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THE STABILITY OF MODIFIED RUNGE-KUTTA METHODS
FOR THE PANTOGRAPH EQUATION

M. Z. LIU, Z. W. YANG, AND Y. XU

ABSTRACT. In the present paper, the modified Runge-Kutta method is con-
structed, and it is proved that the modified Runge-Kutta method preserves the
order of accuracy of the original one. The necessary and sufficient conditions
under which the modified Runge-Kutta methods with the variable mesh are
asymptotically stable are given. As a result, the #-methods with % <6<,
the odd stage Gauss-Legendre methods and the even stage Lobatto IIIA and
ITIB methods are asymptotically stable. Some experiments are given.

1. INTRODUCTION

In this paper we consider the pantograph equation

x/(t) = f(t,l’(t),l’(qt)), t>0,

(1.1) 2(0) = a0,

where 0 < ¢ <1, 29 € Cand f: Rt x C x C — C is continuous.

This system can be found in modelling many phenomena such as, for example,
electrodynamics [7], [I8], nonlinear dynamical systems [5], and so on. For a compre-
hensive list see [9]. Some results about the analytic solutions have been shown in
[4] 9l 111, [13].

There have been a lot of papers concerning the numerical stability of the test
equation

z'(t) = ax(t) + bx(qt), t >0,

(1.2) 2(0) = o,

where a, b, ¢ are complex constants and ¢ € (0,1). The most difficult problem is
the limited computer memory as shown in [I6},[I7]. There are two ways to avoid the
storage problem. One way is by transforming (2)) to an equation with constant
time lag and variable coefficients as in [14] [15],

2'(t) = ae'z(t) + be'z(t +logq), t>to,

1.3
43 z(t) = wo(t), to +logq < t < to,

where x(t) is a continuous function in [tg+log g, t], and by applying the numerical
methods with a constant mesh.
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The other way is by applying numerical methods with the quasi-geometric mesh
to ([L2), directly, as in [2] B, 16, 17, [19]. Other reason for applying numerical
methods with the quasi-geometric mesh is that, when using the numerical methods
with constant mesh, we obtain a difference system not of fixed order whose analysis
is significantly more difficult, as shown in [10] [12].

From [19], we can see that the f-methods with # = 3, the Gauss-Legendre
methods and the Lobatto ITIA methods are not asymptotically stable. Until now
there have been few papers which concern the stability of the Lobatto ITIIB methods
for the pantograph equation.

In the present paper, we construct a modified Runge-Kutta method and show
that the method preserves the order of accuracy of the original one. We also give
the necessary and sufficient conditions for the asymptotical stability of the modified
Runge-Kutta method for (1) and lastly some experiments.

2. RUNGE-KUTTA METHODS

In this section we will construct the modified Runge-Kutta method and show
that this method preserves the order of accuracy of the original one.
Consider

y/:f(t’y)a OStSTa
y(O) = Yo,

where 1o € C, T > 0 and f : RT x C — C is a continuous function.
Let A={0=ty <t; < - <t, =T} beamesh and hyy1 = tp41 — t,. The
modified Runge-Kutta method is defined by

(2.1)

(2'2) Yn+1 = Yn + hn+1 Z bzf(tn + Cithrl; szrl)’
1=1

(23) }7;’”«4‘1 :gn+B’n+lzaijf(tn+cjhn+17}7jn+1)7 = 1727"'787
j=1
and hpy1 = (1 + apy1(hng1))hn1 with ag,q1(n) such that
(H1) apt1(n) =O(nP) asn — 0 for all n > 0.

Theorem 2.1. Suppose that the Runge-Kutta method (A,b,¢) is of order p and
f(t,y) is of class CP. Then the order of the Runge-Kutta method [22)), 23] is

p’ = min{p,p+ 1}.

