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COMPLEXITY OF INVERTING THE EULER FUNCTION

SCOTT CONTINI, ERNIE CROOT, AND IGOR E. SHPARLINSKI

Abstract. Given an integer n, how hard is it to find the set of all integers
m such that ϕ(m) = n, where ϕ is the Euler totient function? We present a
certain basic algorithm which, given the prime number factorization of n, in
polynomial time “on average” (that is, (log n)O(1)), finds the set of all such
solutions m. In fact, in the worst case this set of solutions is exponential
in log n, and so cannot be constructed by a polynomial time algorithm. In
the opposite direction, we show, under a widely accepted number theoretic
conjecture, that the Partition Problem, an NP-complete problem, can be
reduced in polynomial (in the input size) time to the problem of deciding
whether ϕ(m) = n has a solution, for polynomially (in the input size of the

Partition Problem) many values of n (where the prime factorizations of these
n are given). What this means is that the problem of deciding whether there
even exists a solution m to ϕ(m) = n, let alone finding any or all such solutions,
is very likely to be intractable. Finally, we establish close links between the
problem of inverting the Euler function and the integer factorization problem.

1. Introduction

In this paper we study the complexity of inverting the Euler function ϕ(m),
which, as usual, for an integer m ≥ 1, is defined by

ϕ(m) = #(Z/mZ)× =
∏

pα ‖m

pα−1(p − 1).

Miller [19] showed that the problem of computing the Euler function ϕ(n) is of
equivalent difficulty to the problem of factoring n.1 Here we concentrate on the dual
question of inverting the Euler function, and we consider three types of problems
of increasing difficulty:

Problem A. Given n, and given the prime factorization of n, de-
termine whether there exists an integer m satisfying ϕ(m) = n.
Problem B. Given n, and given the prime factorization of n, de-
termine the set Ψ(n) of all solutions m ≥ 1 to ϕ(m) = n.
Problem C. Given only n (and not its prime factorization), de-
termine the set Ψ(n) of all solutions m ≥ 1 to ϕ(m) = n.
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1The algorithm of [19] is not deterministic. Given the prime factorization of n, one can compute

ϕ(n) deterministically; however, Miller showed that given ϕ(n), a certain randomized algorithm
can factor n in t steps with probability 1− ϑt, for a certain ϑ ∈ (0, 1), where each “step” requires

only (log n)O(1) bit operations.
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We design an algorithm which solves Problem B in exponential time in log n
in the worst case, and in polynomial time for “almost all” n. An algorithm based
on similar ideas is outlined in [8], [20], and [18], however no complexity analysis has
been given. Because for infinitely many n the cardinality of Ψ(n) is exponentially
large, any algorithm for solving either Problem B or Problem C must run in
time at least exponential in log n in the worst case. Indeed, P. Erdős [12] and
C. Pomerance [22, Theorem 4.6] show that for infinitely many n,

#Ψ(n) ≥ nγ+o(1),

where γ > 0 is any constant such that for any sufficiently large X there are at least
X1+o(1) primes p ≤ X such that all prime divisors of p− 1 are less than X1−γ (see
also [21]). By Theorem 1 of [3] one can take γ = 0.7039.

A natural question is whether Problem A is any easier; obviously, Problem A

is no harder than either Problem B or Problem C. We prove in Section 3 that,
assuming a certain strong form of the famous Hardy–Littlewood prime k-tuplet con-
jecture (in the case k = 2), there is a one-to-many polynomial time reduction from
the Partition Problem, an NP-complete problem, to the question of whether
ϕ(m) = n.2 This shows that Problem A likely cannot be solved in time polyno-
mial in log n if one believes the famous conjecture that P �= NP. Although at the
present time the Hardy–Littlewood conjecture is out of reach, there are a number
of results in this direction which leave little doubt that the conjecture is correct;
for example, see [11] for the original formulation and [4] for more recent advances.

Furthermore, in Section 5 we show that if we could solve Problem C in time
polynomial in #Ψ(n) + τ (n) + log n (actually we show this under a slightly weaker
condition), then we can factor almost all (relative density 1) integers n that are the
product of two primes by a certain randomized algorithm whose expected running
time is polynomial in log n. This result seems weaker than that of Section 3 but
is based on different assumptions and has an unconditional form. Assuming the
Extended Riemann Hypothesis, however, we show that if we have such an algorithm
for Problem C, then we can factor all integers n that are the product of two primes
in polynomial time.

