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THE STABILITY OF MODIFIED RUNGE-KUTTA METHODS
FOR THE PANTOGRAPH EQUATION

M. Z. LIU, Z. W. YANG, AND Y. XU

Abstract. In the present paper, the modified Runge-Kutta method is con-
structed, and it is proved that the modified Runge-Kutta method preserves the
order of accuracy of the original one. The necessary and sufficient conditions
under which the modified Runge-Kutta methods with the variable mesh are
asymptotically stable are given. As a result, the θ-methods with 1

2
≤ θ ≤ 1,

the odd stage Gauss-Legendre methods and the even stage Lobatto IIIA and
IIIB methods are asymptotically stable. Some experiments are given.

1. Introduction

In this paper we consider the pantograph equation

(1.1)

{
x′(t) = f(t, x(t), x(qt)), t ≥ 0,

x(0) = x0,

where 0 < q < 1, x0 ∈ C and f : R+ × C × C → C is continuous.
This system can be found in modelling many phenomena such as, for example,

electrodynamics [7, 18], nonlinear dynamical systems [5], and so on. For a compre-
hensive list see [9]. Some results about the analytic solutions have been shown in
[4, 9, 11, 13].

There have been a lot of papers concerning the numerical stability of the test
equation

(1.2)

{
x′(t) = ax(t) + bx(qt), t ≥ 0,

x(0) = x0,

where a, b, x0 are complex constants and q ∈ (0, 1). The most difficult problem is
the limited computer memory as shown in [16, 17]. There are two ways to avoid the
storage problem. One way is by transforming (1.2) to an equation with constant
time lag and variable coefficients as in [14, 15],

(1.3)

{
x′(t) = aetx(t) + betx(t + log q), t ≥ t0,

x(t) = x0(t), t0 + log q ≤ t ≤ t0,

where x0(t) is a continuous function in [t0+log q, t0], and by applying the numerical
methods with a constant mesh.
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The other way is by applying numerical methods with the quasi-geometric mesh
to (1.2), directly, as in [2, 3, 16, 17, 19]. Other reason for applying numerical
methods with the quasi-geometric mesh is that, when using the numerical methods
with constant mesh, we obtain a difference system not of fixed order whose analysis
is significantly more difficult, as shown in [10, 12].

From [19], we can see that the θ-methods with θ = 1
2 , the Gauss-Legendre

methods and the Lobatto IIIA methods are not asymptotically stable. Until now
there have been few papers which concern the stability of the Lobatto IIIB methods
for the pantograph equation.

In the present paper, we construct a modified Runge-Kutta method and show
that the method preserves the order of accuracy of the original one. We also give
the necessary and sufficient conditions for the asymptotical stability of the modified
Runge-Kutta method for (1.1) and lastly some experiments.

2. Runge-Kutta methods

In this section we will construct the modified Runge-Kutta method and show
that this method preserves the order of accuracy of the original one.

Consider

(2.1)
y′ = f(t, y), 0 ≤ t ≤ T,

y(0) = y0,

where y0 ∈ C, T > 0 and f : R+ × C → C is a continuous function.
Let ∆ = {0 = t0 < t1 < · · · < tn = T} be a mesh and hn+1 = tn+1 − tn. The

modified Runge-Kutta method is defined by

ȳn+1 = ȳn + hn+1

s∑
i=1

bif(tn + cihn+1, Ȳ
n+1
i ),(2.2)

Ȳ n+1
i = ȳn + h̄n+1

s∑
j=1

aijf(tn + cjhn+1, Ȳ
n+1
j ), i = 1, 2, . . . , s,(2.3)

and h̄n+1 = (1 + αn+1(hn+1))hn+1 with αn+1(η) such that
(H1) αn+1(η) = O(ηp̄) as η → 0 for all n ≥ 0.

Theorem 2.1. Suppose that the Runge-Kutta method (A, b, c) is of order p and
f(t, y) is of class Cp. Then the order of the Runge-Kutta method (2.2), (2.3) is
p′ = min{p, p̄ + 1}.

Proof. Let yn+1 and Y n+1 = (Y n+1
1 , Y n+1

2 , . . . , Y n+1
s )T be the solutions of the p-

order Runge-Kutta method, i.e.,

yn+1 = yn + hn+1

s∑
i=1

bif(tn + cihn+1, Y
n+1
i ),(2.4)

Y n+1
i = yn + hn+1

s∑
j=1

aijf(tn + cjhn+1, Y
n+1
j ), i = 1, 2, . . . , s,(2.5)

and ȳn = yn = y(tn). Then it is sufficient to prove

(2.6) |ȳn+1 − yn+1| = O(hp′+1
n+1 ) as hn+1 → 0,

since |yn+1 − y(tn+1)| = O(hp+1
n+1) as hn+1 → 0.
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In view of (2.3) and (2.5) we can obtain

Ȳ n+1
i − Y n+1

i

= h̄n+1

s∑
j=1

aijf(tn + cjhn+1, Ȳ
n+1
j ) − hn+1

s∑
j=1

aijf(tn + cjhn+1, Y
n+1
j )

= hn+1αn+1(hn+1)
s∑

j=1

aijf(tn + cjhn+1, Ȳ
n+1
j )

+ hn+1

s∑
j=1

aij(f(tn + cjhn+1, Ȳ
n+1
j ) − f(tn + cjhn+1, Y

n+1
j ))