Proof. Let yny1 and Y™ = (Y v 0 v+ be the solutions of the p-
order Runge-Kutta method, i.e.,

(2.4) Ynt1 = Yn + hngr Z bif(tn + cihny1, }/;H_l),
=1

S
(2~5) }/inJrl :yn+hn+lzaijf(tn+thn+1,1/jn+1), 1= 1,2,...,8,
j=1
and ¥, = yn = y(t,). Then it is sufficient to prove

(2.6) |Gnt1 — Yns1] = O(RE[]) as hnyr — 0,

since [yos1 — y(tass)] = O(REEL) a8 by — 0.
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In view of 23] and ([Z35]) we can obtain
YTL-‘,—I _ Yn+1
K3 (2

s s
= hng1 Y @i f(tn + Cihng 1, V) = b1 Y s f(tn + ¢, Y]
Jj=1 j=1
s

= B0 (hnga) D aij [t + cihnin, Y1)
=1

+ h”HZaU ftn + ¢ n+1aY'n+1)_f(tn—FthnHijnH))

= hpt10n41(hnt1) Z aij fj + hny1 Z aij(fy); (V] =Y Hh),

j=1 j=1
where f; = f(tntcjhni1, Y, (fy); = ?Ti(tn+cjhn+17_17j”+1+0j(yjn+l—%nﬂ))a
0<o;<1,i=1,2,...,s. Consequently let Z"+* = (Y™ —yr+l  yrtt —

yrthT, Pl — (fr,--s fo)T and FptY = diag((fy)1, - .-, (fy)s)”, and we have
Z" = hy 10 g1 (g1 )AF™ T 4 by AR 20

Hence for sufficiently small /11, I — hpy1 AF)! is invertible and
Z" = hyp10mg1 (g1 ) (I = B AR TEARM

which from (H1) and the boundedness of F"*' and F'*! implies that ||Z" | =

O(hf:rll) for a norm || - || in C®.

Therefore it is obvious from ([22)) and (Z4]) that

Got1 = Y] = a3 0 (b + i, T = Fltn + ihngn, ¥

i=1
= hoa BTy 27 = O(hE3),
i.e., (26 is true and the proof is complete. O

In a way similar to [I], we can show that the Runge-Kutta method (2.2)), [23)
is of order p’ for the pantograph equation (II]) step by step. In the following we
assume that p > p — 1, therefore p’ = p.

For the general pantograph equation (LLI]), the modified Runge-Kutta method is
defined by

Unt1 = Un + hnpa Z bif (tn + Cilini1, Y 4" (q(tn + cihinga))),
i=1

s
}71‘”+1 = gn + En—i—l Z az]f(tn + th/n-‘,-lv }7jn+1a yh(Q(tn + th'n—‘,-l))),
j=1

(2.7)

i=1,2,...,s,

where 3" (q(t, + cih,11)) is an approximation to y(q(t, + cihni1)).
Here, the mesh H = {m;tg,t1,...,tn,... } is introduced as follows. Let v > 0
be given, tg = o and t,, = ¢~ '7y9. We choose m — 1 grid points t; < --- < t,,_1 in
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(to,tm) and define the other points by

thmai = ¢ "t;,  fork=-1,0,1,..., i=0,1,...,m— 1.
It is easy to see that the grid points ¢,, such that ¢t, = t,,_,, for n > 0 and the
stepsize h,, satisfies

(2.8) qhy, = hp—p, for n > 1 and lim h, = occ.
n—oo

Furthermore, we are supposed to have the numerical solution available until ~p.
Therefore the relation (Z71) can be represented by

Ynt1 = Un + hnta Z bi f(tn + Cihpar, Y/ YY),
i=1

(29) g N
}/[H_l =1Yn + hn+1 Z aijf(tn + thn+17 ijn—&-l’ l/jn m+1)’

=1

1=1,2,...,s.

3. PRELIMINARY RESULTS

In this section we investigate the asymptotical stability of the linear difference
equations with variable coefficients

o {fag o e

where M(n) = (m;;(n)) is a d x d complex matrix function. In the following we
assume that a matrix norm || - || is subordinate to some vector norm || - || and there
is a matrix M such that lim,,_,., M (n) = M.

Lemma 3.1. Suppose that the algebraic multiplicity of the eigenvalue & of M is 1
and the other eigenvalues have a module less than one. Then if |£| > 1, there is a
matriz norm || - ||ar such that |M||ar = p(M). Moreover, | M|y = ||M|%, for all
ke N.