Many aspects of the Euler function, such as growth, distribution in arithmetic
progressions and in other special sets of elements, and many other similar questions,
have extensively been studied in the literature; see [5, 6, 10, 13, 14, 15, 21, 22] and
references therein. Nevertheless, the questions considered here seem to be new and
have never been studied.

2. Notation

We use ω(m) and τ (m) to denote the total number of distinct prime and positive
integer divisors of a positive integer m, respectively (we also define ω(1) = 0,
τ (1) = 1).

We also use the Vinogradov symbols �, � as well as the Landau symbols
O and o with their regular meanings (we recall that U � V and U = O(V )

2That is, for each instance of the Partition Problem, we construct a series of numbers
n1, ..., nK , such that the Partition Problem has a solution if and only if one of these numbers is
a totient. Furthermore, one cannot apply our algorithm which solves Problem B to easily decide
whether one of n1, ..., nK is a totient (in the hopes of solving almost all instances of the Partition

Problem quickly), because each ni has many divisors. Therefore it turns out that our algorithm
for solving Problem B takes a long time to find Ψ(ni), let alone to decide whether ni is a totient.
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are both equivalent to the inequality |U | ≤ cV with some constant c > 0). The
implied constants in the symbols O, � and � are always absolute unless indicated
otherwise.

3. NP-hardness of Problem A

3.1. Totient testing and the Partition Problem. In this section we prove that
the problem of deciding whether a given set of integers S contains a totient, where
the prime factorizations of these numbers are also given, is NP-complete, if we
assume a certain strong form of the Hardy–Littlewood prime k-tuplet conjecture.
This result shows that if we had a polynomial time algorithm for solving Prob-

lem A, then we could solve NP-complete problems in polynomial time (assuming
the Hardy–Littlewood conjecture).

We note that we need the Hardy–Littlewood conjecture in a slightly stronger
uniform formulation than that which usually appears in the literature. Namely, we
assume:

Conjecture 3.1. There exists an integer A > 0 such that the following holds:
Suppose that (M1x + a1)(M2x + a2) has no fixed prime divisors as x runs through
the integers, and that M1, M2 > 0, and 0 ≤ ai < Mi for i = 1 and 2. Then, there
exists an integer x < logA(M1M2 + 1) such that both M1x + a1 and M2x + a2 are
prime.

We refer to [4] for several results in the direction of Conjecture 3.1 “on average”.
It is certainly an interesting open question whether such results can be used to
obtain an unconditional proof of NP-completeness of Problem A.

We now focus our attention on the following NP-complete problem:
Partition Problem: Given a sequence of 2k integers x1, . . . , x2k,
where k is odd,3 such that S = x1+· · ·+x2k is even, decide whether
there exist k of them whose sum is S/2.

Assuming Conjecture 3.1, we give a polynomial time reduction of the Partition

Problem to the problem of deciding whether there exists an integer m satisfying
ϕ(m) = n, for a certain small set of values of n. More precisely, we prove the
following theorem:

Theorem 3.2. Suppose that B bits are required to describe the input x1, . . . , x2k

for the Partition Problem. Then, assuming Conjecture 3.1, we construct in
polynomial time a set of K = (Bk)O(1) integers n1, . . . , nK such that there exists
a k-element subset of {x1, . . . , x2k} summing to S/2 if and only if for some i =
1, . . . , K we have that ϕ(m) = ni has a solution.

In order to prove this theorem, we require the following proposition, proved in
Section 3.2:

Proposition 3.3. Given x1, . . . , x2k, we can construct in polynomial time a mod-
ulus M and a series of congruence classes ai (mod M) with (ai, M) = 1, such that
if N1, . . . , N2k are any numbers satisfying

Ni ≡ ai (mod M),

3We do not actually need the condition k odd, but it makes our proof simpler to include it.
Also, we note that if we have a collection of integers for which this does not hold, then we can
make it hold by adding two zeros to the set, thereby enlarging the set of 2k + 2 integers.
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and if {i1, . . . , i�} ⊂ {1, 2, . . . , 2k}, with � ≤ k, then

(1) gcd(2Ni1 · · ·Ni�
+ 1, M) = 1 ⇐⇒ � = k, and xi1 + · · · + xi�

= S/2.