= hn+1αn+1(hn+1)
s∑

j=1

aijfj + hn+1

s∑
j=1

aij(fy)j(Ȳ n+1
j − Y n+1

j ),

where fj = f(tn+cjhn+1, Ȳ
n+1
j ), (fy)j = ∂f

∂y (tn+cjhn+1, Ȳ
n+1
j +σj(Y n+1

j −Ȳ n+1
j )),

0 < σi < 1, i = 1, 2, . . . , s. Consequently let Zn+1 = (Ȳ n+1
1 − Y n+1

1 , . . . , Ȳ n+1
s −

Y n+1
s )T , Fn+1 = (f1, . . . , fs)T and Fn+1

y = diag((fy)1, . . . , (fy)s)T , and we have

Zn+1 = hn+1αn+1(hn+1)AFn+1 + hn+1AFn+1
y Zn+1.

Hence for sufficiently small hn+1, I − hn+1AFn+1
y is invertible and

Zn+1 = hn+1αn+1(hn+1)(I − hn+1AFn+1
y )−1AFn+1,

which from (H1) and the boundedness of Fn+1 and Fn+1
y implies that ‖Zn+1‖ =

O(hp̄+1
n+1) for a norm ‖ · ‖ in Cs.

Therefore it is obvious from (2.2) and (2.4) that

|ȳn+1 − yn+1| = hn+1|
s∑

i=1

bi(f(tn + cihn+1, Ȳ
n+1
i ) − f(tn + cihn+1, Y

n+1
i ))|

= hn+1|bT Fn+1
y Zn+1| = O(hp̄+2

n+1),

i.e., (2.6) is true and the proof is complete. �

In a way similar to [1], we can show that the Runge-Kutta method (2.2), (2.3)
is of order p′ for the pantograph equation (1.1) step by step. In the following we
assume that p̄ ≥ p − 1, therefore p′ = p.

For the general pantograph equation (1.1), the modified Runge-Kutta method is
defined by

(2.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ȳn+1 = ȳn + hn+1

s∑
i=1

bif(tn + cihn+1, Ȳ
n+1
i , yh(q(tn + cihn+1))),

Ȳ n+1
i = ȳn + h̄n+1

s∑
j=1

aijf(tn + cjhn+1, Ȳ
n+1
j , yh(q(tn + cjhn+1))),

i = 1, 2, . . . , s,

where yh(q(tn + cihn+1)) is an approximation to y(q(tn + cihn+1)).
Here, the mesh H = {m; t0, t1, . . . , tn, . . . } is introduced as follows. Let γ0 > 0

be given, t0 = γ0 and tm = q−1γ0. We choose m− 1 grid points t1 < · · · < tm−1 in
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(t0, tm) and define the other points by

tkm+i = q−kti, for k = −1, 0, 1, . . . , i = 0, 1, . . . , m − 1.

It is easy to see that the grid points tn such that qtn = tn−m for n ≥ 0 and the
stepsize hn satisfies

(2.8) qhn = hn−m for n ≥ 1 and lim
n→∞

hn = ∞.

Furthermore, we are supposed to have the numerical solution available until γ0.
Therefore the relation (2.7) can be represented by

(2.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ȳn+1 = ȳn + hn+1

s∑
i=1

bif(tn + cihn+1, Ȳ
n+1
i , Ȳ n−m+1

i ),

Ȳ n+1
i = ȳn + h̄n+1

s∑
j=1

aijf(tn + cjhn+1, Ȳ
n+1
j , Ȳ n−m+1

j ),

i = 1, 2, . . . , s.

3. Preliminary results

In this section we investigate the asymptotical stability of the linear difference
equations with variable coefficients

(3.1)

{
x(n + 1) = M(n)x(n),

x(n0) = x0,

where M(n) = (mij(n)) is a d × d complex matrix function. In the following we
assume that a matrix norm ‖ · ‖ is subordinate to some vector norm ‖ · ‖ and there
is a matrix M such that limn→∞ M(n) = M .

Lemma 3.1. Suppose that the algebraic multiplicity of the eigenvalue ξ of M is 1
and the other eigenvalues have a module less than one. Then if |ξ| ≥ 1, there is a
matrix norm ‖ · ‖M such that ‖M‖M = ρ(M). Moreover, ‖Mk‖M = ‖M‖k

M for all
k ∈ N.

Proof. According to the Jordan Canonical theorem in [8], there is a nonsingular
matrix P such that

P−1MP =
(

ξ
M̄

)
,

where M̄ is an upper triangle matrix and ρ(M̄) < 1. Let Dδ = diag(δ, δ2, . . . , δd−1);
then for sufficiently small δ ∥∥D−1

δ M̄Dδ

∥∥
1

< |ξ|.
We define a matrix norm

‖M‖M =

∥∥∥∥∥
(

1
Dδ

)−1

P−1MP

(
1

Dδ

)∥∥∥∥∥
1

.

It is easily seen that
‖M‖M = |ξ| = ρ(M).

The last statement of the lemma can be obtain from ρk(M) = ρ(Mk) ≤ ‖Mk‖M ≤
‖M‖k

M = ρk(M). �

It is easy to prove the following lemma by induction.
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Lemma 3.2. For some n0 ∈ N, we denote

F (n) = M(n) − M, n = 0, 1, . . . ,

B(n0 + k) =

{
F (n0), k = 0,

MB(n0 + k − 1) + F (n0 + k)(Mk + B(n0 + k − 1)), k ≥ 1.

