer to (4.4):

(4.10) uh = u0 + (I + ∂−α
h A)−1(−∂−α+1

h ∂−1Au0 + ∂−1f0 + ∂−1
h g).

While method (4.4) uses for (I + ∂−αA)−1∂−αAu0 an approximation of the type
(3.8) with ν = α, method (4.10) does the same with ν = 1. In view of their common
general error bound (3.8), it would seem that both methods (4.4) and (4.10) share
the same type of error behavior. However, this is not the case, and it turns out
that (4.4) has superior approximation properties. While both methods have an
O(h2/t2n) error in the case of general data u0 ∈ X by (3.8), it will be seen that
method (4.4) has, in contrast to (4.10), a uniform O(h2) error for regular data. The
reason for this different behavior is that for method (4.4) we have, for u0 ∈ D(A2),

(I + ∂−α
h A)−1∂−αAu0 = ∂−αAu0 − (I + ∂−α

h A)−1∂−α
h ∂−αA2u0,

where the first term on the right-hand side is exact, whereas for method (4.10)
the analogous term ∂−α+1

h ∂−1Au0 has an error of O(tα−2h2) by (3.8), so that no
uniform O(h2) error can be obtained for method (4.10). We therefore restrict our
attention to method (4.4) in the following.

4.2. Error bounds. We have the following second-order error bound for method
(4.4) or its equivalent formulations (4.7) and (4.8).

Theorem 4.1. Assume that u0 ∈ Xν and f0 ∈ Xσ, for some 0 ≤ ν ≤ 2 and
0 ≤ σ ≤ 1. Assume also that f is twice differentiable and that f ′′ ∈ L1((0, +∞), X).
Then, for each T > 0, there exists C = C(T ) > 0 (independent of the data, the
solution and the time step) such that, for 0 < tn ≤ T , there holds

(4.11) ‖un − u(tn)‖ ≤ Ch2

(
‖u0‖ν

t2−αν
n

+
‖f0‖σ

t1−ασ
n

+ ‖f ′(0)‖ +
∫ tn

0

‖f ′′(τ )‖ dτ

)
.

Proof. By linearity, it is enough to consider the three cases below.
(a) Case u0 ∈ Xν and f = 0. Subtracting (4.3) from (4.4) we get

uh − u = −
(
(I + ∂−α

h A)−1 − (I + ∂−αA)−1
)
∂−αAu0.

Suppose first that u0 ∈ X. Then we write

uh − u = (G(∂h) − G(∂))∂−αu0,

where
G(s) = −A(I + s−αA)−1, | arg(s)| ≤ θ/α.

Since clearly (see Lemma 2.2)

‖G(s)‖ ≤ M |s|α, | arg(s)| ≤ θ/α,

Lemma 3.2 (with µ = −α and γ = α + 1) yields

(4.12) ‖un − u(tn)‖ ≤ C(T ) h2 t−2
n ‖u0‖, 0 < tn ≤ T.

Second, suppose that u0 ∈ X2. Noting that

−A(I + s−αA)−1 = −A + A2(sα + A)−1,

we obtain
uh − u = (G(∂h) − G(∂))∂−αA2u0,

where now we adopt

G(s) = (sα + A)−1, | arg(s)| ≤ θ/α.
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Since
‖G(s)‖ ≤ M |s|−α, | arg(s)| ≤ θ/α,

the application of Lemma 3.2 (with µ = α and γ = α + 1) results in

(4.13) ‖un − u(tn)‖ ≤ C(T ) h2 t2α−2
n ‖u0‖2, 0 < tn ≤ T.

Finally, for u0 ∈ Xν , interpolation between (4.12) and (4.13) leads to

‖un − u(tn)‖ ≤ C(T ) h2 tνα−2
n ‖u0‖ν , 0 < tn ≤ T.

(b) Case u0 = 0, f = f0. Now we have

uh − u =
(
(I + ∂−α

h A)−1 − (I + ∂−αA)−1
)
∂−1f0.

Therefore, for f0 ∈ Xσ, we can write

uh − u = (Hσ(∂h) − Hσ(∂))∂−1Aσf0,

where
Hσ(s) = A1−σ(sα + A)−1, | arg(s)| ≤ θ/α.

By Lemma 2.2 we have

‖Hσ(s)‖ ≤ M |s|−ασ, | arg(s)| ≤ θ/α,

hence, again by Lemma 3.2 (with µ = ασ and γ = 2), we get

‖un − u(tn)‖ ≤ C h2 tασ−1
n ‖f0‖σ, 0 < tn ≤ T.

(c) Case u0 = f0 = 0. In this case we have

uh − u = (K(∂h) − K(∂))g,

where
K(s) = s−1(I + s−αA)−1, | arg(s)| ≤ θ/α.