Moreover, we have that

(2) Ni − 1 � 4N1 · · ·N2k, i = 1, 2, . . . , 2k,

and

(3) gcd(4N1 · · ·N2k + 1, M) > 1 and gcd(2N1 · · ·N2k + 1, M) > 1.

Proof of Theorem 3.2. Suppose that x1, . . . , x2k are given, and suppose we have a
set of primes p1, . . . , p2k such that pi ≡ ai (mod M). Then, if there is a solution to

ϕ(m) = 4p1 · · · p2k,

the integer m must be of the form

m = P1P2 or m = 2P1P2,

where P1 and P2 are primes of the special form

P1 = 2q1 · · · qk + 1 and P2 = 2r1 · · · rk + 1,

where {q1, . . . , qk} and {r1, . . . , rk} partition {p1, . . . , p2k}.
To see that this is the case, we first note that m cannot be a product of more

than 2 distinct odd primes, since if it were, we would have that 8|ϕ(m). Also, m
cannot be divisible by the square of an odd prime p, since it would imply that
p − 1|ϕ(m), which would violate (2).

So, m is of the form P , 2P , 4P (P is a prime), P1P2, or 2P1P2. Now, if m = 2P
or P , then P must be of the form

P = 4p1 · · · p2k + 1.

However, from condition (3), we must have that (P, M) > 1, which would imply
that P cannot be prime, and so m cannot be of the form P or 2P . Finally, if
m = 4P , then we must have that

P = 2p1 · · · p2k + 1;

and again, from condition (3), we must have that (P, M) > 1, so m cannot be of
the form 4P . Thus, as claimed, m must be of the form 2P1P2 or P1P2.

Now, these odd primes P1 and P2 must be of the form

P1 = 2q1 · · · q� + 1, P2 = 2q�+1 · · · q2k + 1,

where {q1, . . . , q2k} = {p1, . . . , p2k}. If � < k, then by (1) we have that

gcd(2q1 · · · q� + 1, M) > 1,

and so P1 could not be prime. Thus, � = k.
Now suppose that there is a subset {xi1 , . . . , xik

} ⊆ {x1, . . . , x2k} summing to
S/2, and let {xj1 , . . . , xjk

} be its complement. Let � = 2, 3, . . . , k + 2 be arbitrary,
and suppose we were lucky and have that 1 ∈ {i1, . . . , ik} and � ∈ {j1, . . . , jk};
certainly, for one of these values of � we have that either this holds, or else that
1 ∈ {j1, . . . , jk} and � ∈ {i1, . . . , ik}. Let {t1, . . . , t2k−2} = {1, 2, . . . , 2k} \ {1, �}.
Then, by the Hardy-Littlewood conjecture, we know that we can pick values for
t1, . . . , t2k−2 < (Bk)O(1) such that the numbers ai +Mti are all prime (the numbers
ai are coprime to M); moreover, we can pick such values in time (Bk)O(1), by picking
t1 first, then t2, then t3, and so on.
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Now, we consider the polynomials

F (x) = 2(a1 + Mx)
∏

u∈{i1,...,ik}
u �=1

(au + Mtu) + 1

and

G(y) = 2(a� + My)
∏

u∈{j1,...,jk}
u �=�

(au + Mtu) + 1.

By (1) these polynomials are coprime to M , and so have no fixed prime divisors; in
fact, (a1 +Mx)F (x) and (a� +My)G(y) have no fixed prime divisors. So, assuming
the Hardy-Littlewood conjecture, if we run through the values of x, y < (Bk)O(1)

that make a1 + Mx and a� + My both prime, then among these values of x and y,
there must be a choice which makes all of

a1 + Mx, a� + My, F (x), G(y)

prime. So, we have a set of primes p1, . . . , p2k of the form

pi = ai + Mti, i = 2, . . . , � − 1, � + 1, . . . , 2k,

and

p1 = a1 + Mx, p� = a� + My.