Then for k ≥ 0,

(3.2)
n0+k∏
j=n0

M(j) = Mk+1 + B(n0 + k).

If, in addition, the conditions in Lemma 3.1 are satisfied, then for k ≥ 0,

(3.3) ‖B(n0 + k)‖M ≤
n0+k∏
j=n0

(‖M‖M + ‖F (j)‖M ) − ‖M‖k+1
M .

Theorem 3.3. Assume that the conditions in Lemma 3.1 are satisfied and that
there is a norm ‖ · ‖∗ such that

∑∞
n=0 ‖M(n) − M‖∗ < ∞. Then for any given n0

and x0, the solution x(n) satisfies x(n) → 0 as n → ∞ if and only if |ξ| < 1.

Proof. If |ξ| < 1, then ρ(M) < 1. Therefore from [6] we can obtain that for any
given n0 and x0, x(n) → 0 as n → ∞.

Suppose that |ξ| ≥ 1. According to Lemma 3.1, there is a norm ‖ · ‖M such
that |ξ| = ‖M‖M and ‖Mk‖M = ‖M‖k

M . Since all norms are equivalent (see [8]),∑∞
n=0 ‖M(n) − M‖∗ < ∞ is equivalent to

∑∞
n=0 ‖M(n) − M‖M < ∞. We choose

n0 ∈ N such that

exp

(
1

‖M‖M

∞∑
n=n0

‖M(n) − M‖M

)
< 2.

In view of Lemma 3.1 and Lemma 3.2, we have∥∥∥∥∥∥
n0+k∏
j=n0

M(j)

∥∥∥∥∥∥
M

= ‖Mk+1 + B(n0 + k)‖M

≥ ‖M‖k+1
M − ‖B(n0 + k)‖M

≥ ‖M‖k+1
M −

⎛
⎝n0+k∏

j=n0

(‖M‖M + ‖F (j)‖M ) − ‖M‖k+1
M

⎞
⎠

≥ 2 − exp

(
1

‖M‖M

∞∑
n=n0

‖F (n)‖M

)
> 0,

which implies that the theorem is complete. �

4. The stability analysis

In this section we will investigate the numerical stability of (2.7) by applying
the pantograph equation

(4.1) y′(t) = λy(t) + µy(qt), t > 0,

where λ, µ ∈ C, 0 < q < 1 and the initial condition is y(0) = y0 ∈ C.
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It is well known that the solution of (4.1) tends to zero if

(4.2) Re(λ) < 0, |µ| < |λ|,
where Re(λ) is the real part of λ. In the remainder of this paper we assume that
αn+1(η) satisfies (H1) and

(H2) αn+1(η) > 0 for all η > 0 and n ≥ 0;
(H3) for any mesh H, there exists an α(H) > 0 such that |αn(hn) − α(H)| ≤

q|αn−m(hn−m) − α(H)|;
(H4) infH α(H) = 0.

Definition 4.1. Method (2.7) is called Hα-stable if any application of (2.9) to
(4.1) generates numerical approximations ȳn which tend to zero as n → ∞, for any
q with 0 < q < 1, H = {m; t0, t1, . . . , tn, . . . }, αn+1(η) satisfying (H1), (H2), (H3)
and (H4) and (λ, µ) satisfying (4.2).

It is easy to see that for (4.1), (2.9) reads

(4.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ȳn+1 = ȳn + hn+1

s∑
i=1

bi(λȲ n+1
i + µȲ n−m+1

i ),

Ȳ n+1
i = ȳn + h̄n+1

s∑
j=1

aij(λȲ n+1
j + µȲ n−m+1

j ),

i = 1, 2, . . . , s.

If we denote Yn = (ȳn, Ȳ n
1 , Ȳ n

2 , . . . , Ȳ n
s )T , then (4.3) can be rewritten as

(4.4) D
(n)
0 Yn+1 = D

(n)
1 Yn + D

(n)
2 Yn−m+1,

where λn = λhn,λ̄n = λh̄n, µn = µhn, µ̄n = µh̄n, e = (1, 1, . . . , 1)T ∈ C
s and

D
(n)
0 =

(
1 −λn+1b

T

0 I − λ̄n+1A

)
, D

(n)
1 =

(
1 0
e 0

)
, D

(n)
2 =

(
0 µn+1b

T

0 µ̄n+1A

)
,

which is equivalent to

Yn+1 = G
(n)
1 Yn + G

(n)
2 Yn−m+1,

with

G
(n)
1 =

(
r̄n+1 0
γ

(1)
n+1 0

)
, G

(n)
2 =

(
0 γ

(2)
n+1

0 γ
(3)
n+1

)
,

where

r̄n+1 = 1 + λn+1b
T (I − λ̄n+1A)−1e, γ

(1)
n+1 = (I − λ̄n+1A)−1e,

γ
(2)
n+1 = µn+1b

T (I − λ̄n+1A)−1, γ
(3)
n+1 = µ̄n+1(I − λ̄n+1A)−1A.

