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A NEW SUPERCONVERGENT COLLOCATION METHOD
FOR EIGENVALUE PROBLEMS

REKHA P. KULKARNI

Abstract. Here we propose a new method based on projections for the ap-
proximate solution of eigenvalue problems. For an integral operator with a
smooth kernel, using an interpolatory projection at Gauss points onto the
space of (discontinuous) piecewise polynomials of degree ≤ r−1, we show that
the proposed method exhibits an error of the order of 4r for eigenvalue approx-
imation and of the order of 3r for spectral subspace approximation. In the case
of a simple eigenvalue, we show that by using an iteration technique, an eigen-
vector approximation of the order 4r can be obtained. This improves upon
the order 2r for eigenvalue approximation in the collocation/iterated colloca-
tion method and the orders r and 2r for spectral subspace approximation in
the collocation method and the iterated collocation method, respectively. We
illustrate this improvement in the order of convergence by numerical examples.

1. Introduction

Consider the eigenvalue problem

(1.1) Tφ = λφ,

where T is a compact linear operator defined on a complex Banach space. A
standard technique for solving (1.1) approximately is to replace T by a finite rank
operator. The approximate solution of (1.1) is then obtained by essentially solving
a matrix eigenvalue problem. If πn is a sequence of finite rank projection operators
converging to the identity operator pointwise, then in the classical Galerkin method
T is replaced by TG

n = πnTπn, and in the iterated Galerkin method proposed by
Sloan, T is replaced by TS

n = Tπn. When πn is an interpolatory projection, the
choice of TC

n = πnTπn gives rise to a collocation method, whereas TS
n = Tπn is

associated with the iterated collocation method. These methods are extensively
studied in literature. (See, for example [1], [3], [4], [5], [6], [7], [10].)

We propose to approximate T by the finite rank operator

TM
n = πnTπn + πnT (I − πn) + (I − πn)Tπn.

Then ‖T − TM
n ‖ = ‖(I − πn)T (I − πn)‖ → 0 as n → ∞.

In this paper an integral operator

Tu(s) =
∫ 1

0

k(s, t)u(t)dt, s ∈ [0, 1],
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with a smooth kernel is considered. Note that T : C[0, 1] → C[0, 1] is compact.
Consider a partition of [0, 1] with n subintervals and norm h. The collocation

points are chosen to be the nr Gauss points, obtained by shifting r Gauss points
in [−1, 1] to each of the subintervals of the partition. Hence the interpolation
points do not include the end points of the subintervals, i.e., the partition points.
As a consequence, the interpolating piecewise polynomial is discontinuous at the
partition points. Let Xn be the space of all (discontinuous) piecewise polynomials
of degree ≤ r−1 with respect to the above partition of [0, 1]. For f ∈ C[0, 1], let πnf
be the unique element of Xn which interpolates f at the nr collocation points. By
using a result of [2], πn can be extended to L∞[0, 1], and then πn : L∞[0, 1] → Xn

is a projection.
Let λ be a nonzero eigenvalue of T with algebraic multiplicity m and let P be

the associated spectral projection. Let λ̂M
n and λ̂C

n = λ̂S
n denote the arithmetic

mean of the m eigenvalues of TM
n and TC

n (or TS
n ), respectively, which approximate

λ. Let PM
n , PC

n and PS
n denote the spectral projections associated with the group

of m eigenvalues of TM
n , TC

n and TS
n , respectively. We prove that

|λ − λ̂M
n | = O(h4r) and δ̂(R(P ), R(PM

n )) = O(h3r),

where δ̂ denotes the gap between the subspaces.
We further consider the case when λ is a simple eigenvalue of T . Let

TM
n φM

n = λM
n φM

n , ‖φM
n ‖ = 1,

and
ψM

n =
1

λM
n

TφM
n .

It is shown that
‖PφM

n − ψM
n ‖ = O(h4r).

The above estimates should be compared with the following known estimates for
the collocation and the iterated collocation methods (see Chatelin [4]):

|λ − λ̂C
n | = |λ − λ̂S

n | = O(h2r),

δ̂(R(P ), R(PC
n )) = O(hr),

δ̂(R(P ), R(PS
n )) = O(h2r).

Note that the range of TM
n is contained in Xn ∪ T (Xn) = Yn, say. Since the

dimension of Xn is nr, the dimension of Yn is ≤ 2nr. While considering the
eigenvalue problem for TM

n , it is enough to consider the restriction of TM
n to Yn.

