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AN A PRIORI ERROR ANALYSIS
FOR THE COUPLING OF LOCAL DISCONTINUOUS GALERKIN

AND BOUNDARY ELEMENT METHODS

GABRIEL N. GATICA AND FRANCISCO-JAVIER SAYAS

Abstract. In this paper we analyze the coupling of local discontinuous Ga-
lerkin (LDG) and boundary element methods as applied to linear exterior
boundary value problems in the plane. As a model problem we consider a Pois-
son equation in an annular polygonal domain coupled with a Laplace equation
in the surrounding unbounded exterior region. The technique resembles the
usual coupling of finite elements and boundary elements, but the correspond-
ing analysis becomes quite different. In particular, in order to deal with the
weak continuity of the traces at the interface boundary, we need to define a
mortar-type auxiliary unknown representing an interior approximation of the
normal derivative. We prove the stability of the resulting discrete scheme with
respect to a mesh-dependent norm and derive a Strang-type estimate for the
associated error. Finally, we apply local and global approximation properties

of the subspaces involved to obtain the a priori error estimate in the energy
norm.

1. Introduction

The local discontinuous Galerkin method is nowadays a very well-established
numerical tool to solve a large class of diffusion dominated and purely elliptic equa-
tions (see, e.g., [8], [10], [11], and [28]). Moreover, as shown recently in [5] and
[6], the applicability of this approach also includes some nonlinear boundary value
problems in heat conduction and fluid mechanics. In fact, the results from [28] are
extended in [5] to a class of nonlinear diffusion problems with mixed boundary con-
ditions, whereas a new mixed LDG method for certain nonlinear models appearing
in quasi-Newtonian Stokes fluids is studied in [6]. We also refer to [22] for related
results dealing with the extension of the interior penalty DG method to quasilinear
elliptic equations. As already emphasized by many authors, the main advantages of
the LDG methods are the high order of approximation provided, the high degree of
parallelism involved, and its suitability for h, p, and hp refinements. In particular,
the latter has motivated the development of associated a posteriori error estimators
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allowing the implementation of adaptive DG and LDG methods (see, e.g., [3], [4],
[6], and [29]).

On the other hand, not much has been done in connection with the combina-
tion of LDG and other procedures for elliptic boundary value problems. To this
respect, we can only refer to [12], [14], [15], [16], [27], and [31], where the coupling
of either DG or LDG with continuous finite element methods (FEM) has been an-
alyzed. For instance, a coupled continuous-DG method is studied in [14] for the
numerical solution of linear convection-diffusion problems, and the coupling of the
LDG method with the Raviart-Thomas mixed-FEM is proposed in [12] for elliptic
equations modeling flow problems. Similarly, the coupling of continuous and DG
methods is utilized in [16] to develop a new discrete scheme for two-dimensional
shallow water equations. Nevertheless, to the authors’ knowledge, the coupling
of LDG with another widely applicable procedure, such as the boundary element
method (BEM), has not been investigated yet. The suitability of BEM for homo-
geneous linear boundary value problems in bounded and unbounded domains is
well known. Furthermore, the coupling of BEM and FEM is already recognized
as a very powerful technique for solving a large class of transmission problems in
physics and engineering sciences (see, e.g., [7], [18], [19], [21], [23], [25], [26], [24],
[30], and the references therein). This procedure combines the advantage of BEM
for treating homogeneous domains with that of FEM for dealing with linear and
nonlinear materials. However, when the solution in the FEM region is known to
be rough, an LDG method is certainly more appropriate for its approximation. In
particular, LDG does not require any continuity condition across the interelement
boundaries, it is robust with respect to discontinuous coefficients, and it allows the
use of different polynomial degress in each element.