Proof. According to the Jordan Canonical theorem in [§], there is a nonsingular

matrix P such that
—1 (&
PMP = ( M> ,

where M is an upper triangle matrix and p(M) < 1. Let Ds = diag(d,2,...,5971);
then for sufficiently small o

1D5 " M D |, < lel-

We define a matrix norm

M]lar = H (t p) pur(t L)

It is easily seen that

1

M ]|ar = [€] = p(M).
The last statement of the lemma can be obtain from p*(M) = p(MF*) < |[MF*||5; <
1215, = p*(M). O

It is easy to prove the following lemma by induction.
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Lemma 3.2. For some ng € N, we denote
F(n)=M(n)— M, n=0,1,...,

F(no), k=0,
B(’I’Lo + k) = k
MB(ng+k —1) 4+ F(ng + k)(M* + B(ng + k — 1)), k>1.
Then for k >0,
no+k
(3.2) I1 MG) = M + B(ng + k).
Jj=no
If, in addition, the conditions in Lemma Bl are satisfied, then for k >0,
no+k
(3.3) IB(no+k)llae < TT UMl + 1FG)Iar) = M5
Jj=no

Theorem 3.3. Assume that the conditions in Lemma Bl are satisfied and that
there is a norm || - ||« such that Y7, [|[M(n) — M||. < co. Then for any given ng
and g, the solution x(n) satisfies x(n) — 0 as n — oo if and only if |¢| < 1.

Proof. If [£] < 1, then p(M) < 1. Therefore from [6] we can obtain that for any
given ng and zg, z(n) — 0 as n — oo.

Suppose that || > 1. According to Lemma [3] there is a norm || - ||as such
that |¢| = || M| and ||M*|a = [|[M]||%;. Since all norms are equivalent (see [8]),
S o lIM(n) — M|, < oo is equivalent to Y > [ M(n) — M||a < co. We choose
ng € N such that

exp <||M1||M S | M(n) —M||M> <2

n=mno

In view of Lemma [B.I] and Lemma [B.2] we have

no-‘rk‘
[T MG)|| = 1M*"" + Bng + k)| wr
Jj=no M
> || M5 = 1B(no + k)llm
no+k
> 1M = | TT UM lae + I G)lae) = (1M 157
Jj=no
> 2 —exp 1E(n)]|
( |M [ nz,;o
which implies that the theorem is complete. O

4. THE STABILITY ANALYSIS

In this section we will investigate the numerical stability of ([27)) by applying
the pantograph equation

(4.1) y'(t) = My(t) + py(at),  t>0,
where A\, u € C, 0 < ¢ < 1 and the initial condition is y(0) = yo € C.
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It is well known that the solution of (A1) tends to zero if
(4.2) Re(A) <0, [ul <AL,
where Re(\) is the real part of A. In the remainder of this paper we assume that
an+1(n) satisfies (H1) and

(H2) aps1(n) >0 for all n > 0 and n > 0;

(H3) for any mesh H, there exists an o(H) > 0 such that |y, (hy) — a(H)| <

qlan—m(hn-m) — a(H)|;

(H4) infg a(H) = 0.
Definition 4.1. Method ([27) is called H,-stable if any application of (23] to
([#T) generates numerical approximations ¢, which tend to zero as n — oo, for any
g with 0 < ¢ <1, H={m;to,t1,...,tn,...}, ant1(n) satisfying (H1), (H2), (H3)
and (H4) and (A, p) satisfying (42]).

It is easy to see that for ({I)), (29) reads

s

Bt = T+ s P BT+,

i=1
4.3 _ B s i )
(4.3) Yin+1 =Un + hpt1 Z aij(/\y*jnJrl + Ny}nferl)’
j=1
i=1,2,...,s.
If we denote Y, = (i, ¥1", ¥, ..., Y{")", then [3) can be rewritten as
(44 D(()n)Y”Jrl = DYL)Yn + Dén)YnanrFlv

where A\, = )\hnaj\n = /\an P = ey, [l = Nﬁna €= (1, 1. I)T € C* and

() _ (1 =Appad” m _ (10 () _ (0 pngab”
Do _(0 I —X14)7 D= e 0)° Dy = 0 fn1d)’