Thus the eigenvalue problem for TM
n can be reduced to a matrix eigenvalue problem

of size 2nr, whereas the eigenvalue problem for TC
n or TS

n is equivalent to a matrix
eigenvalue problem of size nr. In the case of an uniform partition of [0, 1], the
norm of the partition is h = 1

n . Thus, in the proposed method, an eigenvalue
approximation of the order ( 1

n )4r is obtained by solving an eigenvalue problem of
size 2nr, whereas in the collocation method, in order to achieve the same order
of convergence, it is necessary to solve an eigenvalue problem of size n2r. The
numerical results given in Section 6 confirm this observation.

It is possible to extend our results in various directions. In [8] we have considered
the case of the orthogonal projections. We can also use the new operator TM

n for
approximate solution of an operator equation. As we have introduced a sequence
of finite rank operators converging to T in norm, we can define iterative refinement
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schemes for opertor equations as well as eigenvalue problems, multilevel methods,
accelerated spectral approximation and extrapolation using this new operator. It
is also possible to choose the interpolation points as Lobatto points. These issues
will be studied in future papers.

Here is an outline of the paper. In Section 2 we set the notations and prove some
preliminary results. In Section 3 we describe our new method in a general setting
and obtain some error estimates for eigenelement approximation. In Section 4 we
obtain precise orders of convergence for eigenvalue as well as the spectral subspace
approximation of an integral operator with a smooth kernel. The projection op-
erator is chosen to be the interpolatory projection at Gauss points. In Section 5,
using an iteration technique, we obtain an eigenvector approximation of the order
of 4r. In Section 6 we illustrate our results by numerical examples.

2. Preliminaries

Let X be a complex Banach space and BL(X) the space of all bounded linear
operators on X along with the operator norm. Let T : X → X be a compact linear
operator and let σ (T ) and ρ (T ) denote the spectrum and the resolvent set of T ,
respectively. Let λ be a nonzero eigenvalue of T with algebraic multiplicity m. Let
ε be such that 0 < ε < dist(λ, σ (T ) \ {λ}) and Γ the positively oriented circle with
center λ and radius ε. Then Γ ⊂ ρ (T ) and

max
z∈Γ

‖(T − zI)−1‖ ≤ C1.

Note that throughout this paper C1, C2, C3 and C4 are constants, and C denotes
a generic constant, independent of n . Let

P = − 1
2πi

∫
Γ

(T − zI)−1dz,

the spectral projection associated with T and λ. Then rank P = m.
For nonzero subspaces Y and Z of X, let

δ(Y, Z) = sup{ dist(y, Z) : y ∈ Y, ‖y‖ = 1}.

Then
δ̂(Y, Z) = max{δ(Y, Z), δ(Z, Y )}

is known as the gap between Y and Z. For S ∈ BL(X), we denote by R(S) the
range space. Let δ = min{|z| : z ∈ Γ} > 0.

Let Tn be a sequence in BL converging to T in collectively compact fashion. We
quote the following results from Osborn [9].

For all large n, Γ ⊂ ρ(Tn) and max{‖(Tn − zI)−1‖ : z ∈ Γ} ≤ C2.
As the spectral projection

Pn = − 1
2πi

∫
Γ

(Tn − zI)−1dz

is of rank m, the spectrum of Tn inside Γ consists of m eigenvalues λn,1, . . . , λn,m,
counted according to their algebraic multiplicities. Let

λ̂n =
λn,1 + · · · + λn,m

m

denote their arithmetic mean.
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Theorem 2.1 (Osborn [9]). For all large n,

δ̂(R(P ), R(Pn)) ≤ C‖(T − Tn)T‖.

Below we prove a modified version of Theorem 2 of Osborn [9].

Theorem 2.2. For all large n,

|λ − λ̂n| ≤ C‖Tn(T − Tn)T‖.

Proof. Let An = Pn|R(P ) : R(P ) → R(Pn). The argument given in Theorem 2 of
[9] shows that An is bijective and ‖A−1

n ‖ ≤ 2 for all large n. Define T̂ = T|R(P ) and
T̂n = A−1

n TnAn. Then

|λ − λ̂n| =
1
m
|trace(T̂ − T̂n)| ≤ ‖T̂ − T̂n‖

= sup{‖A−1
n Pn(T − Tn)x‖ : x ∈ R(P ), ‖x‖ = 1 }

≤ 2‖Pn(T − Tn)P‖.