Note that these primes satisfy the congruence conditions pi ≡ ai (mod M), and we
have that

2pi1 · · · pik
+ 1 = F (x) and 2pj1 · · · pjk

+ 1 = G(y)

are prime. So, if we let n(x, y) = 4p1 · · · p2k, then we get a solution

ϕ(F (x)G(y)) = n(x, y).

So, by running through the choices for x, y < (Bk)O(1), we are guaranteed to hit
upon a value of n(x, y) having a solution m to ϕ(m) = n(x, y), as long as there is
a subset of {x1, . . . , x2k} of cardinality k summing to S/2.

Conversely, if there is no subset of {x1, . . . , x2k} of cardinality k summing to
S/2, then either F (x) or G(y) is an odd composite, and so fails to satisfy

ϕ(F (x)G(y)) = n(x, y)

for all values of x and y.
It follows that we can reduce the Partition Problem to the problem of deciding

whether there are solutions m to ϕ(m) = n for a set of K = (Bk)O(1) values of
n. �

3.2. Proof of Proposition 3.3.

3.2.1. General outline. First, suppose that x1, . . . , x2k are given. We build up our
congruence conditions ai (mod M) in two stages, which we refer to as “initial
congruence restrictions” and “primary congruence restrictions”. The number M we
build up is the product of various moduli which define these congruence restrictions.
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3.2.2. Initial congruence restrictions. First, we suppose that

ai ≡ 1 (mod 8), i = 1, 2, . . . , 2k.

This condition ensures that (2) holds, since if Ni ≡ ai (mod M), where 8|M , then
we have that 8|Ni − 1, whereas N1 · · ·N2k is odd.

Next, we suppose that 3|M and that

ai ≡ 2 (mod 3).

This condition implies half of (3), since if Ni ≡ ai (mod M), we would have

2N1 · · ·N2k + 1 ≡ 22k+1 + 1 ≡ 0 (mod 3).

Then, we suppose that 5|M and that

ai ≡ 4 (mod 5).

This condition implies the other half of (3), since if Ni ≡ ai (mod M), we would
have

4N1 · · ·N2k + 1 ≡ 42k+1 + 1 ≡ 0 (mod 5).
We note that the conditions we have so far also imply that for any Ni1 , . . . , Nik

satisfying Nij
≡ aij

(mod M),

(2Ni1 · · ·Nik
+ 1, 8 · 3 · 5) = 1.

Next, we find integers a1, . . . , a2k so that if Ni ≡ ai (mod M), and if

{A1, . . . , A�} ⊂ {N1, . . . , N2k},
where � ≤ k, then

(2A1 · · ·A� + 1, M) = 1
implies that � = k. This proves part of (1): Let R1, . . . , Rk−1 be consecutive primes
greater than k. Then, for j = 1, 2, . . . , k − 1, we let gj be any integer solution to

1 + jgj ≡ Rj (mod 2Rj).

Clearly, since j < k < Rj , we have that if j is odd, then gj ≡ (Rj−1)j−1 (mod 2Rj)
is a solution, and if j is even, then

gj ≡ ((Rj − 1)/2)(j/2)−1 (mod Rj)

gives a solution. Next, we assume that
k−1∏
j=1

2Rj + 1
3

∣∣∣∣∣ M,

and our congruence conditions are

ai ≡ 2gj (mod
2Rj + 1

3
), i = 1, 2, . . . , 2k, j = 1, 2, . . . , k − 1.

We note that these moduli are all coprime, and are coprime to 8 · 3 · 5 = 120, which
is the modulus of the previous congruence conditions.

Now suppose that Ni ≡ ai (mod M), and suppose that

N = 2A1 · · ·A� + 1, for some 1 ≤ � ≤ k − 1,

where {A1, . . . , A�} ⊂ {N1, . . . , N2k}. Then, we have that

N = 2A1 · · ·A� + 1 ≡ 21+�g� + 1 ≡ 2R� + 1 ≡ 0 (mod
2R� + 1

3
).
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So,
gcd(2A1 · · ·A� + 1, M) > 1,

as claimed.
We claim now that if

{A1, . . . , Ak} ⊂ {N1, . . . , N2k},
then we have that 2A1 · · ·Ak + 1 is coprime to all the moduli we have so far.
To show this, it suffices to prove that this number is coprime to (2Ri + 1)/3 for
i = 1, 2, . . . , k − 1: we have that

2A1 · · ·Ak + 1 ≡ 21+gik + 1 (mod
2Ri + 1

3
).