Since g = tf ′(0) + tI ∗ f ′′, the relations (2.12) and (3.6) yield

(4.14) uh − u = (K(∂h) − K(∂))tf ′(0) +
(
(K(∂h) − K(∂))tI

)
∗ f ′′.

Since
‖K(s)‖ ≤ M/|s|, | arg(s)| ≤ θ/α,

Lemma 3.2 (with µ = 1 and γ = 2) implies that

‖un − u(tn)‖ ≤ Ch2

(
‖f ′(0)‖ +

∫ tn

0

‖f ′′(τ )‖ dτ

)
, 0 ≤ tn ≤ T.

Taken together, these error bounds yield the stated result. �

Theorem 4.1 provides error estimates under minimal regularity assumptions, in
the style of the optimal estimates for parabolic problems (α = 1) [6, 15, 16]. Thus,
for ν = σ = 0, the situation referred to as the one with bad initial data, the
error estimate reads O(h2/t2n). On the other hand, for ν = 2/α and σ = 1/α, we
have guaranteed an error estimate of the form O(h2). It is noteworthy that, since
1 < α < 2, this optimal estimate holds with less regularity than the one required
for parabolic problems [6, 15, 16]. Larger values of ν and σ cannot improve the
order but can improve the error constant.

With the semilinear problem in mind (see next section), we also need error
estimates in intermediate spaces Xρ, 0 ≤ αρ < 1. The following theorem focusses
on the situation u0 ∈ X2/α and f0 ∈ X1/α, which is the one encountered in the
main result (Theorem 6.2) for the semilinear problem.
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Theorem 4.2. Assume that u0 ∈ X2/α, f0 ∈ X1/α, and that f is twice differen-
tiable in X, with f ′′ ∈ L1((0, +∞), X). Let ρ ≥ 0, with αρ < 1. Then, for each
T > 0 there exists C = C(T ) > 0 (independent of the solution, the data and the
step size) such that, for 0 < tn ≤ T , there holds

(4.15) ‖un − u(tn)‖ρ ≤ Ch2

tαρ
n

(
‖u0‖2/α + ‖f0‖1/α + ‖f ′(0)‖ +

∫ tn

0

‖f ′′(τ )‖ dτ

)
.

Proof. As in the proof of Theorem 4.1, we split the error into the three cases (a),
(b) and (c) considered there. We realize that for cases (a) and (b) all we have to
do is to shift the scale of the intermediate spaces, i.e., to adopt as phase space
X̃ = Xρ. Since

X2/α = X̃2/α−ρ, X1/α = X̃1/α−ρ,

Theorem 4.1, with ν = 2/α−ρ and σ = 1/α−ρ, readily shows (4.15) when f = f0.
For the remaining case (c) we write uh−u again as in (4.14). Since by Lemma 2.2,

(4.16) ‖K(s)‖X→Xρ
≤ M |s|αρ−1, | arg(s)| ≤ θ/α,

we can apply Lemma 3.2 with µ = 1 − αρ and γ = 2, which results in the desired
estimate (4.15) for case (c). �

4.3. Discrete propagators and stability. We introduce the discrete propagators
of the numerical method, which will turn out to be very useful for the analysis of
semilinear problems. We already know that un depends linearly and boundedly on
u0 and fj , 0 ≤ j ≤ n. In view of (4.4), there exist linear and bounded operators
Pn, Qn, Rn : X → X, n ≥ 0, such that

(4.17) un = Pnu0 + Qnf0 + h

n∑
j=1

Rn−j(fj − f0).

We have the following stability bounds.

Lemma 4.3. For 0 ≤ αρ < 1, the discrete propagators are bounded by

‖Pn‖Xρ→Xρ
≤ B, ‖Qn‖X→Xρ

≤ B t1−αρ
n+1 , ‖Rn‖X→Xρ

≤ B t−αρ
n+1 ,

where B is independent of n and h with nh ≤ T for any fixed T < ∞.

The bound for Rn shows that ‖Rn‖X→Xρ
behaves like a weakly singular function.

This bound will become essential for the stability of the numerical method in the
semilinear problem.

Proof. From (4.4) we have

Pn = I − A(I + ∂−α
h A)−1 tα

Γ(α + 1)
I (tn), Qn = (I + ∂−α

h A)−1tI (tn).

We write

I − Pn =
(

A(I + ∂−α
h A)−1 tα

Γ(α + 1)
I (tn) − A(I + ∂−αA)−1 tα

Γ(α + 1)
I (tn)

)
+ A(I + ∂−αA)−1∂−αI (tn).