Using the integral representations of P and Pn, it can be seen that

‖Pn(T − Tn)P‖ ≤ (
ε

δ
)2C1C2‖Tn(T − Tn)T‖,

which proves the result. �

3. A new projection method

Let πn : X → X be a sequence of bounded projections such that for each x ∈ X,
πnx → x as n → ∞ and Xn = R(πn) is finite dimensional.

We propose to approximate
Tφ = λφ

by

(3.1) ( πnTπn + πnT (I − πn) + (I − πn)Tπn ) φM
n = λM

n φM
n ;

that is,
TM

n φM
n = λM

n φM
n .

Since TM
n converges to T in the norm, for all large n, TM

n has m eigenvalues
λM

n,1, . . . , λ
M
n,m inside Γ. Let λ̂M

n denote the arithmetic mean of these m eigenvalues
and let PM

n denote the associated spectral projection. Then the following result
follows from Theorems 2.1 and 2.2.

Theorem 3.1. For all large n

δ̂(R(P ), R(PM
n )) ≤ C‖(I − πn)T (I − πn)T‖,(3.2)

|λ − λ̂M
n | ≤ C‖T (I − πn)T (I − πn)T‖.(3.3)

Let λ̂C
n = λ̂S

n denote the arithmetic mean of m eigenvalues of TC
n = πnTπn in

the Galerkin method or TS
n = Tπn in the Sloan method, approximating eigenvalue

λ of T . Let PC
n and PS

n denote the spectral projections associated with TC
n and

TS
n , respectively. Then the following result follows from Theorems 2.1 and 2.2.
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Theorem 3.2. For all large n

δ̂(R(P ), R(PC
n )) ≤ C‖(T − πnTπn)T‖,(3.4)

δ̂(R(P ), R(PS
n )) ≤ C‖T (I − πn)T‖,(3.5)

|λ − λ̂C
n | = |λ − λ̂S

n | ≤ C‖T (I − πn)T‖.(3.6)

A comparison of bounds (3.2)–(3.3) and (3.4)–(3.6) suggests that the eigenele-
ment approximation using TM

n may be better than Galerkin or Sloan approxima-
tion. In the next section it is shown that, in fact, the order of convergence is doubled
by using the new operator.

4. Orders of convergence

Let X = C[0, 1] with the supremum norm. Choose r ≥ 1 and assume that
k(., .) ∈ C2r([0, 1]×[0, 1]).

Consider the integral operator

(Tu)(s) =
∫ 1

0

k(s, t)u(t)dt, s ∈ [0, 1].

Then T : C[0, 1] → C[0, 1] is a compact linear operator. In fact, R(T ) ⊂ C2r[0, 1].
For u ∈ C2r[0, 1], u(2r) denotes the 2r-th derivative of u. We set

Di,jk(s, t) =
∂i+j

∂si∂tj
k(s, t), s, t ∈ [0, 1],

‖k‖2r,∞ =
2r∑

i=0

2r∑
j=0

‖Di,jk‖∞

and

‖u‖2r,∞ =
2r∑

i=0

‖u(i)‖∞.

Consider a partition
0 = t0 < t1 < · · · < tn = 1

of [0, 1] and for j = 1, . . . , n, set hj = tj − tj−1, h = max{hj : j = 1, . . . , n}. We
assume that h → 0 as n → ∞. Let Xn be the space of all piecewise polynomials
of order r (i.e., of degree ≤ r − 1) with breakpoints at t1, . . . , tn−1. We impose no
continuity conditions at the breakpoints.

Let Br = {τ1, . . . , τr} denote the set of r Gauss points, i.e., the zeros of the

(Legendre) polynomial
dr

dsr
(s2 − 1)r in the interval [−1, 1].

Define fj : [−1, 1] → [tj−1, tj ] as

fj(t) =
1 − t

2
tj−1 +

1 + t

2
tj , t ∈ [−1, 1].

Let A =
⋃n

j=1 fj(Br), the set of nr Gauss points.
The map πn : C[0, 1] → Xn is defined by

πnu ∈ Xn, (πnu)(t) = u(t), t ∈ A.