Now, the numbers (2Ri +1)/3 and 21+gik+1 are coprime unless Ri|1+gik. But now,
we know that 1 + gii ≡ 0 (mod Ri). So, the only way that 1 + gik ≡ 0 (mod Ri)
could hold is if Ri|(k − i), which can only hold if i = k. Thus, 2A1 · · ·Ak + 1 is
coprime to the moudli we have so far.

3.2.3. Primary congruence conditions. Now we establish some congruence condi-
tions which allow us to relate numbers ai to the numbers xi.

First, we require the following basic statement:

Lemma 3.4. Suppose that {r1, . . . , rn} and {s1, . . . , sn} are two disjoint sets of
odd prime numbers. Then, we have that the numbers

Qi,j =
2risj − 1

(2ri − 1)(2sj − 1)

are coprime.

Proof. It is well known that

gcd(2A − 1, 2B − 1) = 2gcd(A,B) − 1.

Applying this to our problem, we find that

G = gcd(2rasc − 1, 2rbsd − 1) = 2gcd(rasc,rbsd) − 1.

Now, if a = b, then we assume c �= d, lest rasc = rbsd; then we get that

G = 2ra − 1.

It is now obvious that Qa,c and Qb,d are coprime.
The same argument proves that Qa,c and Qb,d are coprime for c = d (with

a �= b). �

Now let

A =
2k∑
i=1

|xi|,

and let U1 < U2 < · · · < Uu be a set of primes of size (k log A)O(1) which are
coprime to the common modulus for the congruence conditions in Section 3.2.2;
that is,

gcd

⎛
⎝8 · 3 · 5 ·

k−1∏
j=1

2Rj + 1
3

, Ui

⎞
⎠ = 1, i = 1, . . . , u.
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Also, we suppose that
u∏

i=1

Ui > 2A.

Then, let v = Uu, and let V1 < · · · < Vv be primes greater than Uu and of size
(k log A)O(1).

For each i = 1, 2, . . . , u, let

{ϑ(i, 1), . . . , ϑ(i, Ui − 1)} = {0, . . . , Ui − 1} \ {S/2 (mod Ui)};
that is, the values ϑ(i, j) run through all the residue classes modulo Ui, except the
class S/2 (mod Ui). Also, let

δi,j ≡ k−1 (mod UiVj), 0 ≤ δi,j ≤ UiVj − 1.

Our final set of congruence conditions on a1, . . . , a2k is as follows: For i =
1, . . . , u, j = 1, . . . , Ui − 1, and � = 1, . . . , 2k,

a� ≡ −2Vjx�+δi,j(Vjϑ(i,j)−1) (mod
2UiVj − 1

(2Ui − 1)(2Vj − 1)
).

From Lemma 3.4, we have that all these moduli are coprime, and so the Chinese
Remainder Theorem tells us that such a� exist (and can be easily computed).

Let M be the product of all the moduli in our congruence conditions, that is,

M = 8 · 3 · 5 ·
k−1∏
ν=1

2Rν + 1
3

·
u∏

i=1

Ui−1∏
j=1

2UiVj − 1
(2Ui − 1)(2Vj − 1)

,

and suppose that Ni ≡ ai (mod M), i = 1, . . . , 2k. We claim that

xn1 + · · · + xnk
= S/2

if and only if 2Nn1 · · ·Nnk
+ 1 is coprime to M .