For the difference on the right-hand side, Lemma 2.2 yields that we are, with
A(I +s−αA)−1 in the role of K(s), in the situation of Lemma 3.2 with µ = −α and
γ = α + 1, which yields a bound of O(t−2

n h2) for the norm of the difference. The
last term in I −Pn is the inverse Laplace transform of s−1s−αA(I + s−αA)−1, and
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hence, by Lemma 2.1 with µ = 1, this term is bounded uniformly in tn. This gives
the bound for Pn.

Similarly, for Qn, Lemma 2.2 with ν = ρ shows that we are in the situation of
Lemma 3.2 with µ = −αρ and γ = 2, and of Lemma 2.1 with µ = 2 − αρ. This
yields the stated bound for Qn.

The operators hRn, n ≥ 0, are the convolution quadrature weights corresponding
to the Laplace transform K(s) = s−1(I+s−αA)−1 used in the proof of Theorems 4.1
and 4.2; that is, they are the coefficients in the series expansion

h

∞∑
n=0

Rnζn =
(
δ(ζ)/h

)−1
(
I +

(
δ(ζ)/h

)−α
A

)−1

.

Using (4.16) and Lemma 3.1 with µ = 1 − αρ, we deduce the bounds for Rn. �
In addition to stability with respect to perturbations in the data u0 and f(tn) as

expressed by Lemma 4.3, it is of interest to study the effect of perturbations that
result from an inexact solution of the linear system of equations in (4.8). Supposing
that the linear system in the n-th step is solved only up to a defect δn, so that we
compute perturbed values ũn, the equation for the errors εn = ũn − un becomes

(4.18) εn + hα
n∑

j=1

q
(α)
n−jAεj = δn

or equivalently, with εh = (εn) and δh = (δn),

(I + ∂−α
h A)εh = δh, or εh = (I + ∂−α

h A)−1δh.

By Lemma 3.1 (with µ = 0) for K(s) = (I + s−αA)−1 and by Lemma 2.2 (with
ν = 0) we thus have

εn = h
n∑

j=1

κn−j δj with ‖κn‖ ≤ B(nh)−1.

Hence we obtain the stability bound

(4.19) max
j=1,...,n

‖εj‖ ≤ B log(n + 1) max
j=1,...,n

‖δj‖, n ≥ 1.

5. The semilinear problem

We now consider the semilinear initial value problem

(5.1) u′(t)+
1

Γ(β)

∫ t

0

(t−τ )β−1Au(τ ) dτ = F (t, u(t)), 0 < t ≤ T, u(0) = u0,

where again 0 < β < 1, A is a sectorial operator satisfying (2.2) with (2.3), and
now there is the nonlinearity

F : [0, T ] × Xρ → X with αρ < 1,

again for α = β + 1. For convenience we assume that F is globally Lipschitz
continuous, in the sense that there exists L > 0 such that

‖F (t, v) − F (t, w)‖ ≤ L ‖v − w‖ρ, 0 ≤ t ≤ T, v, w ∈ Xρ.

This assumption could be replaced by a local Lipschitz condition on every ball of
Xρ without inflicting essential changes in the subsequent results and in their proofs,
apart from the existence of the (mild) solution on the whole interval [0, T ], which
is guaranteed in the globally Lipschitz situation and has to be assumed a priori
otherwise.
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As in (2.4) we have the integrated equation

(5.2) u(t) + ∂−αAu(t) = u0 +
∫ t

0

F (τ, u(τ )) dτ.

A mild solution of (5.1) or (5.2) is a solution u ∈ C([0, T ], Xρ) of the equation

(5.3) u = (I + ∂−αA)−1
(
u0 + ∂−1F (·, u)

)
.

This can be rewritten as the Volterra integral equation

u(t) = k(t)u0 +
∫ t

0

k(t − τ ) F (τ, u(τ )) dτ,

where k(t) is the inverse Laplace transform of K(s) = s−1(I + s−αA)−1, which by
Lemmas 2.2 and 2.1 is bounded by

‖k(t)‖Xρ→Xρ
≤ B, ‖k(t)‖X→Xρ

≤ B t−αρ, t > 0.

By the standard Picard iteration argument, this weakly singular Volterra integral
equation has a unique solution u ∈ C([0, T ], Xρ) for initial data u0 ∈ Xρ. The
following regularity result extends Lemma 2.3 to the semilinear equation and will
be proved in Section 7.

Theorem 5.1. Assume that F : [0, T ]×Xρ → X with αρ < 1 is Lipschitz bounded
and twice continuously differentiable. Suppose u0 ∈ X2/α and F (0, u0) ∈ X1/α.
Then the semilinear problem (5.1) has a unique mild solution, of the form

u(t) = u0 + tF (0, u0) −
tα

Γ(α + 1)
Au0 + v(t),

where v ∈ C2([0, T ], X) with v(0) = v′(0) = 0, and u ∈ C2((0, T ], Xρ) with

‖u′′(t)‖ρ ≤ C t−r, for r = max(αρ, 2 − α) < 1.