Then πnu → u as n → ∞ for each u ∈ C[0, 1] and the results of Section 3 are
applicable. Note that πnu is, in general, discontinuous at the breakpoints.

In what follows we use crucially the following two estimates.
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For u ∈ Cr[0, 1] (see Chatelin [4]),

(4.1) ‖(I − πn)u‖∞ ≤ C3‖u(r)‖∞hr.

Let f ∈ Cr[0, 1] and g ∈ C2r[0, 1]. Then (see de-Boor–Swartz [7])

(4.2)
∣∣∣∣
∫ 1

0

f(t)(I − πn)g(t)dt

∣∣∣∣ ≤ C4‖f‖r,∞‖g‖2r,∞h2r.

Theorem 4.1. If πn : C[0, 1] → Xn is the interpolatory projection defined above
and T is an integral operator with kernel k(·, ·) ∈ C2r([0, 1])×[0, 1]), then

(4.3) ‖(I − πn)T‖ = O(hr),

(4.4) ‖T (I − πn)T‖ = O(h2r),

(4.5) ‖(I − πn)T (I − πn)T‖ = O(h3r),

(4.6) ‖T (I − πn)T (I − πn)T‖ = O(h4r).

Proof. Let u ∈ C[0, 1]. Since for s ∈ [0, 1] and i = 0, 1 . . . , 2r,

(Tu)(i)(s) =
∫ 1

0

∂i

∂si
k(s, t)u(t)dt,

it follows that
‖(Tu)(i)‖∞ ≤ ‖Di,0k‖∞‖u‖∞

and

(4.7) ‖Tu‖2r,∞ ≤ ‖k‖2r,∞‖u‖∞.

Then by (4.1)

‖(I − πn)Tu‖∞ ≤ C3‖(Tu)(r)‖∞hr ≤ C3‖Dr,0k‖∞‖u‖∞hr,

which proves (4.3).
Since

(T (I − πn)Tu)(s) =
∫ 1

0

k(s, t)(I − πn)(Tu)(t)dt,

by (4.2) and (4.7),

‖T (I − πn)Tu‖∞ ≤ C4‖k‖r,∞‖Tu‖2r,∞h2r(4.8)

≤ C4‖k‖r,∞‖k‖2r,∞‖u‖∞h2r,

which proves (4.4).
For i = 0, 1 . . . , 2r,

(T (I − πn)Tu)(i)(s) =
∫ 1

0

∂i

∂si
k(s, t)(I − πn)(Tu)(t)dt.

Hence by (4.2),

|(T (I − πn)Tu)(i)(s)| ≤ C4(
r∑

j=0

‖Di,jk‖∞)‖Tu‖2r,∞h2r.
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As a consequence, using (4.7), we get

‖(T (I − πn)Tu)(r)‖∞ ≤ C4‖k‖r,∞‖k‖2r,∞‖u‖∞h2r(4.9)

and

‖T (I − πn)Tu‖2r,∞ ≤ C4(‖k‖2r,∞)2‖u‖∞h2r.(4.10)

Next, by (4.1) and (4.9),

‖(I − πn)T (I − πn)Tu‖∞ ≤ C3‖(T (I − πn)Tu)(r)‖∞hr

≤ C3C4‖k‖r,∞‖k‖2r,∞‖u‖∞h3r,

which proves (4.5).
Lastly, by (4.8) and (4.10),

‖T (I − πn)T (I − πn)Tu‖∞ ≤ C4‖k‖r,∞‖T (I − πn)Tu‖2r,∞h2r

≤ (C4)2‖k‖r,∞(‖k‖2r,∞)2‖u‖∞h4r,

which completes the proof. �

Combining the results of Theorems 3.1 and 4.1 we obtain the following orders
of convergence for eigenvalue and spectral subspace approximation using the new
method.

Theorem 4.2. For all large n,

δ̂(R(P ), R(PM
n )) = O(h3r),(4.11)

|λ − λ̂M
n | = O(h4r).(4.12)

Also, from Theorems 3.2 and 4.1 we obtain the following orders of convergence for
the collocation and the iterated collocation methods. These orders of convergence
are well known (see, for example, Chatelin [4]):

δ̂(R(P ), R(PC
n )) = O(hr),(4.13)

δ̂(R(P ), R(PS
n )) = O(h2r),(4.14)

|λ − λ̂C
n | = |λ − λ̂S

n | = O(h2r).(4.15)

A comparison of (4.11)–(4.12) and (4.13)–(4.15) show that the order of con-
vergence h2r for eigenvalue approximation in the collocation/iterated collocation
method is improved to h4r in the new method. For spectral subspaces the improve-
ment is from hr in the collocation method and from h2r in the iterated collocation
method to h3r in the new method. In Section 6 we illustrate the above results
by numerical examples. In the next section we show that in the case of a simple
eigenvalue, the order of convergence for eigenvector approximation can be further
improved to h4r by using an iteration technique.