First, let us suppose that xn1 + · · · + xnk
�= S/2. Then, for one of our primes

U1, . . . , Uu, we have that

xn1 + · · · + xnk
≡ ϑ(i, j) (mod Ui),

for some j = 1, 2, . . . , Ui − 1. Letting

T =
2UiVj − 1

(2Ui − 1)(2Vj − 1)
,

we see that

2Nn1 · · ·Nnk
+ 1 ≡ (−1)k21+Vj(xn1+···+xnk

−kδ(i,j)ϑ(i,j))−kδ(i,j) + 1

≡ −2VjUiI + 1 ≡ 0 (mod T ),

where I is some integer.
On the other hand, if

xn1 + · · · + xnk
= S/2,

then for any i = 1, 2, . . . , u, j = 1, 2, . . . , Ui − 1,

2Nn1 · · ·Nnk
+ 1 ≡ (−1)k2Vj(xn1+···+xnk

−ϑ(i,j)) + 1

≡ −2VjI + 1 (mod T ),

where gcd(I, Ui) = 1. To show that this last quantity is coprime to T , we observe
that

gcd(2VjI − 1, 2UiVj − 1) = 2Vj − 1,
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and so,
gcd(2VjI − 1, T ) = gcd(2Vj − 1, T ) = 1.

To see this last equality, we observe that

2UiVj − 1
2Vj − 1

=
Ui−1∑
j=0

2jVj ≡
Ui−1∑
j=0

2j = 2Ui − 1 (mod 2Vj − 1).

Therefore, since gcd(2Ui − 1, 2Vj − 1) = 1, it follows that gcd(2Vj − 1, T ) = 1, as
claimed. �

4. Algorithm for Problem B

As we have seen in Section 3, Problem A is likely to be NP-complete, and
certainly Problem B is no easier. Nevertheless, here we show in some sense “on
average” Problem B can solved in polynomial time.

We also remark that one cannot get an efficient “on average” algorithm for the
Partition Problem from a combination of the reduction of Section 3 and the
algorithm of this section. This is because the reduction does not produce uniformly
distributed instances of Problem B.

Given an algorithm for solving Problem B, we then have an algorithm for solv-
ing Problem C, whose first step is just to factor n by using a probabilistic factoring
algorithm (see [9]); however, for most integers n, the factoring step dominates the
overall complexity of the algorithm. In the worst case, where Ψ(n) is “large”, the
running time of the rest of the algorithm would dominate this factoring step.

In this section we prove the following result which is based on some kind of
“intelligent exhaustive search”.

Theorem 4.1. Problem B can be solved in time

T (n) ≤ (#Ψ∗(n) + τ (n) + log n)O(1) ,

where
Ψ∗(n) =

⋃
d|n

Ψ(d).

Proof. Basically, we form a sequence of sets E1, E2, . . ., where Ei is the set of all
2i-tuples of the form (�1, . . . , �i, γ1, . . . , γi), where the �1 < · · · < �i are all prime,
and where γ1, . . . , γi are positive integers satisfying

i∏
j=1

�
γj−1
j (�j − 1) | n.

It is clear that we cannot construct this sequence Ei forever, because #Ψ(n) is
finite; moreover, we finish with Ek, where

k = O(log n).

Now, every integer m satisfying ϕ(m) = n corresponds to some vector in one of
these sets Ei, namely the vector (�1, . . . , �i, γ1, . . . , γi) satisfying

m =
i∏

j=1

�
γj

j .
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Also, it is easy to see that E1, . . . , Ek contain

#Ψ∗(n) =
∑
d|n

#Ψ(d)

vectors among them. Thus, given E1, . . . , Ek, at most

(#Ψ∗(n) + log n)O(1)

bit operations are required to scan through the sets Ei to locate vectors correspond-
ing to solutions ϕ(m) = n.

Finally, we describe how to build the list Ei, given that we already have the list
Ei−1: basically, we run through Ei−1 of vectors (�1, . . . , �i−1, γ1, . . . , γi−1), and we
locate all primes �i > �i−1, and all integers γi ≥ 1 such that

�γi−1
i (�i − 1) | ni,

where
ni =

n∏i−1
j=1 �

γj−1
j (�j − 1)

.

To do this, we search through the divisors of ni to see which are of the form
�γi−1
i (�i − 1). The number of bit operations needed to find all such divisors is

(τ (ni) + log n)O(1) = (τ (n) + log n)O(1).

Now, for each such vector (�1, . . . , �i−1, γ1, . . . , γi−1) and for each such pair (�i, γi),
�i > �i−1, we add the vector (�1, . . . , �i, γ1, . . . , γi) to the new list Ei.