Let Zn = (Y T
n , Y T

n−1, . . . , Y
T
n−m+1)T . Then

Zn+1 = QnZn,

where

Qn =

⎛
⎜⎜⎜⎜⎜⎜⎝

G
(n)
1 0 · · · 0 0 G

(n)
2

I 0 · · · 0 0 0
0 I · · · 0 0 0
· · · · · · · · ·
0 0 · · · I 0 0
0 0 · · · 0 I 0

⎞
⎟⎟⎟⎟⎟⎟⎠

m(s+1)

.
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4.1. Hα-stability with regular A. If we denote

r̄∞ = lim
n→∞

r̄n+1, γ(1) = lim
n→∞

γ
(1)
n+1,

γ(2) = lim
n→∞

γ
(2)
n+1, γ(3) = lim

n→∞
γ

(3)
n+1,

then from (2.8), (H3) and the regularity of A , we have

r̄∞ = 1 − 1
1 + α(H)

bT A−1e, γ(1) = 0,

γ(2) = − 1
1 + α(H)

µ

λ
bT A−1, γ(3) = −µ

λ
Is.

Let
G1 = lim

n→∞
G

(n)
1 , G2 = lim

n→∞
G

(n)
2 , Q = lim

n→∞
Qn;

then

G1 =
(

r̄∞ 0
γ(1) 0

)
, G2 =

(
0 γ(2)

0 γ(3)

)
,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

G1 0 · · · 0 0 G2

I 0 · · · 0 0 0
0 I · · · 0 0 0
· · · · · · · · ·
0 0 · · · I 0 0
0 0 · · · 0 I 0

⎞
⎟⎟⎟⎟⎟⎟⎠

m(s+1)

.

It is easily seen that

(4.5)

det[ξIm(s+1) − Q] = det[ξmIs+1 − ξm−1G1 − G2]

= det

⎡
⎢⎣ (ξ − (1 − 1

1 + α(H)
bT A−1e))ξm−1 1

1 + α(H)
µ

λ
bT A−1

0
(
ξm +

µ

λ

)
Is

⎤
⎥⎦

= ξm−1

(
ξ −

(
1 − 1

1 + α(H)
bT A−1e

))(
ξm +

µ

λ

)s

and

(4.6) r̄∞ is an eigenvalue of Q with the algebraic multiplicity 1.

Lemma 4.2. For any given mesh H, if (H2) and (H3) hold, then there is a
constant C > 0 such that

(4.7) ‖G(km+l)
1 − G1‖1 + ‖G(km+l)

2 − G2‖1 ≤ Cqk, k ≥ 0, 0 ≤ l ≤ m − 1.

Proof. In view of (2.8) and (H2), we can see that there exist constants M1 and M2

such that for all n = km + l, k ≥ 0 and 0 ≤ l ≤ m − 1,∣∣∣∣bT A−2(I − λ̄−1
n A−1)−1e

λ(1 + αn(hn))2

∣∣∣∣ ≤ M1

and ∣∣∣∣ bT A−1e

(1 + αn(hn))(1 + α(H))

∣∣∣∣ ≤ M2.
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Hence

|r̄n − r̄∞| =
∣∣∣∣λnbT (I − λ̄nA)−1e +

1
1 + α(H)

bT A−1e

∣∣∣∣
=

∣∣∣∣bT A−1

(
1

1 + α(H)
I − 1

1 + αn(hn)
(I − λ̄−1

n A−1)−1

)
e

∣∣∣∣
=

∣∣∣∣bT A−1

((
1

1 + α(H)
− 1

1 + αn(hn)

)
I

+
1

1 + αn(hn)
I − 1

1 + αn(hn)
(I − λ̄−1

n A−1)−1

)
e

∣∣∣∣
=

∣∣∣∣
(

αn(hn) − α(H)
(1 + α(H))(1 + αn(hn))

)
bT A−1e − bT A−2(I − λ̄−1

n A−1)−1e

λ(1 + αn(hn))2hn

∣∣∣∣
≤ 1

hn
M1 + |αn(hn) − α(H)|M2.

Therefore it follows from (2.8) and (H3) that

|r̄km+l − r̄∞| ≤ qk

(
1
hl

M1 + |αl(hl) − α(H)|M2

)
≤ C0q

k,

where

C0 = max
0≤l≤m−1

{
1
hl

M1 + |αl(hl) − α(H)|M2

}
.

In a similar way, there exist constants Ci, i = 1, 2, 3, such that

‖γ(i)
km+l − γ(i)‖1 ≤ Ciq

k, k ≥ 0, 0 ≤ l ≤ m − 1,

Consequently, for all n = km + l, k ≥ 0 and 0 ≤ l ≤ m − 1,

‖G(km+l)
1 − G1‖1 + ‖G(km+l)

2 − G2‖1

≤ |r̄km+l − r̄∞| +
3∑

i=1

‖γ(i)
km+l − γ(i)‖1 ≤ Cqk,

where C = C0 + C1 + C2 + C3. �
As a result,

∑∞
n=0 ‖Qn − Q‖1 < ∞, which together with (4.6) implies from

Theorem 3.3 that

Theorem 4.3. Assume that the matrix A is regular. Then method (2.7) is Hα-
stable if and only if ∣∣∣∣1 − 1

1 + α(H)
bT A−1e

∣∣∣∣ < 1.

Corollary 4.4. The Radau IA, Radau IIA and Lobatto IIIC methods are Hα-stable.

Corollary 4.5. The Gauss-Legendre methods are Hα-stable if and only if s is odd.

Corollary 4.6. The one-leg θ-method is Hα-stable if and only if 1
2 ≤ θ ≤ 1.