According to the above, and motivated by the need of further developments of
combined methods, we now propose to apply LDG instead of FEM, thus yielding
the coupling of LDG and BEM. It is important to point out in advance that the
coupling of BEM with any other DG methods could be obtained with essentially
the same approach to be developed here. As the starting point of the analysis
for the coupled approach, we concentrate here on linear exterior boundary value
problems arising in potential theory. In forthcoming works we will address nonlinear
behaviours and other areas of application. In order to describe our present model
problem, we first let Ω0 be a simply connected and bounded domain in R

2 with
polygonal boundary Γ0. Then, given f ∈ L2(R2 \ Ω̄0) with compact support, we
consider the exterior Dirichlet problem:
(1.1)

−∆u = f in R
2 \ Ω̄0, u = 0 on Γ0, u(x) = O(1) as |x| → +∞ .

The Dirichlet boundary condition on Γ0 has been taken homogeneous only for
simplicity of the presentation. The analysis in this paper carries over, with minor
modifications, to the case u = g on Γ0, with g sufficiently smooth. We also remark
that the behavior of u at infinity can be described, equivalently, by demanding that
u ∈ W 1(R2 \ Ω̄0) (see [17] for a definition of this Beppo–Levi space). Next, let Γ
be another simple closed polygonal curve such that the support of f falls inside the
annular domain Ω determined by Γ0 and Γ. We further assume that this support
does not intersect Γ. Then, (1.1) can be split, equivalently, as a Poisson equation
in Ω:

(1.2) −∆u = f in Ω, u = 0 on Γ0 ,
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and Laplace equation in the unbounded region Ωe := R
2 \ (Ω̄0 ∪ Ω̄):

(1.3) −∆u = 0 in Ωe, u(x) = O(1) as |x| → +∞ ,

coupled with the transmission conditions:

(1.4) lim
x→x0
x∈Ω

u(x) = lim
x→x0
x∈Ωe

u(x) and lim
x→x0
x∈Ω

∇u(x) · ν(x0) = lim
x→x0
x∈Ωe

∇u(x) · ν(x0)

for almost all x0 ∈ Γ, where ν(x0) denotes the unit outward normal to x0.
The main purpose of this work is to numerically solve (1.1) by means of the

coupled LDG-BEM approach, which basically consists of applying LDG to (1.2)
and BEM to (1.3). The rest of the paper is organized as follows. In Section 2 we
derive the resulting discrete scheme. This includes the boundary integral equation
formulation for the exterior problem (1.3), the LDG setting of the interior problem
(1.2), the introduction of the auxiliary mortar-type unknown, and then the coupled
LDG-BEM scheme. In Section 3 we define appropriate mesh-dependent norms
and prove the unique solvability and stability of the coupled method. Finally, in
Section 4 we deduce a Strang-type estimate and prove the corresponding a priori
error estimate, which is shown to be optimal with respect to all the meshsizes
involved, except for the one associated to the mortar-type unknown. Nevertheless,
we also show that the regularity of the solution in the exterior region allows us to
circumvent this lack of optimality.

Throughout this paper, c and C, with or without subscripts, bars, tildes or hats,
denote positive constants, independent of the parameters and functions involved,
which may take different values at different occurrences. In addition, given any
linear space V , the corresponding vector-valued space V × V , endowed with the
product norm, will be denoted in boldface V. If O is an open set, its closure, or
a polygonal curve, and s ∈ R, then | · |s,O and ‖ · ‖s,O denote the seminorm and
norm in the Sobolev space Hs(O). In particular, the norms of Hs(Γ) are denoted
‖ · ‖s,Γ. Also, 〈·, ·〉 denotes both the L2(Γ) inner product and its extension to the
duality pairing of H−s(Γ) × Hs(Γ).