which is equivalent to
Yn+1 = ng)}/n + Gén)yn—m+17

with @
n Tnt1 O n 0 Y
G(1):<(1) 0), Gé): (551 :
Tn+1 0 Tn+1
where
Tn+l = 1+ )‘n+1bT(I - 5‘n+1A)7167 ’Vr(igl = (I - 5‘“+1A)7lea
'77(12+)1 = Nn+1bT(I - 5‘n+1A)_1a '77(331 = ﬁnJrl(I - 5‘n+1A)_1A‘
Let Z,, = (YnT, YnT_l, . ,Yf_m+1)T. Then
Zn+1 = QnZn7
where
a™ oo 00 G
I 0 0 0 0
0 I 0 0 0
Qn =
0 0 I 0 0
0 0 0 I 0

m(s+1)
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4.1. H,-stability with regular A. If we denote

_ . _ . 1
Too = nh_{go Tn+1, ’Y(l) = nh_{go %(H)-l?
2) 1 (2) 3) _ 1 (3)
7 = Tim Y, 7@ = Tim 5},

then from (28], (H3) and the regularity of A , we have
1

Foo=1— - bpT A ™ =
r 1—|—a(H) €, ’Y Oa
1
@ _ Fur g=1 @) = _Hy
7 1+ a(H) ’ N
Let
Gi= lim G, Gy=lim GYY, Q= lim Q.;
then
(T O _ (0 A®
G1= <A/(1) 0> , Go= (0 NOSR
G, 0 0 0 G
I 0 00 0
o—|0 1 00 0
0 0 I 0 0
0 0 01 0/,

It is easily seen that

det[¢l,(s1) — Q) = det[¢™ o1 — £ 'Gy — G

1 . —
(4.5) = det €—-01- HT(OH)bTA te))gmt Wg;ﬁf 1
VAS
- (5 ) (1 ) H%(H)bTA_le)) (em+5)
and
o oo 15 an eigenvalue of @ with the algebraic multiplicity 1.

Lemma 4.2. For any given mesh H, if (H2) and (H3) hold, then there is a
constant C' > 0 such that

@7 GED Gyl + 1IGYY —Gah < CdF, k>0, 0<i<m-—1.

Proof. In view of ([28)) and (H2), we can see that there exist constants M; and M,
such that foralln =km+1,k>0and 0 <l <m —1,

T A—2(7 _ Y—1 p—1\—1
bTA=2(I — N 'A°Y) | < ar,
A1+ an(hn))?
and
T A-1Le
< M,.
‘<1+an<hn>><1+a<ﬂ>>‘— ?
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Hence
- 1
- = Tir_ -1 T 4—1
[Tr — Too| = [Anbd" (I — A A) e+ 1+a(H)b A
1 1 -
= TA_l I — I — —1A—1 —1
b o)  Tramy A ) e

bTA_1<(14;u¥)_]_+§iUM))I

1 1 Tl a—1\—
1+a4mgf_1+a4mgu_AﬁA])1)e
_ '( an(hy) —a(H) ) BT A-1e _ bTA=2(I — N1 A )" le
(1 + O‘(H))(l + an(hn)) )‘(1 + an(hn))th
< hiM1+|an(hn)— H)| M.

n

(
Therefore it follows from (2.8) and (H3) that

1
Pt — Pool < ¢ (h—lMl T lau(h) - a<H>|M2> < Cod*,
where )
COZ max {h—M1+Oél(h[)—Oé(H)|M2}
l

0<i<m-—1
In a similar way, there exist constants C;, i = 1,2, 3, such that
W2 =PI < Cig®, k>0, 0<I<m—1,
Consequently, foralln=km+1, k> 0and 0 <] <m — 1,
km+1 km—+1
163D = Gylly + 1G5 — Gally

3
< |fkm+l - foo| + Z ”'Yl(glrzlJrl - 7(2)H1 < qua
=1
where C' = Cy + Cy + Cy + Cs. O

As a result, Y 2 |Qn — Q|1 < oo, which together with (L) implies from
Theorem B3] that

Theorem 4.3. Assume that the matriz A is reqular. Then method 2.1) is Hy-

stable if and only if
1

1 -
1+ a(H)
Corollary 4.4. The Radau IA, Radau ITA and Lobatto 111C methods are H,-stable.

pTA el < 1.

