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THE NONEXISTENCE
OF NONSOLVABLE OCTIC NUMBER FIELDS

RAMIFIED ONLY AT ONE SMALL PRIME

LESSENI SYLLA

Abstract. We prove that there is no primitive octic number field ramified
only at one small prime, and so no such number field with a nonsolvable
Galois group.

1. Introduction

At this time, there is no explicit example of a nonsolvable number field ramified
at exactly one prime p, where p < 11. In this paper, we will show that there are
no such number fields which have a nonsolvable Galois group inside S8. We will
follow the work of J. Jones [7] and S. Brueggeman [1], who found all such fields
with Galois group inside S6 and S7, respectively. For the primes p ≥ 11, sometimes
we use the elliptic curves theory to construct a nonsolvable number field which is
ramified at these desired primes. But we do not use such curves for the octic fields
considered here.

In order to minimize the number of polynomials to be studied, we used, on the
one hand, methods issuing from the geometry of numbers [8] and on the other, the
method developed by Odlyzko, Poitou and Serre [11] for the determination of lower
bounds for discriminants.

For degree 8, the minima for discriminants are only known for the totally imag-
inary [4] and totally real [5] signatures. We search all primitive number fields (see
section 3) which are generated by the roots of an irreducible degree 8 polynomial,
which are ramified at only one prime less than 11. Using discriminant bounding
techniques, we eliminate number fields only ramified at 3. To eliminate 5, we use
discriminant bounds depending on GRH or unconditionally by computer search.
It remains to search for the two following cases: the degree 8 polynomials with a
2-power field discriminant and those with a 7-power discriminant. The result at
the end shows that only the ramification at 2 is possible, and also shows that the
Galois groups inside S8 of all such fields are solvable.

This work is organized into four sections. Section 2 describes theoretical aspects
of ramification. We discuss the bounds on the coefficients of the polynomials defin-
ing the number fields in section 3. In the final section, we present our results.
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Table 1.

Groups T+
37 T43 T+

48 T+
49 T50

Orders 168 336 1344 20160 40320

2. Theory behind polynomial searches

2.1. Galois groups of degree 8. The notation that we use here for Galois groups
of octic fields is the notation of G. Butler and J. Mckay in [2]. The nonsolvable
Galois groups for the octic number fields are given in Table 1.

2.2. Discriminant lower and upper bounds. Diaz y Diaz established in [3]
the first minima for discriminants of totally imaginary fields. The minimum for
discriminants of octic number fields is 1257728. The minimum for the totally real
case is 282300416 [4].

The following theorem of Ore [12] on the discriminant of a number field ramified
at a prime p is essential:

Theorem 2.1. Let K be a number field of degree n and dK its discriminant. Let
p be a prime dividing dK and let e℘ (resp. f℘) be the ramification index (resp. the
inertia degree) of a prime ideal ℘ lying above p. Let n =

∑q
i=0 bip

i (0 ≤ bi < p and
bq �= 0) be the p-adic representation of the integer n. Then

i) the maximal possible valuation of dK in prime p is

Nn,p =
q∑

i=0

bi(i + 1)pi − h,

where h is the number of the coefficients bi which are different from zero;
ii) more precisely, we have

(1) vp(dK) ≤
∑
℘|p

f℘(e℘ + e℘vp(e℘) − 1).

Then vp(dK) can assume all values from 0 to Nn,p inclusive except αpα−1 if n = pα

or if α ≥ 2 and n = pα + 1.

We note that all the groups in Table 1 are primitive [6]. So in the following
sections, we will look for number fields which are primitive.

Throughout the paper when the context is clear, K = Q(θ) will denote an octic
field, where θ is a root of an irreducible degree 8 monic polynomial and L will denote
a fixed Galois closure. Its ring of integers is denoted by ZK and its discriminant
by dK . The discriminant of L is denoted dL. First we eliminate as many cases
as possible by discriminant bounding arguments on either the octic field K or its
Galois closure L.

2.3. Discriminant bounding arguments. The number field K and its Galois
closure L are ramified (resp. wildly ramified) at the same single prime p.

Proposition 2.1. If L is ramified only at 2, the possible prime ideal decompositions
of the prime p = 2 in K are 2ZK = ℘8, or 2ZK = ℘4

1℘
4
2 or 2ZK = ℘4 with inertia

degree f℘ = 2 in the last case. Moreover, the discriminant dK takes its values
among {±221,±222,±224,±225,±226,±227,±228,±229,±230,±231}.
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Proof. If K is tamely ramified at 2, then by (1) we obtain v2(dK) ≤ 6. Hence,
|dK | ≤ 26, which is less than 1257728; this case is impossible.