As a direct consequence of Theorem 5.1, we note the following for further use.

Corollary 5.2. Under the conditions of Theorem 5.1, the function f(t) = F (t, u(t))
is in C2((0, T ], X) with ‖f ′′(t)‖ ≤ C t−r, where r < 1.

6. Time discretization of the semilinear equation

6.1. The numerical method. In this section we adapt the numerical scheme (4.4)
to approximate the solution u : [0, T ] → Xρ, 0 ≤ αρ < 1, of the semilinear problem
(5.2), by letting

(6.1) uh = u0 + (I + ∂−α
h A)−1

(
−∂−αAu0 + ∂−1f0 + ∂−1

h

(
F (·, uh) − f0

))
,

where f0 stands for F (0, u0). In view of (4.7), we are thus led to consider the
approximations un to u(tn), 0 ≤ tn ≤ T , defined recursively by u0 as given and,
for n ≥ 1,

un − u0 + hαA

n∑
j=1

q
(α)
n−j(uj − u0)

= − tαn
Γ(α + 1)

Au0 + tnf0 + h
n∑

j=1

q
(1)
n−j(F (tj, uj) − f0),

(6.2)

where the quadrature weights q
(µ)
j are given in (4.6).
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6.2. Solvability of the discrete equations. The equation for un reads

(6.3) (I + hαq
(α)
0 A)un = ξ + Aη + hq

(1)
0 F (tn, un),

for certain ξ ∈ X and η ∈ Xρ. The solvability of (6.3) is covered by the following
lemma. Recall that

(6.4) ‖(I + λA)−1‖X→Xρ
≤ M/λ1−ρ, λ > 0.

Lemma 6.1. Assume that ξ ∈ X, η ∈ Xρ, and that

(6.5) h1−αρMLq
(1)
0 /

(
q
(α)
0

)ρ
< 1.

Then equation (6.3) admits a unique solution un ∈ Xρ, and un depends continuously
on ξ ∈ X and η ∈ Xρ.

Proof. The solvability of (6.3) is equivalent to the existence of a fixed point for the
mapping S : Xρ → Xρ defined by

S(u) = (I + hαq
(α)
0 A)−1

(
ξ + Aη + hq

(1)
0 F (tn, u)

)
.

Note that (I + hαq
(α)
0 A)−1 maps X into Xρ and that, since

(I + hαq
(α)
0 A)−1A =

1

hαq
(α)
0

(
(I + hαq

(α)
0 A)−1 − I

)
,

certainly S maps Xρ to Xρ. Moreover, because of (6.4), we have

‖(I + hαq
(α)
0 A)−1‖X→Xρ

≤ M

hαρ
(
q
(α)
0

)ρ ,

so that the restriction (6.5) implies that S is a contraction. �

6.3. Error bounds. Here we obtain the main result of the paper.

Theorem 6.2. Assume that F : [0, T ]×Xρ → X with αρ < 1 is Lipschitz bounded
and twice continuously differentiable. Suppose u0 ∈ X2/α and F (0, u0) ∈ X1/α.
Then there exist h0 > 0 and C > 0 such that, for 0 < h ≤ h0, the numerical
approximations un, 0 < tn ≤ T , given by (6.2) are uniquely defined, and their
errors are bounded by

‖un − u(tn)‖ρ ≤ C h2 t−αρ
n ,(6.6)

‖un − u(tn)‖ ≤ C h2.(6.7)

Proof. Select h0 > 0 fulfilling the threshold condition (6.5). Then, for 0 < h ≤ h0,
the numerical solutions un ∈ Xρ, 0 ≤ tn ≤ T , are well defined. Moreover, obviously
u : [0, T ] → Xρ is the solution of the auxiliary problem

(6.8) u(t) + ∂−αAu(t) = u0 + ∂−1f(t), 0 ≤ t ≤ T,

where f(t) = F (t, u(t)), 0 ≤ t ≤ T .
Let vn, 0 ≤ tn ≤ T , denote the approximations to u obtained by applying

the method (4.7) to problem (6.8). In view of the imposed regularity u0 ∈ X2/α

and f0 ∈ X1/α and of the regularity of f(t) given by Corollary 5.2, we can apply
Theorem 4.2 to obtain that there exists C > 0 such that

(6.9) ‖vn − u(tn)‖ρ ≤ Ch2t−αρ
n , 0 ≤ tn ≤ T,
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and Theorem 4.1 (with ν = 2/α and σ = 1/α) gives

(6.10) ‖vn − u(tn)‖ ≤ Ch2, 0 ≤ tn ≤ T.

On the other hand, expressing vn in terms of the data, through the discrete
propagators as in (4.17), leads to

vn = Pnu0 + Qnf0 + h

n∑
j=1

Rn−j(f(tj) − f0), 0 < tn ≤ T.