Corollary 4.5. The Gauss-Legendre methods are H,-stable if and only if s is odd.
Corollary 4.6. The one-leg 0-method is H,-stable if and only if% <6< 1.

Proof. In fact, if # < %, then by (H4) there are an € > 0 and a mesh H such that
a(H) < e and

1 1
1— - | >1,

01+e¢
which implies that the numerical solution of the method is not asymptotically stable
from Theorem (.31 O

|Foo| =
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4.2. H,-stability of a stiffly accurate method. Here we assume that a;; = 0,
1 <j <s, and write

0 0 — 1 s
A= <d A) . a=(as,a31,...,a51)", A= (aij)i j=o-

We also assume that A is nonsingular and the Runge-Kutta method is stiffly accu-
rate, i.e.,
(48) Qg5 = bj, 1 S] S S.

The Lobatto ITTA methods and the linear f-methods are typical examples of such
Runge-Kutta methods.

Although our results in this subsection can be obtained in the same way as [19],
we will formulate the expressions of G1, Go, @ and det[{1,,(s41) — Q], directly. Let
e=(1,1,....,)T € C*7t e,y = (0,0,...,0,1)7 € C*~! and I be the identity
matric in C*~!. Then

_ o 1 0
(= A1) = ((I Ap1d)  Appra (I— )‘n+1A)1> ’

(I )\n+1A) €= ((I - )\n+1A)71>\n+1d+ (I _ )\n+1A)lé) )
V(T — Jur ) = (7 (T = Awr ) la €T AT~ ApprA) 1),

and
=)A= ((I— S A)ta (T A A)1A)
Therefore
1+)\7L+16571(Is—1_j\n—i-lA)_lﬁ"‘)\n-i-lezfl;l(ls—l_j\n-i-lﬁ)_lé 0 0
G\ = R 0 0],
(I — >\n+1A)71)\n+1C_l + (I — )\n+1A)7lé 0 0
0 /’anrlerl(Isfl - j‘nJrlA)_l@ /J/nJrleZ;]A(Isfl - 5\n+lle)_1
Gyl = (o 0 U E
0 ﬁn+l(I - )‘n—&-lA)ila ﬂn+1( - )‘n+1A)71A
S 1 T F-1. 1 a _ 1
oo T+ a(m 14 1ta(H) | ~\-41a)
1 — 0 0
2) — Hoor g-1 T @) — _H(_ )
’7 1 +Oé(H) A (687114 a 6571) Y A <A‘1a I> 9
and
Too 0 0
(4.9) G = 1 0 0],
~A7la 0 0
1 Bor io1- 1 K
_ Por j-1 ol
O Tram e Y TTramac
(4.10) Ga= 10 0 0 ]
Box_q_ I
_=a _r
0 P \
hence
m m—1 _ ¢2m—1 = m Hys—1
(4.11) det[§"Is41 — €™ G — Ga] = ¢ (€ —To)(E"+ )7
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Consequently, it is easy to see from the discussion in Section 4.1 that the conditions
in Theorem [3.3] are satisfied.

Theorem 4.7. Assume that the Runge-Kutta method (A,b,c) is stiffly accurate
and the matriz A is reqular. Then method 271 is Hy-stable if and only if

|Too] < 1.

If a(H) = 0, then 7o = lim,_,oo 7(2), where 7(2) = 1 + 207 (I — zA)"te is the
stability function of the Runge-Kutta method. So we have

Lemma 4.8. If the Runge-Kutta method is stiffly accurate and A is regular, then

(4.12) lim 7(z) = —el ;A 'a,

2500
where e;_1 = (0,0,...,0,1)T € C*~ 1.

From Theorem (.7 and Lemma [£.8] we have
Corollary 4.9. The Lobatto IITA methods are H,-stable if and only if s is even.
Corollary 4.10. The linear 8-method is H,-stable if and only zf% <0<1.

4.3. H,-stability of the Lobatto IIIB methods. In this subsection we will
investigate the H,-stability of the Lobatto IIIB methods. For the Lobatto IIIB, we
have

a1 = by, 1<i<s,
4.13 A
(4.13) A (/_1 0) 7
a 0
where @ = (as1, asa, . ..,as5-1)7, A= (aij)f;il is regular.