So if K is ramified at 2, then it is wildly ramified. We get the prime ideal
decompositions result by studying which of the different decompositions 2ZK =∏

℘|2 ℘e℘ give the largest values of v2(dK). The minimal absolute discriminant is
greater than 220, and by Theorem 2.1 we obtain v2(dK) ≤ 31. �

Proposition 2.2. The Galois closure L of K cannot be ramified only at 3.

Proof. If K is ramified only at 3, then by Theorem 2.1 we obtain v3(dK) ≤ 12.
Hence |dK | < 1257728. This is a contradiction. �

Proposition 2.3. If GRH holds, then the Galois closure L of K cannot be ramified
only at 5.

Proof. If L is tamely ramified at 5, then K is also tamely ramified at 5, and by (1)
we have v5(dK) ≤ 7. Hence |dK | would be less than 1257728 in this case.

Now suppose L is wildly ramified at 5 and let G be its Galois group. We show
that 40 divides |G|, and so G is T50 or T+

49. Let dL be the discriminant of L
and let e be the ramification index of a chosen prime ideal P lying over 5 in the
ring of integers of L. Using the method developed by S. Brueggeman in [1], we
show that v5(e) = 1. Modifying (1) of Theorem 2.1 for a Galois extension yields
v5(dL) ≤ f(e + e − 1)g ≤ |G|(2 − 1/e). Hence |dL|1/|G| ≤ 5

119
60 ≈ 24.338. On the

other hand, the GRH implies that we have Poitou’s following inequality [10]:

1
|G| log |dL| ≥

⎛
⎜⎝3.801 − 20.766

(log |G|)2 − 157.914(1 + 1/|G|)

(log |G|)3
(
1 + π2

(log |G|)2
)2

⎞
⎟⎠ .

We obtain |dL|1/|T50| ≥ 33.248 and |dL|1/|T+
49| ≥ 31.678. This is a contradiction. �

By removing the GRH hypothesis, we get the following result:

Proposition 2.4. If GRH does not hold, the possible ramification structures at the
prime p = 5 in K are 5ZK = ℘5

1℘
3
2, 5ZK = ℘5

1℘
2
2℘3, 5ZK = ℘5

1℘2℘3 with inertia
degree f℘3 = 2 or 5ZK = ℘5

1℘2 with inertia degree f℘2 = 3. Then the discriminant
dK takes its values among {59, 510, 511}.

Proof. We get the ramification structures by studying the different decompositions
5ZK =

∏
℘|5 ℘e℘ which give the largest values of v5(dK). By Theorem 2.1, we

obtain v5(dK) ≤ 11 and we use the fact that |dK | ≥ 1257728. Then we apply the
Stickelberger identity, dK ≡ 0, 1 (mod 4). �

Proposition 2.5. If L is ramified only at 7, the possible prime ideal decomposition
of the prime p = 7 in K is 7ZK = ℘7

1℘2. Moreover, the discriminant dK takes its
values among {78,−79, 710,−711, 712, −713}.

Proof. Using Theorem 2.1, we have v7(dK) ≤ 13. Then we apply the Stickelberger
identity and the fact that |dK | ≥ 1257728. �
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3. Polynomials defining the octic number fields

We have shown in the previous section that the set of octic number fields K
can be restricted to those which are primitive. We have also proved that the
ramification at the prime p = 3 is not possible. Throughout this part, K will be
considered primitive and p will be the prime 2, 5 or 7.

3.1. Notation. Here we use the notations of [1]. Let I be the product of all prime
ideals in ZK above primes dividing the discriminant dK of K. Each θ ∈ I\Z has a
minimal polynomial fθ(x) in Z[x] of the form

fθ(x) = x8 + a1x
7 + a2x

6 + a3x
5 + a4x

4 + a5x
3 + a6x

2 + a7x + a8.

It will be sufficient to search for polynomials having a root contained in I. We need
the quadratic form

T2 = T2(θ) =
n∑

i=1

|θi|2

in the roots of fθ, (θi)i, where 1 ≤ i ≤ 8.

3.2. Archimedean bounds. We must reduce the search set of polynomials to a
finite set. The coefficients ai of fθ are restricted by the quadratic form T2. Hunter
[7] provides a bound on T2 which depends only on the desired discriminant and
the trace. We use a version of Hunter’s theorem adapted to this context by Jones
and Roberts (see below). It guarantees the existence of one θ ∈ I\Z with the
corresponding coefficients ai satisfying the congruence pαi |ai, where αi is a positive
integer.