Analogously, we can express

un = Pnu0 + Qnf0 + h

n∑
j=1

Rn−j(F (tj , uj) − f0), 0 < tn ≤ T.

Therefore, for 0 < tn ≤ T , we get

un − u(tn) = vn − u(tn) + un − vn

= vn − u(tn) + h

n∑
j=1

Rn−j (F (tj , uj) − F (tj , u(tj))) ,

which, by Lemma 4.3, implies that

‖un − u(tn)‖ρ ≤ ‖vn − u(tn)‖ρ + hLB

n∑
j=1

t−αρ
n−j+1‖uj − u(tj)‖ρ.

After inserting (6.9), Gronwall’s lemma for weakly singular kernels (see, e.g., Lemma
2.1 in [11] or Lemma 6 in [5]) readily shows (6.6). In the same way, taking the norm
in X, we have

‖un − u(tn)‖ ≤ ‖vn − u(tn)‖ + hLB
n∑

j=1

‖uj − u(tj)‖ρ.

Hence, by using (6.10) and (6.6), we finally get (6.7). �

7. Regularity of solutions

In this section we prove Lemma 2.3 and Theorem 5.1. We first give the proof of
regularity of the linear problem.

Proof of Lemma 2.3. We split the (distributional) second derivative of u as

∂2u = ∂2(I + ∂−αA)−1u0 + ∂(I + ∂−αA)−1f(0)

+(I + ∂−αA)−1f ′(0) + ∂−1(I + ∂−αA)−1∂2
(
f − f(0) − tf ′(0)

)
≡ w1 + w2 + w3 + w4.

The first term, w1(t), is the inverse Laplace transform of

W1(s) = s2(I + s−αA)−1 u0

s

= s(I + s−αA)−1A−2/α · A2/αu0

= s
(
(I + s−αA)−1A−2/α − A−2/α + s−αA1−2/α

)
A2/αu0

+su0 − s1−αAu0.
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By Lemma 2.2, (2.15) with ν = −2/α, we have the bound∥∥∥s
(
(I + s−αA)−1A−2/α − A−2/α + s−αA1−2/α

)
A2/αu0

∥∥∥ ≤ C |s|−1 ‖u0‖2/α.

By Lemma 2.1 with µ = 1, this is the Laplace transform of a function bounded
by C ‖u0‖2/α. The second and third terms in W1(s) are the Laplace transforms of
δ′0u0 (with δ′0 the derivative of Dirac’s delta) and − tα−2

Γ(α−1)Au0, respectively. Hence
we have ∥∥∥w1(t) +

tα−2

Γ(α − 1)
Au0

∥∥∥ ≤ C ‖u0‖2/α, t > 0.

Similarly, w2(t) is the inverse Laplace transform of

W2(s) =
(
(I + s−αA)−1A−1/α − A−1/α

)
A1/αf(0) + f(0),

which by Lemma 2.2, (2.14) with ν = −1/α, is bounded by

‖W2(s) − f(0)‖ ≤ C |s|−1 ‖f(0)‖1/α.

Since f(0) is the inverse Laplace transform of δ0f(0), Lemma 2.1 with µ = 1 implies

‖w2(t)‖ ≤ C ‖f(0)‖1/α, t > 0.

The same argument applied to W3(s) = s−1(I + s−αA)−1f ′(0) yields

‖w3(t)‖ ≤ C ‖f ′(0)‖.
Finally, w4 is the convolution K(∂)f ′′ = k ∗ f ′′, where K(s) = s−1(I + s−αA)−1 is
bounded in operator norm by

‖K(s)‖ ≤ C |s|−1

so that, again by Lemma (2.1) with µ = 1, its inverse Laplace transform k(t) is
bounded by

‖k(t)‖ ≤ C.

This implies that w4 = k ∗ f ′′ is bounded by

‖w4(t)‖ = ‖
∫ t

0

k(t − τ ) f ′′(τ ) dτ‖ ≤ C

∫ t

0

‖f ′′(τ )‖ dτ.

Putting the above pieces together gives the continuity of v′′(t) on [0, T ] and a bound
in the X-norm,

(7.1) ‖v′′(t)‖ ≤ C

(
‖u0‖2/α + ‖f(0)‖1/α + ‖f ′(0)‖ +

∫ t

0

‖f ′′(τ )‖ dτ

)
.

The result in Xρ is obtained by the same arguments as long as αρ ≤ 2 − α. We
now use Lemma 2.2 with ν = ρ − 2/α, ρ − 1/α, ρ. This yields a situation to which
Lemma 2.1 applies with µ = 1 − αρ > 0 in each of the cases. The estimate now
becomes

(7.2) ‖v′′(t)‖ρ ≤ C

tαρ

(
‖u0‖2/α + ‖f(0)‖1/α + ‖f ′(0)‖ + t max

0≤τ≤t
‖f ′′(τ )‖

)
.