It is easy to see that the number of bit operations required to build the list
E1, . . . , Ek is then

(#Ψ∗(n) + τ (n) + log n)O(1),

and so our theorem is proved. �

To address the average performance of the algorithm, we require the following
bound:

Theorem 4.2. ∑
n≤x

#Ψ∗(n) � x log x.

Proof. We have that

(4)
∑
n≤x

#Ψ∗(n) =
∑
n≤x

∑
d|n

#Ψ(d) ≤ x
∑
d≤x

#Ψ(d)
d

.

Now, ∑
d≤x

#Ψ(d) = #{n ≥ 1 : ϕ(n) ≤ x} =
(

ζ(2)ζ(3)
ζ(6)

+ o(1)
)

x;

see [7]. So, by partial summation, we conclude that∑
d≤x

#Ψ(d)
d

= O(log x),

which, together with (4), finishes the proof. �
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An almost immediate corollary of Theorem 4.2, together with the well-known
bound

(5)
∑
n≤x

τ (n) = O(x log x)

(see Theorem 2 in Section I.3.2 of [23], and Theorem 4.1) is the following.

Corollary 4.3. For every A > 0, there exists B > 0, so that for all but at most
O(x/ logA x) integers n ≤ x we have that the algorithm in Theorem 4.1 finds Ψ(n)
in time logB n.

5. Problem C is as hard as factoring

Here we show that if we had an “efficient” algorithm for solving Problem C,
then we can factor density 1 of the integers in P2, which is the set of integers that
are the product of exactly two prime numbers.

This result seems weaker than the result in Theorem 3.2; however, Theorem 3.2
assumes a strong version of the Hardy-Littlewood conjecture, whereas here we make
no such assumptions.

Let P2(x) denote the set of n ∈ P2 with n ≤ x. It is well known that

#P2(x) = (1 + o(1))
x log log x

2 log x
.

As usual, we say that a randomized algorithm factors n in polynomial time, if
the algorithm has access to a random number generator, and factors n in time
Ck logA n (for some constants A, C > 0) steps with probability at least 1 − 2−k.

Our next result, connecting solvability of Problem C with integer factorization,
is the following:

Theorem 5.1. Given an algorithm that, for each integer N , finds the set Ψ(N)
in (#Ψ∗(N) + τ (N) + log N)O(1) steps, without being given the prime factorization
of N , one can factor using a randomized algorithm in polynomial time every n ∈
P2(x)\E(x), for some set E(x) such that

• #E(x) = O(x/ log2 x), unconditionally,
• E(x) = ∅, under the Extended Riemann Hypothesis.

Proof. Let π(X, r, a) denote the number of primes � ≤ X with � ≡ a (mod r). We
need the following result which is a greatly relaxed version of Theorem 2.1 of [2].
Namely, for every X > X0, we have that for all but at most O(1) prime numbers r
with X1/3 ≥ r ≥ log X,

(6) π(X, 4r, a) ≥ X

2ϕ(4r) log X
=

X

4r log X

holds for every integer a with gcd(a, 4r) = 1. It is also well known that (6) holds
under the Extended Riemann Hypothesis for all r satisfying X1/3 ≥ r ≥ 2.

We define E(x) as the set of n = pq ∈ P2(x) such that p or q (or both) is a prime
for which (6) fails. Clearly E(x) satisfies the required properties.

Now, assume we are given sufficiently large odd n = pq ∈ P2(x)\E(x).
Clearly, we can also assume (for both unconditional and conditional results) that

n ≥ x1/2.
We choose two positive integers k1, k2 ≤ x3 and we also consider the product

4(2k1 + 1)(2k2 + 1)n.
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Let D be a divisor of 4(2k1 + 1)(2k2 + 1)n. We remark that if D = ϕ(m) for
some m, then m has at most two odd prime divisors, and for every prime divisor
�|m we have � − 1|D. Clearly, the odd part of m must be one of the forms

(2q1 · · · qs + 1)a(2r1 · · · rt + 1)b, (2q1 · · · qs + 1)a, (4q1 · · · qs + 1)b,

where q1 · · · qsr1 · · · rt|D and q1, . . . , qs, r1, . . . , rt are odd primes (which are possibly
not distinct). Given D, q1, . . . , qs and r1, . . . , rt, there is at most one choice for
a, b ≥ 1 such that ϕ(m) = D.