5. Improvement by iteration

In this section we restrict ourselves to the case when λ is a simple eigenvalue.
Let

TM
n φM

n = λM
n φM

n , ‖φM
n ‖ = 1.

We define
ψM

n =
1

λM
n

TφM
n .
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Let
φ = PφM

n .

Theorem 5.1. For all large n

(5.1) ‖φ − ψM
n ‖ = O(h4r).

Proof. Recall that Γ is a circle with center λ and radius ε. Choose n big enough
so that |λ − λM

n | ≤ ε
2 . Then since |λ| > ε, we have |λM

n | > ε
2 and for z ∈ Γ,

|z − λM
n | > ε

2 . Consider

φ − ψM
n =

1
λ

Tφ − 1
λM

n

TφM
n

= (
1
λ
− 1

λM
n

)Tφ +
1

λM
n

T (φ − φM
n ).

Now

(5.2) ‖( 1
λ
− 1

λM
n

)Tφ‖ ≤ |λ − λM
n |‖P‖

|λM
n | ≤ 2

ε
‖P‖|λ − λM

n | ≤ Ch4r,

by (4.12).
Next

T (φ − φM
n ) = T (P − PM

n )φM
n

= − 1
2πi

∫
Γ

T ((T − zI)−1 − (TM
n − zI)−1)φM

n dz

=
1

2πi

∫
Γ

T (T − zI)−1(T − TM
n )(TM

n − zI)−1φM
n dz

=
1

2πi

∫
Γ

(T − zI)−1T (I − πn)T (I − πn)φM
n

λM
n − z

dz

=
1

2πi

∫
Γ

(T − zI)−1T (I − πn)T (I − πn)TπnφM
n

λM
n (λM

n − z)
dz.

Hence

‖T (φ − φM
n )‖ ≤ 4

ε
C1‖πn‖‖T (I − πn)T (I − πn)T‖,

and by (4.6)
‖T (φ − φM

n )‖ = O(h4r).

The result now follows by combining (5.2) and the above estimate. �

6. Numerical examples

We consider the integral operator T given by

(Tu)(s) =
∫ 1

0

exp(st)u(t)dt, s ∈ [0, 1].

In actual computation T is replaced by its approximation T̃ given by

T̃ u(s) =
m∑

j=1

w
(m)
j exp(st(m)

j )u(t(m)
j ), u ∈ C[0, 1], s ∈ [0, 1],

where m is very large.
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Here the nodes t
(m)
1 , . . . , t

(m)
m in [0, 1] and the weights w

(m)
1 , . . . , w

(m)
m in C give

a convergent quadrature formula

Qu =
m∑

j=1

w
(m)
j u(t(m)

j ), x ∈ C[0, 1].

Collocation at Gauss Points. We choose Xn to be the space of piecewise con-
stant functions (r = 1) or the space of piecewise linear functions (r = 2) with
respect to the equidistant partition

0 <
1
n

<
2
n

< · · · <
n

n
= 1.

The collocation points are either midpoints

t
(n)
j =

2j − 1
n

, j = 1, . . . , n,

or Gauss 2 points

t
(n)
j =

⎧⎪⎪⎨
⎪⎪⎩

j − 1√
3

n
, if j is odd,

j − 1 + 1√
3

n
, if j is even,

j = 1, . . . , n.
The projection πn : C[0, 1] → Xn is the interpolatory projection.
We choose

w
(m)
j =

1
m

, t
(m)
j =

2j − 1
m

, j = 1, . . . , m,

when r = 1 and

w
(m)
j =

1
m

, t
(m)
j =

⎧⎪⎪⎨
⎪⎪⎩

j − 1√
3

m
, if j is odd,

j − 1 + 1√
3

m
, if j is even,

when r = 2.
We fix m = 512. For r = 1, we choose n = 4, 8, 16, 32, 64 and for r = 2, we

choose n = 2, 4, 8, 16.
Let λ̃ be the largest eigenvalue of T̃ , in modulus, and let λM

n , λC
n be the eigen-

values obtained by using the new method and the collocation method, respectively.
Let φM

n and φC
n be the associated eigenvectors.