Proof. In fact, if θ < 1
2 , then by (H4) there are an ε > 0 and a mesh H such that

α(H) < ε and

|r̄∞| ≥
∣∣∣∣1 − 1

θ

1
1 + ε

∣∣∣∣ > 1,

which implies that the numerical solution of the method is not asymptotically stable
from Theorem 4.3. �
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4.2. Hα-stability of a stiffly accurate method. Here we assume that a1j = 0,
1 ≤ j ≤ s, and write

A =
(

0 0
ā Ā

)
, ā = (a21, a31, . . . , as1)T , Ā = (aij)s

i,j=2.

We also assume that Ā is nonsingular and the Runge-Kutta method is stiffly accu-
rate, i.e.,

(4.8) asj = bj , 1 ≤ j ≤ s.

The Lobatto IIIA methods and the linear θ-methods are typical examples of such
Runge-Kutta methods.

Although our results in this subsection can be obtained in the same way as [19],
we will formulate the expressions of G1, G2, Q and det[ξIm(s+1) −Q], directly. Let
ē = (1, 1, . . . , 1)T ∈ C

s−1, es−1 = (0, 0, . . . , 0, 1)T ∈ C
s−1 and Ī be the identity

matric in Cs−1. Then

(I − λ̄n+1A)−1 =
(

1 0
(Ī − λ̄n+1Ā)−1λ̄n+1ā (Ī − λ̄n+1Ā)−1

)
,

(I − λ̄n+1A)−1e =
(

1
(Ī − λ̄n+1Ā)−1λ̄n+1ā + (Ī − λ̄n+1Ā)−1ē

)
,

bT (I − λ̄n+1A)−1 =
(
eT
s−1(Ī − λ̄n+1Ā)−1ā eT

s−1Ā(Ī − λ̄n+1Ā)−1
)
,

and

(I − λ̄n+1A)−1A =
(

0 0
(Ī − λ̄n+1Ā)−1ā (Ī − λ̄n+1Ā)−1Ā

)
.

Therefore

G
(n)
1 =

⎛
⎝1+λn+1e

T
s−1(Is−1−λ̄n+1Ā)−1ā+λn+1e

T
s−1Ā(Is−1−λ̄n+1Ā)−1ē 0 0

1 0 0
(Ī − λ̄n+1Ā)−1λ̄n+1ā + (Ī − λ̄n+1Ā)−1ē 0 0

⎞
⎠,

G
(n)
2 =

⎛
⎝0 µn+1e

T
s−1(Is−1 − λ̄n+1Ā)−1ā µn+1e

T
s−1Ā(Is−1 − λ̄n+1Ā)−1

0 0 0
0 µ̄n+1(Ī − λ̄n+1Ā)−1ā µ̄n+1(Ī − λ̄n+1Ā)−1Ā

⎞
⎠ ,

r̄∞ = 1 − 1
1 + α(H)

eT
s−1Ā

−1ā − 1
1 + α(H)

, γ(1) =
(

1
−Ā−1ā

)
,

γ(2) = − 1
1 + α(H)

µ

λ

(
eT
s−1Ā

−1ā eT
s−1

)
, γ(3) = −µ

λ

(
0 0

Ā−1ā Ī

)
,

and

G1 =

⎛
⎝ r̄∞ 0 0

1 0 0
−Ā−1ā 0 0

⎞
⎠ ,(4.9)

G2 =

⎛
⎜⎜⎝

0 − 1
1 + α(H)

µ

λ
eT
s−1Ā

−1ā − 1
1 + α(H)

µ

λ
eT
s−1

0 0 0
0 −µ

λ
Ā−1ā −µ

λ
Ī

⎞
⎟⎟⎠ ,(4.10)

hence

(4.11) det[ξmIs+1 − ξm−1G1 − G2] = ξ2m−1(ξ − r̄∞)(ξm +
µ

λ
)s−1.
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Consequently, it is easy to see from the discussion in Section 4.1 that the conditions
in Theorem 3.3 are satisfied.

Theorem 4.7. Assume that the Runge-Kutta method (A, b, c) is stiffly accurate
and the matrix Ā is regular. Then method (2.7) is Hα-stable if and only if

|r̄∞| < 1.

If α(H) = 0, then r̄∞ = limz→∞ r(z), where r(z) = 1 + zbT (I − zA)−1e is the
stability function of the Runge-Kutta method. So we have

Lemma 4.8. If the Runge-Kutta method is stiffly accurate and Ā is regular, then

(4.12) lim
z→∞

r(z) = −eT
s−1Ā

−1ā,

where es−1 = (0, 0, . . . , 0, 1)T ∈ Cs−1.

From Theorem 4.7 and Lemma 4.8 we have

Corollary 4.9. The Lobatto IIIA methods are Hα-stable if and only if s is even.

Corollary 4.10. The linear θ-method is Hα-stable if and only if 1
2 ≤ θ ≤ 1.

4.3. Hα-stability of the Lobatto IIIB methods. In this subsection we will
investigate the Hα-stability of the Lobatto IIIB methods. For the Lobatto IIIB, we
have

(4.13)
ai1 = b1, 1 ≤ i ≤ s,

A =
(

Ā 0
ā 0

)
,

where ā = (as1, as2, . . . , as,s−1)T , Ā = (aij)s−1
i,j=1 is regular.

Lemma 4.11. For the Lobatto IIIB methods, āĀ−1ē = 1.