Lemma 4.11. For the Lobatto I1IB methods, aA~'e = 1.

Proof. Let r(z) = 142bT (I —2A) e be the stability function of the s stage Lobatto

IIIB method. Then
1 is odd
lim r(z)z{ o SR odd

z—00 —1, siseven.

and
Tir 1 a7 (I—zA)"'e
VI~ zA)"e= (" bi) (zd([ zA)"te+1
= b (I — zA)"'e 4 zbsa(l — zA)"'e + b,.
Hence 0 = lim, o b7 (I — 24)7te = bs(—aA~le + 1), ie., ad le=1. O

Let Y™ = (Y, Yy,...,Y" )T and

1 0 0
P=1|0 I 0
0 —aA! 1
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Then multiplying (£4) by P and denoting Df") = PDg") we have

A R SR T SRT A 100

DS =10 T—xpiA 0 DM =1e 0 0],
(4.14) 0 —aA~! 1 0 0 O

. R 0 /~‘n+16T Mn+1b3
Di=(0 mmd 0 |,
0 0 0

and (44) becomes

B Yn+1 B Yn—m+l
(4.15) Unt1 — Antp1b” (Yn+1) = Un + pns1b” <Ynm+1) ;

s S

(4.16) (I = A1 )Y = &g, + i AV
(4.17) —aA7tYy" Tyt =,
Submitting (AI7) into [@.I5]) we can obtain
(418) gn—i-l - >\n+lﬂTYn+1 = gn + ,Un—i-lﬁTYn_m—i_lv

where b = (b1, ba,...,bs_1)T and BT = b7 +b,aA™". Let Y, = (§n, (Y™)T)T. From
(#T18) and EIR) we have

(419) D(()n)i/n-i-l = D§n)}7n + Dén)Yn—m+17
where
A _ (1 =xan1BTY  pe_ (10 pe _ (0 paa BT
Dy (o T—aund) Pri=le o) P2 =\0 ppad)
which is equivalent to
Yn+1 = égn)}_/n + ng)y_rnferlv

with

D (2
Yrt1 O 0 ’77(1421

Rn+1 =1+ /\n+15T(j_ ;\n+1A)7lév 71(11-4)-1 = (f_ ;\n+1A)7lév
@ _ T(F_ X\ . AL =3) _ o T—M. A 1A
i1 = Hnt1P ( nt14)7, n+l = Pt ( nt+14) .

where

By the same argument as in Section 4.1, let G = lim,,_, o G‘En), i=1,2. Then

1 . 1 Hoor 51
(1o gTae [ | Q" |
Gy = om0 6= L+a(H) A :
0 0 0 —=1
A
and
_ _ _ s—1

(4.20) det[¢™ I, — €"71Gy — Ga] = €71 (€ — Roo) (€+ %) :
where Roo = 1 — m BT A—'e. It is obvious that the conditions in Theorem

are satisfied.
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Theorem 4.12. The Lobatto IIIB method (A, b, ¢) is H,-stable if and only if
|Roo| < 1.

Lemma 4.13. Let R(z) =1+ 287(I — 2A)71€ and r(2) be the stability function.
Then for the Lobatto I1IB method, we have

(1) R(z) =7r(2) forallz€ C;

(2) R =lim, . R(z) =1—-pTAe;

(3) BTA e =2 when s is even and BT A~1e = 0 when s is odd.

Proof. In fact, in view of aA~1é = 1 we have

_ I — z A)—1 e
I —2A) e = (87 by) (zc(zI(I— ;4,21)—1 aAo—le) (1)
=7 + byad ") (I — zA) e =TI — z4) e

Therefore (1) holds. (2) holds since A is regular, which together with (1) implies
(3). O

From Theorem and Lemma T3] we have
Corollary 4.14. The Lobatto I1IB methods are H,-stable if and only if s is even.