We write

|λ̃ − λC
n | 	 K1h

α, |λ̃ − λM
n | 	 K2h

β,

‖P̃φC
n − φC

n ‖ ≤ K3h
γ , ‖P̃φM

n − φM
n ‖ 	 K4h

η.

Since h = 1
n , we use two successive values of n to determine α, β, γ and η.

In Table 6.1 we give the error in the eigenvalue approximation and the computed
values of α and β in the collocation/iterated collocation method at midpoints and
the new method. Note that the theoretically predicted values are α = 2, β = 4.

In Table 6.2 the errors in the eigenvector approximation and the computed orders
of convergence γ and η in the collocation at midpoints and the new method are
given. Note that the theoretically predicted values are γ = 1, η = 3.
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Table 6.1. Collocation at midpoint (r = 1). Theoretically
predicted values: α = 2, β = 4

n |λ − λC
n | |λ − λM

n | α β

4 4.00 × 10−3 3.81 × 10−5

8 1.01 × 10−3 2.42 × 10−6 1.99 3.98
16 2.52 × 10−4 1.52 × 10−7 2.00 4.00
32 6.28 × 10−5 9.42 × 10−9 2.01 4.01
64 1.54 × 10−5 5.75 × 10−10 2.02 4.03

Table 6.2. Collocation at midpoint (r = 1). Theoretically
predicted values: γ = 1, η = 3

n ‖PφC
n − φC

n ‖ ‖PφM
n − φM

n ‖ γ η

4 4.75 × 10−2 3.44 × 10−4

8 1.73 × 10−2 3.19 × 10−5 1.46 3.43
16 6.13 × 10−3 2.84 × 10−6 1.56 3.49
32 2.11 × 10−3 2.45 × 10−7 1.53 3.53
64 7.01 × 10−4 2.01 × 10−8 1.59 3.61

Table 6.3. Collocation at Gauss 2 points (r = 2). Theoreti-
cally predicted values: α = 4, β = 8

n |λ − λC
n | |λ − λM

n | α β

2 4.30 × 10−5 2.35 × 10−8

4 2.73 × 10−6 9.93 × 10−11 3.98 7.88
8 1.71 × 10−7 3.98 × 10−13 3.99 7.96
16 1.07 × 10−8 4.44 × 10−15 4.00 6.49

Table 6.4. Collocation at Gauss 2 points (r = 2). Theoreti-
cally predicted values: γ = 2, η = 6

n ‖PφC
n − φC

n ‖ ‖PφM
n − φM

n ‖ γ η

2 5.56 × 10−3 1.90 × 10−6

4 1.04 × 10−3 2.40 × 10−8 2.42 6.30
8 1.86 × 10−4 2.78 × 10−10 2.48 6.43
16 3.20 × 10−5 3.04 × 10−12 2.54 6.52

The corresponding results for collocation at Gauss 2 points are listed in Tables
6.3 and 6.4. In this case the theoretically predicted values are α = 4, β = 8, γ =
2, η = 6.
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Note from Table 6.1 that both the errors |λ− λM
4 | and |λ− λC

64| are of the order
of 10−5. The computation of λM

4 needs the solution of a matrix eigenvalue problem
of size 8 whereas λC

64 is obtained by solving a matrix eigenvalue problem of size 64.
Also λM

32 , which is obtained by solving a matrix eigenvalue problem of size 64, has
error of the order of 10−8. Similar observations can be made from Tables 6.2–6.4.

In Tables 6.1 and 6.3 the observed values of α and β match well with the theo-
retically predicted values. In the case of the collocation at midpoints, the expected
values of γ and η are 1 and 3, respectively, whereas their observed values are about
1.5 and 3.5. Similarly, in the case of the collocation at Gauss 2 points, the expected
values of γ and η are 2 and 6, respectively, whereas their observed values are about
2.5 and 6.5. The theoretically predicted values for γ and η are obtained by using
an upper bound for the error in the eigenvector approximation, and the error seems
to converge faster than the upper bound.
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