Proof. Let r(z) = 1+zbT (I−zA)−1e be the stability function of the s stage Lobatto
IIIB method. Then

lim
z→∞

r(z) =

{
1, s is odd,

−1, s is even.

and

bT (I − zA)−1e =
(
b̄T bs

)( (Ī − zĀ)−1ē
zā(Ī − zĀ)−1ē + 1

)
= b̄T (Ī − zĀ)−1ē + zbsā(Ī − zĀ)−1ē + bs.

Hence 0 = limz→∞ bT (I − zA)−1e = bs(−āĀ−1ē + 1), i.e., āĀ−1ē = 1. �

Let Ȳ n = (Ȳ n
1 , Ȳ n

2 , . . . , Ȳ n
s−1)T and

P =

⎛
⎝1 0 0

0 Ī 0
0 −āĀ−1 1

⎞
⎠ .
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Then multiplying (4.4) by P and denoting D̂
(n)
i = PD

(n)
i we have

(4.14)

D̂
(n)
0 =

⎛
⎝1 −λn+1b̄

T −λn+1bs

0 Ī − λ̄n+1Ā 0
0 −āĀ−1 1

⎞
⎠ , D̂

(n)
1 =

⎛
⎝1 0 0

ē 0 0
0 0 0

⎞
⎠ ,

D̂
(n)
2 =

⎛
⎝0 µn+1b̄

T µn+1bs

0 µ̄n+1Ā 0
0 0 0

⎞
⎠ ,

and (4.4) becomes

ȳn+1 − λn+1b
T

(
Ȳ n+1

Ȳ n+1
s

)
= ȳn + µn+1b

T

(
Ȳ n−m+1

Ȳ n−m+1
s

)
,(4.15)

(Ī − λ̄n+1Ā)Ȳ n+1 = ēȳn + µ̄n+1ĀȲ n−m+1,(4.16)

−āĀ−1Ȳ n+1 + Ȳ n+1
s = 0.(4.17)

Submitting (4.17) into (4.15) we can obtain

(4.18) ȳn+1 − λn+1β
T Ȳ n+1 = ȳn + µn+1β

T Ȳ n−m+1,

where b̄ = (b1, b2, . . . , bs−1)T and βT = b̄T + bsāĀ−1. Let Ȳn = (ȳn, (Ȳ n)T )T . From
(4.16) and (4.18) we have

(4.19) D̄
(n)
0 Ȳn+1 = D̄

(n)
1 Ȳn + D̄

(n)
2 Ȳn−m+1,

where

D̄
(n)
0 =

(
1 −λn+1β

T

0 I − λ̄n+1Ā

)
, D̄

(n)
1 =

(
1 0
ē 0

)
, D̄

(n)
2 =

(
0 µn+1β

T

0 µ̄n+1Ā

)
,

which is equivalent to

Ȳn+1 = Ḡ
(n)
1 Ȳn + Ḡ

(n)
2 Ȳn−m+1,

with

Ḡ
(n)
1 =

(
R̄n+1 0
γ̄

(1)
n+1 0

)
, Ḡ

(n)
2 =

(
0 γ̄

(2)
n+1

0 γ̄
(3)
n+1

)
,

where

R̄n+1 = 1 + λn+1β
T (Ī − λ̄n+1Ā)−1ē, γ̄

(1)
n+1 = (Ī − λ̄n+1Ā)−1ē,

γ̄
(2)
n+1 = µn+1β

T (Ī − λ̄n+1Ā)−1, γ̄
(3)
n+1 = µ̄n+1(Ī − λ̄n+1Ā)−1Ā.

By the same argument as in Section 4.1, let Ḡi = limn→∞ Ḡ
(n)
i , i = 1, 2. Then

Ḡ1 =

⎛
⎝1 − 1

1 + α(H)
βT Ā−1ē 0

0 0

⎞
⎠ , Ḡ2 =

⎛
⎜⎝0 − 1

1 + α(H)
µ

λ
βT Ā−1

0 −µ

λ
Ī

⎞
⎟⎠ ,

and

(4.20) det[ξmIs − ξm−1Ḡ1 − Ḡ2] = ξs−1(ξ − R̄∞)
(
ξ +

µ

λ

)s−1

,

where R̄∞ = 1 − 1
1+α(H)β

T Ā−1ē. It is obvious that the conditions in Theorem 3.3
are satisfied.
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Theorem 4.12. The Lobatto IIIB method (A, b, c) is Hα-stable if and only if

|R̄∞| < 1.

Lemma 4.13. Let R(z) = 1 + zβT (I − zĀ)−1ē and r(z) be the stability function.
Then for the Lobatto IIIB method, we have

(1) R(z) = r(z) for all z ∈ C;
(2) R∞ = limz→∞ R(z) = 1 − βT Ā−1ē;
(3) βT Ā−1ē = 2 when s is even and βT Ā−1ē = 0 when s is odd.

Proof. In fact, in view of āĀ−1ē = 1 we have

bT (I − zA)−1e =
(
b̄T bs

)( (Ī − zĀ)−1 0
zā(Ī − zĀ)−1 āĀ−1ē

)(
ē
1

)
=(b̄T + bsāĀ−1)(Ī − zĀ)−1ē = βT (Ī − zĀ)−1ē.

Therefore (1) holds. (2) holds since Ā is regular, which together with (1) implies
(3). �

From Theorem 4.12 and Lemma 4.13 we have

Corollary 4.14. The Lobatto IIIB methods are Hα-stable if and only if s is even.