For αρ > 2 − α we need to treat the term with u0 differently. We then write

AρW1(s) = s2Aρ(I + s−αA)−1 u0

s

= s(I + s−αA)−1Aρ−2/α · A2/αu0

= s
(
(I + s−αA)−1Aρ−2/α − Aρ−2/α

)
A2/αu0 + sAρu0.
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Since here −1 ≤ ρ − 2/α ≤ 0, we now use the second bound of Lemma 2.2 to
conclude∥∥∥s

(
(I + s−αA)−1Aρ−2/α − Aρ−2/α

)
A2/αu0

∥∥∥ ≤ C |s|−1+ρα ‖u0‖2/α.

By Lemma 2.1 with µ = 1 − ρα we thus obtain

‖w1(t)‖ρ ≤ C

tαρ
‖u0‖2/α,

and the result follows as before. �

Proof of Theorem 5.1. (a) We compare the solution u of (5.2) with the solution to
the linear problem with initial value u0 and the constant inhomogeneity F (0, u0),

w + ∂−αAw = u0 + ∂−1F (0, u0),

the solution of which is of the form stated in the theorem, by Lemma 2.3. We
therefore make the ansatz u = w+x and begin by giving an equation for x. Setting

G(t, ξ) = F (t, w(t) + ξ) − F (0, u0)

(note that w(t) ∈ Xρ with an integrable second derivative in Xρ), we obtain that
x must satisfy the equation

x = (I + ∂−αA)−1∂−1G(·, x).

By Lemma 2.2, K(s) = (I + s−αA)−1s−1 : Xρ → X is bounded by

‖K(s)‖X→Xρ
≤ M |s|αρ−1

so that by Lemma 2.1, K(s) is the Laplace transform of a kernel k(t) bounded by

‖k(t)‖X→Xρ
≤ C t−αρ.

The equation for x is thus a Volterra integral equation with weakly singular kernel
and Lipschitz nonlinearity,

x(t) =
∫ t

0

k(t − τ ) G(τ, x(τ )) dτ,

which has a unique solution x ∈ C([0, T ], Xρ).
(b) If x were in C1([0, T ], Xρ), then its derivative would solve the linear Volterra

integral equation

y(t) =
∫ t

0

k(t − τ ) (Gt(τ, x(τ )) + Gx(τ, x(τ ))y(τ ))dτ,

which has a unique solution y ∈ C([0, T ], Xρ). It remains to show that indeed
y = x′. For this purpose we consider, for small ε > 0, the regularized nonlinearity

Gε = (I + εA)−1G : Xρ → X1,

which together with its partial derivatives converges to G in the X norm as ε → 0,
uniformly on bounded sets of arguments (t, ξ). We define xε as the solution of the
modified Volterra integral equation

xε(t) =
∫ t

0

k(t − τ ) Gε(τ, xε(τ )) dτ,

and with a Gronwall inequality we obtain

xε → x in C([0, T ], Xρ).
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The point of this construction is now that xε is continuously differentiable, since
its distributional derivative is given by

x′
ε = (I + ∂−αA)−1Gε(·, xε) = Gε(·, xε) − (I + ∂−αA)−1∂−αAGε(·, xε),

which is in C([0, T ], Xρ) because (I + s−αA)−1s−α is, by Lemmas 2.2 and 2.1, the
Laplace transform of a locally integrable kernel mapping from X to Xρ. Upon
differentiating the integral equation for xε we then obtain, in Xρ,

x′
ε(t) =

∫ t

0

k(t − τ ) (Gε,t(τ, x(τ )) + Gε,x(τ, xε(τ ))x′
ε(τ )) dτ.

Comparing this with the equation for y and using a Gronwall inequality we obtain

x′
ε → y in C([0, T ], Xρ).

Since differentiation is a closed operator on C([0, T ], Xρ), it follows that x ∈
C1([0, T ], Xρ) and x′ = y.

(c) We proceed similarly for the second derivative of x, which (formally) solves
the linear Volterra integral equation

z(t) =
∫ t

0

k(t− τ )
(
Gtt +2Gtxx′ +Gxx(x′, x′)+Gxz

)
(τ ) dτ + k(t)

(
Gt +Gxx′

)
(0).