Theorem 3.1 (Jones and Roberts, 1999 [7]). Let K be a degree n ≥ 3, primitive
number field, with discriminant dK . Let l be the least positive integer contained
in I and let m be the order of ZK/I. Finally, let γn be Hermite’s constant of
n-dimensional lattices. Then there exists an element θ ∈ I\Z such that

i) T2(θ) ≤ a2
1

n + γn−1

(
m2|dK |

l2n

)1/n−1

,

ii) 0 ≤ a1 ≤ nl/2.

3.3. Newton-Ore exponents. Jones and Roberts define a Newton-Ore exponent,
αi, to be the largest integer such that pαi divides ai for all polynomials fθ with θ
in the search ideal I. We search for the required minimal power of the prime p to
guarantee that the polynomial discriminant is divided by a power of p. See Tables
2–7.

In the totally ramified case, we note that p divides the constant term a8. We find
the required power of p for the other ai by using the fact that if π is a uniformizer
with polynomial F (x), then the different is generated by F

′
(π). Details are given

in [8]. For the other ramification structures, we use the method described in [7].
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Table 2. Newton-Ore exponents for totally ramified case at 2

dK a1 a2 a3 a4 a5 a6 a7 a8

±231 4 3 4 2 4 3 4 1
±230 3 3 4 2 4 3 4 1
±229 3 2 4 2 4 3 4 1
±228 3 2 3 2 4 3 4 1
±227 3 2 3 1 4 3 4 1
±226 3 2 3 1 3 3 4 1
±225 3 2 3 1 3 2 4 1
±224 3 2 3 1 3 2 3 1
±222 2 2 3 1 3 2 3 1
±221 2 1 3 1 3 2 3 1

Table 3. Newton-Ore exponents for the other ramification struc-
tures at 2

dK a1 a2 a3 a4 a5 a6 a7 a8

±222 3 2 3 1 4 3 4 2
±221 2 2 3 1 3 3 4 2

Table 4. Newton-Ore exponents for 5ZK = ℘5
1℘

3
2

dK a1 a2 a3 a4 a5 a6 a7 a8

511 1 1 1 2 1 2 2 2
510 1 1 1 2 1 2 2 2
59 1 1 1 2 1 2 2 2

Table 5. Newton-Ore exponents for 5ZK = ℘5
1℘

2
2℘3

dK a1 a2 a3 a4 a5 a6 a7 a8

510 1 1 2 2 1 2 2 3
59 1 1 2 2 1 2 2 3

Table 6. Newton-Ore exponents for 5ZK = ℘5
1℘2℘3 or 5ZK = ℘5

1℘2

dK a1 a2 a3 a4 a5 a6 a7 a8

59 1 2 2 2 1 2 3 4

Table 7. Newton-Ore exponents for p = 7

dK a1 a2 a3 a4 a5 a6 a7 a8

−713 1 2 2 2 2 2 1 2
712 1 2 2 2 2 2 1 2
−711 1 1 2 2 2 2 1 2
710 1 1 1 2 2 2 1 2
−79 1 1 1 1 2 2 1 2
78 1 1 1 1 1 2 1 2
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Corollary 3.1. Let K be a degree 8, primitive number field, with absolute discrim-
inant 2r. Then there exists an element θ ∈ I\Z such that

1) a) If 2ZK = ℘8, then T2(θ) ≤ U2 = a2
1
8 + 2

3+r
7 .

b) If 2ZK = ℘4
1℘

4
2 or 2ZK = ℘4, then T2(θ) ≤ U2 = a2

1
8 + 2

5+r
7 .

2) If dK = ±231, then a1 = 0. If dK = ±224,±225,±226,±228,±229 or ±230,
then a1 = 0 or a1 = 8. If dK = ±221 or ±222, then a1 = 0, 4 or 8.

When the field K is ramified only at 5, we show also that there exists an element
θ ∈ I\Z such that its trace is a1 = 0, 5, 10, 15 or 20.

Corollary 3.2. Let K be a degree 8, primitive number field, with absolute discrim-
inant 7s. Then there exists an element θ ∈ I\Z such that

1) T2(θ) ≤ U2 = a2
1
8 + (8 × 7s+2)

1
7 ,

2) a1 = 0, 7, 14, 21 or 28.

3.4. Coefficients bounds. The bounds on a1 were discussed previously. We use
the method developed by M. Pohst in [10] and Newton-Ore exponents to give the
values of the other coefficients ai of the minimal polynomial fθ.

Bounding fθ(±1), we obtain better bounds on a5 and a6 by using the fact that

a5 =
fθ(1) − fθ(−1)

2
− (a1 + a3 + a7)

and
a6 =

fθ(1) + fθ(−1)
2

− (1 + a2 + a4 + a8).