5. Numerical experiments

Let the Runge-Kutta method (A, b, c) be of order p, let H = {m; t0, t1, . . . } be
a given mesh, hn+1 = tn+1 − tn and h = min1≤i≤m hi. We define for n = km + l,
l = 1, 2, . . . , m,

(5.1) αkm+l(η) =

⎧⎪⎨
⎪⎩

h, p = 1,(
η

q−kδl

)p−1

, p ≥ 2,

where δl = hl

h . In fact

αn+1(hn+1) =

{
hp−1, p ≥ 2,

h, p = 1.

Therefore (H1), (H2) (H3) and (H4) hold.
Let H = {m; t0, t1, . . . } be a geometric mesh which is defined by

tn = q−
n
m , n ≥ −m.

Then from (5.1) we have h̄n+1 = hn+2 for p = 2.
In Table 1, a = −1, b = 0.5, q = 0.5, h̄n+1 = hn+2, we list the absolute errors

(AE) and relative errors (RE) at t = 16 of the one-leg θ-method with geometric
mesh and the Ratio of the errors of the case m = 50 over that of m = 100. From
Table 1, we can see that the one-leg θ-method is of order 2 if θ = 1

2 and of order 1
if θ = 0.

In Figures 1 and 2, a = −1, b = 0.5, q = 0.5, m = 10, h̄n+1 = hn+2, θ = 1
2 . It can

be seen from these figures that the numerical solution ȳn of the modified one-leg
θ-method with θ = 1

2 tends to zero as n → ∞, whereas the numerical solution yn

does not.
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Table 1. The one-leg θ-method with geometric mesh

θ = 0.5 θ = 0
AE RE AE RE

m = 2 1.7927E − 2 2.1150E − 1 3.6256E − 3 4.2774E − 2
m = 3 1.0905E − 2 1.2865E − 1 6.9657E − 3 8.2179E − 2
m = 5 5.0172E − 3 5.9191E − 2 4.5034E − 3 5.3131E − 2
m = 10 1.5092E − 3 1.7806E − 2 2.2610E − 3 2.6674E − 2
m = 20 4.1444E − 4 4.8894E − 3 1.1321E − 3 1.3356E − 2
m = 50 7.0197E − 5 8.2817E − 4 4.5316E − 4 5.3463E − 3
m = 100 1.7888E − 5 2.1104E − 4 2.2663E − 4 2.6738E − 3

Ratio 3.9243 3.9243 1.9996 1.9996

0 0.5 1 1.5 2 2.5 3 3.5 4

× 1016

−5

0

5
× 10−15

Figure 1. The numerical solution yn of the classical one-leg θ-method

Finally we give some experiments of the Runge-Kutta method with quasi-geome-
tric mesh, which is defined by

tn = Tk + (n − km)
(

Tk+1 − Tk

m

)
, km ≤ n < (k + 1)m,

where Tk = q−k, k ≥ −1 and m is an integer.
In Table 2, a = −1, b = 0.95, q = 0.5, h̄n+1 defined by (5.1), we list the absolute

errors (AE) and relative errors (RE) at t = 16 of the 3-Gauss method and 2-
Lobatto IIIB method with the quasi-geometric mesh and the Ratio of the errors of
the case m = 50 over that of m = 100. The table shows that the methods defined
in this paper can preserve the order of the classical methods.
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Table 2. The Runge-Kutta methods with quasi-geometric mesh

3-Gauss 2-Lobatto IIIB
AE RE AE RE

m = 2 3.1521E − 2 3.8295E − 2 2.7342E − 1 3.3217E − 1
m = 3 3.1566E − 3 3.8349E − 3 1.6546E − 1 2.0102E − 1
m = 5 1.5897E − 4 1.9314E − 4 7.6110E − 2 9.2465E − 2
m = 10 2.5963E − 6 3.1542E − 6 2.2717E − 2 2.7599E − 2
m = 20 4.1279E − 8 5.0149E − 8 6.1802E − 3 7.5083E − 3
m = 50 1.7057E − 10 2.0722E − 10 1.0383E − 3 1.2615E − 3
m = 100 2.6728E − 12 3.2471E − 12 2.6375E − 4 3.2042E − 4

Ratio 63.818 63.818 3.9369 3.9369

0 0.5 1 1.5 2 2.5 3 3.5 4
× 1016

0

0.2

0.4

0.6

0.8

1

1.2

1.4 × 10−17

Figure 2. The numerical solution ȳn of the modified one-leg θ-method

References

1. A. Bellen, Preservation of superconvergence in the numerical integration of delay differential
with proportional delay, IMA Journal of Numerical Analysis, 22 (2002), 529-536. MR1936518
(2003j:65060)

2. A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of θ-methods for the
pantograph equation, Appl. Numer. Math., 24 (1997), pp. 279–293. MR1464729 (98f:34093)

3. A. Bellen and M. Zennaro, Numerical methods for delay differential equations, Numerical
Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press,
New York, 2003. MR1997488 (2004i:65001)

4. J. Carr and J. Dyson, The functional differential equation y′(x) = ay(λx)+ by(x), Proc. Roy.
Soc. Edinburgh. Sect. A, 13 (1975), pp. 165–174. MR0442421 (56:803)