5. NUMERICAL EXPERIMENTS

Let the Runge-Kutta method (A, b, c) be of order p, let H = {m;tg,t1,...} be
a given mesh, h, 1 = t,41 —t, and h = minj<;<,, h;. We define for n = km + [,
l=1,2,...,m,

ha pil,

(51) akm+l(77) = n p—1
(—qkél) , p>2

where §; = % In fact

Wl p>2,

n hn =
ant1(hnt1) {h, b1,

Therefore (H1), (H2) (H3) and (H4) hold.
Let H = {m;tg,t1,...} be a geometric mesh which is defined by

th =q %,nZ—m.

Then from (5] we have h,, 41 = Ry, for p = 2.

In Tabled @ = —1,b = 0.5,q = 0.5,h,, 41 = hynyo, we list the absolute errors
(AE) and relative errors (RE) at t = 16 of the one-leg 6-method with geometric
mesh and the Ratio of the errors of the case m = 50 over that of m = 100. From
Table [, we can see that the one-leg #-method is of order 2 if § = % and of order 1
if 0 =0.

In FiguresMand B a = —1,b = 0.5,¢ = 0.5,m = 10, hyy 11 = hpyo,0 = % It can
be seen from these figures that the numerical solution ¢, of the modified one-leg
f-method with 6 = % tends to zero as n — oo, whereas the numerical solution y,,
does not.
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TABLE 1. The one-leg 8-method with geometric mesh

0 =0.5 0=0
AE RE AE RE
m =2 | 1.7927E —2 | 2.1150E — 1 | 3.6256E — 3 | 4.2774E — 2
m=3 | 1.0005E —2 | 1.2865E — 1 | 6.9657F — 3 | 8.2179E — 2
m=5 |50172E —3 | 5.9191E —2 | 4.5034E — 3 | 5.3131E — 2
m =10 | 1.5092E — 3 | 1.7806E — 2 | 2.2610E — 3 | 2.6674E — 2
m =20 | 4.1444F — 4 | 4.8894F — 3 | 1.1321E — 3 | 1.3356E — 2
m=50 | 7.0197E —5 | 8.2817E —4 | 4.5316F — 4 | 5.3463E — 3
m =100 | 1.7888E — 5 | 2.1104F — 4 | 2.2663F — 4 | 2.6738E — 3
Ratio 3.9243 3.9243 1.9996 1.9996
10-15
5 >< T T T T T T T
ot i
50 05 T 5 5 75 3 35 4
X 1016

F1GURE 1. The numerical solution ¥, of the classical one-leg -method

Finally we give some experiments of the Runge-Kutta method with quasi-geome-
tric mesh, which is defined by

Thy1 — Ty

tnTkJr(nk:m)(
m

) Jhkm <n < (k+ 1)m,
where T}, = g%, k > —1 and m is an integer.

In TableBl a = —1,b=0.95,q = 0.5, h,, 11 defined by (5.1)), we list the absolute
errors (AFE) and relative errors (RE) at t = 16 of the 3-Gauss method and 2-
Lobatto ITIB method with the quasi-geometric mesh and the Ratio of the errors of
the case m = 50 over that of m = 100. The table shows that the methods defined
in this paper can preserve the order of the classical methods.
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TABLE 2. The Runge-Kutta methods with quasi-geometric mesh

3-Gauss 2-Lobatto 1IIB
AFE RE AE RE
m =2 3.1521FK — 2 3.8295FK — 2 | 2.7342F — 1 | 3.3217E — 1
m=3 3.1566F — 3 | 3.8349FE — 3 | 1.6546F — 1 | 2.0102F — 1
m=>5 1.5897F — 4 1.9314F — 4 | 7.6110FE — 2 | 9.2465F — 2

m =10 | 2.5963FE —6 | 3.1542F —6 | 2.2717FE —2 | 2.7599F — 2
m=20 | 41279E -8 | 5.0149F —8 | 6.1802E — 3 | 7.5083E — 3
m =50 | 1.7057TE — 10 | 2.0722E — 10 | 1.0383F — 3 | 1.2615E — 3
m =100 | 2.6728E — 12 | 3.2471F — 12 | 2.6375E — 4 | 3.2042FE — 4
Ratio 63.818 63.818 3.9369 3.9369

1.2 + g

0.8 4

0.6 4

0.4 4

0.2 | 8

0 0 0.5 1 1.5 2 2.5 3 3.5 4

x 100

FI1GURE 2. The numerical solution g, of the modified one-leg -method
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