Since ‖Gtt‖ ≤ C tα−2 because of the presence of the second derivative of the term
(tα/Γ(α + 1))Au0 in w′′(t), this integral equation for z is of the form

z(t) = g(t) +
∫ t

0

k(t − τ ) Gx(τ, x(τ ))z(τ ) dτ,

where g, and hence also z, satisfies g ∈ C((0, T ], Xρ) with ‖g(t)‖ρ ≤ C tα−1−αρ ≤
C t−αρ. As in part (b), it is shown that z is indeed the derivative of y = x′. This
proves the result for u = w + x. �

8. The subdiffusion equation

In this section we extend our results to equation (2.4), viz.,

(8.1) u + ∂−αAu = u0 + ∂−1f,

in the situation of
0 < α < 1.

This equation has recently received much attention in the physical literature as a
model equation for slow anomalous diffusion; see [28] and references therein. The
techniques of this paper apply equally to this situation, with slight modifications in
the results. The resolvent bounds of Lemma 2.2 remain unchanged for 0 < α < 1,
and the regularity result of Lemma 2.3 now becomes the following: under the
conditions of Lemma 2.3, the solution is of the form

(8.2) u(t) =
∑

m,l≥0; m+lα<2

cml t
m+lα + v(t)

with cml ∈ X and v ∈ C2([0, T ], X) with v(0) = v′(0) = 0. For equation (8.1) with
0 < α < 1 the numerical method (4.4), or equivalently (4.7), remains unchanged.
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However, the error bound of Theorem 4.1 no longer remains valid. Instead of (4.11)
we now have for method (4.4) the weaker estimate, for 0 ≤ ν ≤ 2 and 0 ≤ σ ≤ 1,

(8.3) ‖un−u(tn)‖ ≤ Ch1+α ‖u0‖ν

t1+α−αν
n

+Ch2

(
‖f0‖σ

t1−ασ
n

+ ‖f ′(0)‖ +
∫ tn

0

‖f ′′(τ )‖ dτ

)
.

This is obtained with the same proof based on Lemma 3.2, which can be used only
with γ = 1 + α < 2 in the term of (4.4) containing u0.

On the other hand, method (4.10) here still admits a (non-uniform) second-order
error bound: (4.11) holds for 0 ≤ ν ≤ 1 and 0 ≤ σ ≤ 1. This is again obtained by
using Lemma 3.2, now with γ = 2.

For very regular data u0 and f , which are such that in (8.2) cml ∈ D(A) and
v ∈ C2([0, T ], D(A)), a uniform second-order error bound can be obtained by dis-
cretizing (8.1) with the fractional BDF2 method with correction terms that inte-
grate exactly all the powers appearing in the expansion terms in (8.2), as in [19, 20].
In a Hilbert space framework, the uniform O(h2) error bound then follows directly
from a result of [20]. In the Banach space framework of this paper, such an error
bound is obtained by an argument based on consistency (Lemma 3.2 for ∂−αAu
and ∂−1f) and stability (Lemma 4.3, which also holds for 0 < α < 1).

9. Numerical experiments

We present several numerical experiments to illustrate the main results in the
paper. For different problems (2.1) or (5.1), we select T > 0, N ≥ 1, and we apply
the numerical method (4.7) or (6.2) with time step size h = T/N . In order to
estimate the errors, we adopt as a reference solution the discrete one corresponding
to he = T/Ne, where Ne � N . In the experiments, we will focus on the behavior
of the error constants rather than on the errors themselves.

9.1. Experiment 1. We consider the scalar equation

u(t) + ∂−αu(t) = 1, t ≥ 0,

i.e., the linear, homogeneous problem with A = 1, X = C and u0 = 1. For T = 2,
we select N = 2k, 4 ≤ k ≤ 9, and Ne = 3200.
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Figure 1. Left: Errors/h2 vs. t for α = 1.5. Right:
Errors · t1−α/h1+α vs. t for α = 0.5.
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If 1 ≤ α < 2, we normalize the resulting errors by dividing them by the corre-
sponding h2. However, if 0 < α < 1, we normalize by multiplying the errors by
t1−α/h1+α. In view of (4.15), with ρ = 0, and (8.3), with ν = 2, what we expect is
these normalized errors to remain bounded.

For α = 1.5 and α = 0.5 we plot the above normalized errors, for the different
values of h used, on the coarser grid with N = 16. Figure 1 shows that the
error constants behave in a coherent way. While the left-hand plot confirms a
uniform O(h2) error for α = 1.5, the right-hand plot for α = 0.5 shows that in
the subdiffusion case we do not have a uniform-in-time O(h1+α) error bound for
method (4.7).

9.2. Experiment 2. This and the next experiment are on the fractional Burgers’
equation

(9.1) u(x, t) − ∂−αuxx(x, t) = u0 − ∂−1(u(x, t)2)x, 0 ≤ x ≤ π, t ≥ 0,

with homogeneous Dirichlet boundary conditions, for different 1 ≤ α < 2, and
initial conditions u0(x) with different degrees of smoothness. As phase space we
adopt X = Lp(0, π), 1 ≤ p < +∞, or X = C[0, π], if p = +∞. The underlying
operator, A = −d2/dx2, along with homogeneous Dirichlet boundary conditions, is
well known to satisfy the resolvent estimate [31]. It is also clear, since the Sobolev
space W 1,p(0, π) is continuously embedded in C[0, π], that the nonlinearity fits in
our framework with ρ = 1/2, 1 ≤ p ≤ +∞.