5. G.A. Derfel, Kato problem for functional equations and difference Schrödinger operators,
Operator Theory, 46 (1990), pp. 319–321. MR1124676 (92g:34093)

http://www.ams.org/mathscinet-getitem?mr=1936518
http://www.ams.org/mathscinet-getitem?mr=1936518
http://www.ams.org/mathscinet-getitem?mr=1464729
http://www.ams.org/mathscinet-getitem?mr=1464729
http://www.ams.org/mathscinet-getitem?mr=1997488
http://www.ams.org/mathscinet-getitem?mr=1997488
http://www.ams.org/mathscinet-getitem?mr=0442421
http://www.ams.org/mathscinet-getitem?mr=0442421
http://www.ams.org/mathscinet-getitem?mr=1124676
http://www.ams.org/mathscinet-getitem?mr=1124676


MODIFIED RUNGE-KUTTA METHODS FOR THE PANTOGRAPH EQUATION 1215

6. S.N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 1999.
MR1711587 (2001g:39001)

7. L. Fox, D.F. Mayers, J.R. Ockendon and A.B. Tayler, On a functional differential equation,
J. Inst. Math. Appl., 8 (1971), pp. 271–307. MR0301330 (46:488)

8. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press. Cambridge, 1985.
MR0832183 (87e:15001)

9. A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl.

Math., 4 (1993), pp. 1–38. MR1208418 (94f:34127)
10. A. Iserles, Numerical analysis of delay differential equations with variable delays, Ann. Numer.

Math., 1 (1994), pp. 133–152. MR1340650 (96d:65130)
11. A. Iserles and J. Terjeki, Stability and asymptotical stablity of functional-differential equations,

J. London. Math. Soc., 51 (2) (1995), pp. 559–572. MR1332892 (96c:34171)
12. A. Iserles, Exact and discretized stability of the pantograph equation, Appl. Numer. Math., 24

(1997), pp. 295–308. MR1464730 (98j:34130)
13. T. Kato and J.B. Mcleod, The functional-differential equation y′(x) = ay(λx) + by(x), Bull.

Amer. Math. Soc., 77 (1971), pp. 719–731. MR0283338 (44:570)
14. T. Koto, Stability of Runge-Kutta methods for the generalized pantograph equation, Numer.

Math, 84 (1999), pp. 870–884. MR1730016 (2000k:65115)
15. Y. Liu, Stablity of θ-methods for neutral functional-differential equations, Numer.Math., 70

(1995), pp. 473–485. MR1337227 (96d:65127)
16. Y. Liu, On the θ-method for delay differential equations with infinite lag, J. Comput. Appl.

Math., 71 (1996), pp. 177–190. MR1399890 (97c:65136)
17. Y. Liu, Numerical investigation of the pantograph equation, Appl. Numer. Math., 24 (1997),

pp. 309–317. MR1464731 (98j:34131)
18. J.R. Ockendon and A.B. Tayler, The dynamics of a current collection system for an electric

locomotive, Proc. Roy. Soc. Edinburg Sect. A, 322 (1971), pp. 447–468.
19. Y. Xu and M.Z. Liu, H-stability of Runge-Kutta methods with general variable stepsize

for pantograph equation, Appl. Math. Comput., 148 (2004), pp. 881-892. MR2024551
(2004j:65091)

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, Peo-

ple’s Republic of China

E-mail address: mzliu@hope.hit.edu.cn

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, Peo-

ple’s Republic of China

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, Peo-

ple’s Republic of China

http://www.ams.org/mathscinet-getitem?mr=1711587
http://www.ams.org/mathscinet-getitem?mr=1711587
http://www.ams.org/mathscinet-getitem?mr=0301330
http://www.ams.org/mathscinet-getitem?mr=0301330
http://www.ams.org/mathscinet-getitem?mr=0832183
http://www.ams.org/mathscinet-getitem?mr=0832183
http://www.ams.org/mathscinet-getitem?mr=1208418
http://www.ams.org/mathscinet-getitem?mr=1208418
http://www.ams.org/mathscinet-getitem?mr=1340650
http://www.ams.org/mathscinet-getitem?mr=1340650
http://www.ams.org/mathscinet-getitem?mr=1332892
http://www.ams.org/mathscinet-getitem?mr=1332892
http://www.ams.org/mathscinet-getitem?mr=1464730
http://www.ams.org/mathscinet-getitem?mr=1464730
http://www.ams.org/mathscinet-getitem?mr=0283338
http://www.ams.org/mathscinet-getitem?mr=0283338
http://www.ams.org/mathscinet-getitem?mr=1730016
http://www.ams.org/mathscinet-getitem?mr=1730016
http://www.ams.org/mathscinet-getitem?mr=1337227
http://www.ams.org/mathscinet-getitem?mr=1337227
http://www.ams.org/mathscinet-getitem?mr=1399890
http://www.ams.org/mathscinet-getitem?mr=1399890
http://www.ams.org/mathscinet-getitem?mr=1464731
http://www.ams.org/mathscinet-getitem?mr=1464731
http://www.ams.org/mathscinet-getitem?mr=2024551
http://www.ams.org/mathscinet-getitem?mr=2024551

	1. Introduction
	2. Runge-Kutta methods
	3. Preliminary results
	4. The stability analysis
	4.1. H-stability with regular A
	4.2. H-stability of a stiffly accurate method
	4.3. H-stability of the Lobatto IIIB methods

	5. Numerical experiments
	References