We can improve the results in [3] by using local corrections corresponding to small
prime numbers for all signatures of octic number fields. With the results given in
[11] we can eliminate many values of the constant term a8 and discriminants dK

because of the signature.

4. Computer search results

In this section, we explain in more detail how one can make much quicker searches
for primitive octic fields with 2-power, 5-power or 7-power discriminant. The pro-
gram we use for these searches is written in C, using the Pari programming library
[9].

Fixing the signature for the first stage, we eliminate over half of the polynomials.
Then using the relation dfθ

= dKa2, where dfθ
is the discriminant of fθ, we discard

all but finitely many polynomials because of the valuation at the single prime
p. We check the few remaining polynomials for irreducibility: most of them are
irreducible. In the final stage, we compute the field discriminants: no polynomial is
found with 5-power or with 7-power field discriminant. For the polynomials with 2-
power field discriminant, we determine the Galois group and a minimal polynomial
which generates the same field by “polgalois” and “polredabs” commands in [9].

After eliminating duplicate fields, there are 39 distinct number fields. All of
them are ramified only at 2. The search for primitive number fields of degree 8 and
5-power or 7-power discriminant came up empty in all cases. Since all of the fields
found are imprimitive and so have a solvable Galois group (see Table 8), we have
proved the following theorem.

Theorem 4.1. Let K be an octic number field which is ramified at only a single
prime p and p < 11. Then the Galois group of its Galois closure is not nonsolvable.
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Table 8. Search results with dK of the form ±2r

r polynomials fθ(x) signature Gal(L/Q)
22 x8 + 6x4 + 1 (0, 4) T+

4

24 x8 + 1 (0, 4) T+
2

24 x8 + 4x6 + 8x4 + 4x2 + 1 (0, 4) T+
4

25 x8 − 4x6 + 6x4 − 4x2 + 2 (0, 4) T21

26 x8 − 4x6 − 2x4 − 4x2 + 1 (4, 2) T+
10

26 x8 + 4x6 − 2x4 + 4x2 + 1 (0, 4) T+
10

26 x8 + 4x4 − 4x2 + 1 (0, 4) T+
19

27 x8 + 2x4 + 2 (0, 4) T17

27 x8 − 2x4 + 2 (0, 4) T17

27 x8 − 4x6 + 10x4 − 8x2 + 2 (0, 4) T6

28 x8 − 4x6 − 2x4 + 12x2 + 1 (4, 2) T+
20

28 x8 + 4x6 − 2x4 − 12x2 + 1 (4, 2) T+
20

28 x8 − 6x4 − 8x2 − 1 (2, 3) T6

28 x8 − 2x4 − 1 (2, 3) T8

28 x8 + 2x4 − 1 (2, 3) T8

28 x8 − 4x6 + 10x4 + 4x2 + 1 (0, 4) T+
19

29 x8 − 4x6 + 8x4 − 8x2 + 2 (4, 2) T28

29 x8 + 4x6 + 8x4 + 8x2 + 2 (0, 4) T28

29 x8 − 4x6 + 4x4 − 2 (2, 3) T30

29 x8 + 4x6 + 4x4 − 2 (2, 3) T30

30 x8 − 4x6 + 2x4 + 4x2 − 1 (6, 1) T27

30 x8 + 4x6 + 2x4 − 4x2 − 1 (2, 3) T27

30 x8 − 4x6 + 6x4 − 4x2 − 1 (2, 3) T30

30 x8 + 4x6 + 6x4 + 4x2 − 1 (2, 3) T30

30 x8 + 4x6 + 2x4 + 4x2 − 1 (2, 3) T30

31 x8 − 8x4 + 8x2 − 2 (6, 1) T27

31 x8 − 8x4 − 8x2 − 2 (2, 3) T27

31 x8 − 2 (2, 3) T8

31 x8 + 8x4 − 2 (2, 3) T6

31 x8 + 2 (0, 4) T6

31 x8 + 8x6 + 20x4 + 16x2 + 2 (0, 4) T1

31 x8 − 8x6 + 20x4 − 16x2 + 2 (8, 0) T1

31 x8 − 4x4 + 2 (4, 2) T16

31 x8 + 4x4 + 2 (0, 4) T16

31 x8 + 8x6 + 24x4 + 32x2 + 18 (0, 4) T17

31 x8 − 8x6 + 24x4 − 32x2 + 18 (0, 4) T17

31 x8 + 8x6 − 12x4 + 2 (4, 2) T7

31 x8 − 4x4 − 8x2 + 2 (4, 2) T28

31 x8 − 4x4 + 8x2 + 2 (0, 4) T28
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