We first discretize the problem in space by means of finite differences. To this
end we fix a number J of uniformly distributed nodes xj = j∆x, 1 ≤ j ≤ J , in
(0, π), with ∆x = π/(J + 1). The nonlinear term (u2)x and the Laplacian operator
are approximated by centered differences. Thus, we are led to consider semidiscrete
problems, in the space X∆x = CJ (endowed with the discrete Lp-norm), of the form

(9.2) U(t) + ∂−αA∆xU(t) = U0 − ∂−1B∆xU(t)2, t ≥ 0,

where A∆x and B∆x are the J × J matrices

A∆x = −∆x−2tridiag (1,−2, 1), B∆x = (2∆x)−1tridiag (1, 0,−1),

and, for U ∈ CJ , U2 stands for the entrywise square of U . As an initial condition
we take U0 = {u0(xj)}J

j=1.
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Figure 2. Left: Errors in the X1/2 norm times t3/4/h2 vs. t.
Right: Errors in the X-norm divided by h2 vs. t (α = 1.5).
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In order to properly focus on the time discretization, avoiding the effect of the
spatial error, in the experiments we just consider the discretization in time of (9.2),
keeping in mind the heuristical principle (see, e.g., Section 5 in [3]) that, for large
J , the behavior of ‖U0‖ρ should be close to the one of ‖u0‖ρ. It is known [1, 30]
that A∆x satifies the basic resolvent estimate (2.2), for all π/2 < θ < π.

In the second experiment we take u0(x) = sin(x), 0 ≤ x ≤ π, J = 100, α = 1.5
and p = ∞. For T = 0.5, N = 2k, 4 ≤ k ≤ 8, and Ne = 210, we discretize (9.2) in
time. Since u0 belongs to the domain of all powers of A, we can apply Theorem 4.2
to (9.1) with ρ = 1/2, and the same for (9.2). In Figure 2 we plot, for the different
values of h, the errors in the X1/2-norm, multiplied by tαρh−2, and the errors in
the X-norm, normalized by dividing them by h2. These plots reflect a uniformly
bounded error constant, as predicted by Theorem 4.2.

9.3. Experiment 3. Again in the context of (9.2) we take p = 2, ρ = 0.5, J = 2000
and

u0(x) = φ(x) := c

J∑
j=10

(−1)j

j2.6
· sin(jx),

where c > 0 is selected so as to have ‖u0‖∞ = 1. This function belongs to the
domains of all powers of A, but ‖u0‖2/α becomes very large when α → 1. Since
the discretization U0 of φ is expressed in terms of eigenvectors of A∆x and the
eigenvalues of A∆x are known, we are in the position to accurately estimate ‖U0‖2/α,
which also becomes very large when α → 1. On the other hand, ‖F0‖1/α is much
more moderate (see the second plot in Figure 3).

The behavior of the errors is likely to be critical for small times, when the
smoothing effects do not take place. Therefore, in this experiment we choose T =
0.001. Now, we discretize (9.2) in time by (6.2), with N = 4 and Ne = 40. Then,
for each 1 ≤ α < 2, we calculate the normalized error constants

C(α, ν) = max
1≤n≤4

h−2tαν‖U(tn) − Un‖ν , ν = 0, 0.5.

Theorem 6.2 predicts that C(α, ν), ν = 0, 0.5, are bounded as long as ‖U0‖2/α

and ‖F0‖1/α are bounded. Actually, in view of the second plot in Figure 3, these
quantities should be bounded in terms of ‖U0‖2/α. In the present experiment we
represent the ratio C(α, 0.5)/‖U0‖2/α against α (see the left-hand plot in Figure 3),
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Figure 3. Left: ‖U0‖2/α and ‖F0‖1/α vs. α. Right: Scaled error
C(α, 0.5) divided by ‖U0‖2/α vs. α.
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Figure 4. C(α, 0) and C(α, 0.5) vs. α. Left: for initial data φ(x).
Right: for initial data sin(x).

which turns out to be very moderate, in spite of the fact that C(α, ν) are larger
than 104 for α close to 1 (see the left-hand plot in Figure 4). Finally, we repeat
the experiment for the initial data u0(x) = sin x, which belongs to the domain of
all powers of A with moderate norms. Now, the right-hand plot in Figure 4 shows
good behavior of the error constants C(α, ν) for all α.
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