Since there are at most τ (D) possibilities for each of the products q1 · · · qs and
r1 · · · rt, we obtain

#Ψ(D) = O(τ (D)2) = O
(
τ (4(2k1 + 1)(2k2 + 1)n)2

)
(this crude estimate can easily be improved). This implies that

#Ψ∗(4(2k1 + 1)(2k2 + 1)n) = O
(
τ (4(2k1 + 1)(2k2 + 1)n)3

)
= O

(
τ (2k1 + 1)3τ (2k2 + 1)3

)
.

We see from (5) that the total number of positive integers k ≤ Y with τ (k) ≥
log3 Y is O(Y log−2 Y ). Thus from (6), applied with

X = 4x3p + 2p + 1, r = p, a = 2p + 1,

we derive that, for a sufficiently large x, there are at least

4x3p

4p log(4x3p + 2p + 1)
+ O(x3 log−2 x) ≥ x3

4 log x
+ O(x3 log−2 x) ≥ x3

5 log x

positive integers k1 ≤ x3 for which simultaneously 2(2k1 + 1)p + 1 is prime and
τ (2k1 + 1) < 8 log3 n (recall that x1/2 ≤ n ≤ x and k1 ≤ x3). Similarly, we have
at least the same number of positive integers k2 ≤ x3 for which simultaneously
2(k2 + 1)q + 1 is prime and τ (2k2 + 1) ≤ 8 log3 n.

For each such pair of integers k1, k2 we see that the cardinality of the set
Ψ∗(4(2k1 + 1)(2k2 + 1)n) is polynomially bounded, namely,

#Ψ∗(4(2k1 + 1)(2k2 + 1)n) = O(log18 n),

and that Ψ(4(2k1 + 1)(2k2 + 1)n) contains a solution of the form

(7) m = (2(2k1 + 1)p + 1)(2(2k2 + 1)q + 1)

from which, together with the equation n = pq, the primes p and q can be trivially
found. Now we simply try all values of m ∈ Ψ(4(2k1 + 1)(2k2 + 1)n) in order to
find the one of the form (7).

These considerations naturally lead to the following probabilistic algorithm which
finds the above pair of k1, k2 and thus the primes p and q.

Suppose that the inverting algorithm outputs the set Ψ(N) in time which is
bounded by (#Ψ∗(N) + τ (N) + log N)A for some constant A > 0. We choose
integers k1, k2 uniformly at random in the interval [1, x3] and use the algorithm
to compute Ψ(4(2k1 + 1)(2k2 + 1)n). If the time it takes exceeds log20A N , this
means that #Ψ∗(4(2k1 + 1)(2k2 + 1)n) ≥ log19 N , and we simply terminate the
algorithm and choose another pair k1, k2. It is clear that after the expected number
of O(log6 x) = O(log6 n) (since n ≥ x1/2) trials (that is, random choices of k1, k2),
we find the desired pair of k1, k2. �
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Recalling Theorem 4.2 we see that the algorithm requested in Theorem 5.1 to find
Ψ(N) is supposed to run in polynomial time for almost all integers N . Furthermore,
Theorem 5.1 admits a version with an algorithm which, in polynomial time, finds
Ψ(N) provided Ψ(N) + τ (N) = (log N)O(1) (and is allowed to give a wrong answer
or no answer for the remaining integers N).

One can easily improve the bound of Theorem 5.1 on #E(x) as

#E(x) ≤ x exp
(
−A

(log log x)3/2

(log log log x)1/2

)
for any constant A > 0, if before applying our reduction one tries to find a small
factor of n ∈ P2(x) by using the algorithm of [17]; see also [16]. Moreover, for the
cryptographically most interesting class P̃2(x) of n = pq ∈ P2(x) with p < q < 2p,
the exceptional set Ẽ(x) is of the size #Ẽ(x) = O(x1/2).

We also remark that if the algorithm of Theorem 5.1 ever fails for some n∗ ∈ P2,
then after this for all other n ∈ P2 one can first compute gcd(n, n∗) = 1 and either
factor n immediately or guarantee that the algorithm of Theorem 5.1 succeeds.
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