2. The coupled LDG-BEM approach

We first follow [10] (see also [5], [8], and [28]) and introduce the gradient σ :=
∇u in Ω as an additional unknown. Hereafter, u is the exact solution of (1.2)–(1.3).
Also, we define the following auxiliary quantities that will later act as unknowns:

λ(x0) := lim
x→x0
x∈Ω

∇u(x) · ν(x0) , γ(x0) := lim
x→x0
x∈Ωe

∇u(x) · ν(x0) ,

and

ϕ(x0) := lim
x→x0
x∈Ωe

u(x) − κ with κ :=
1
|Γ|

∫
Γ

u ,

for almost all x0 ∈ Γ. In this way, (1.2) can be reformulated as

(2.1) σ = ∇u in Ω , − div σ = f in Ω , u = 0 on Γ0 ,

and the transmission conditions (1.4) become

(2.2) lim
x→x0
x∈Ω

u(x) = ϕ(x0) + κ ∀ (a.e.) x0 ∈ Γ and λ = γ on Γ .
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2.1. The boundary integral formulation in the exterior domain. We begin
with Green’s representation formula for u in Ωe, that is,

(2.3) u(x) :=
∫

Γ

∂ν(y) E(x,y) ϕ(y) dsy −
∫

Γ

E(x,y) γ(y) dsy ∀x ∈ Ωe ,

where E(x,y) := − 1
2π log |x−y| is the fundamental solution of the two-dimensional

Laplacian.
It follows from (2.3) and the jump conditions of the layer potentials that

(2.4)
Wϕ − ( 1

2I − K′)γ = − γ on Γ ,

( 1
2I − K)ϕ + Vγ + κ = 0 on Γ ,

where V , K, K′, and W denote the boundary integral operators associated to
the single, double, adjoint of the double, and hypersingular layer potentials, re-
spectively. We recall from [13] that their main mapping properties are given by
V : H−1/2(Γ) → H1/2(Γ), K : H1/2(Γ) → H1/2(Γ), K′ : H−1/2(Γ) → H−1/2(Γ),
and W : H1/2(Γ) → H−1/2(Γ), and that they are defined as follows:

Vµ(x) :=
∫

Γ

E(x,y) µ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ µ ∈ H−1/2(Γ) ,

Kψ(x) :=
∫

Γ

∂ν(y) E(x,y) ψ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ ψ ∈ H1/2(Γ) ,

K′µ(x) :=
∫

Γ

∂ν(x)E(x,y) µ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ µ ∈ H−1/2(Γ) ,

Wψ(x) := −∂ν(x)

∫
Γ

∂ν(y)E(x,y) ψ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ ψ ∈ H1/2(Γ) ,

where ∂ν(x) stands for the normal derivative operator at x ∈ Γ.
Next, we observe from the definition of ϕ and κ that the unknown ϕ belongs to

the space H
1/2
0 (Γ) := {ψ ∈ H1/2(Γ) : 〈1, ψ〉 = 0}, and, according to the behaviour

of u at infinity, there holds γ ∈ H
−1/2
0 (Γ) := {µ ∈ H−1/2(Γ) : 〈µ, 1〉 = 0}. Hence,

incorporating the transmission condition given by γ = λ on Γ (continuity of the
normal derivative of u), the boundary integral equations (2.4) can be reformulated
as the system: find (ϕ, γ) ∈ H

1/2
0 (Γ) × H

−1/2
0 (Γ) such that

(2.5)
〈Wϕ, ψ〉 − 〈( 1

2I − K′)γ, ψ〉 = −〈λ, ψ〉 ∀ ψ ∈ H
1/2
0 (Γ) ,

〈µ, ( 1
2I − K)ϕ〉 + 〈µ,Vγ〉 = 0 ∀ µ ∈ H

−1/2
0 (Γ) ,

together with the a posteriori computation of the constant κ:

κ = − 1
|Γ|

{
〈1, ( 1

2I − K)ϕ〉 + 〈1,Vγ〉
}

.

The analysis of (2.5) and its discrete counterpart below will strongly depend on
the symmetry and ellipticity properties of V and W , which are given by

(2.6)

〈µ,Vγ〉 = 〈γ,Vµ〉 ∀µ, γ ∈ H−1/2(Γ) ,

〈Wϕ, ψ〉 = 〈Wψ, ϕ〉 ∀ϕ, ψ ∈ H1/2(Γ) ,

〈µ,Vµ〉 ≥ C ‖µ‖2
−1/2,Γ ∀µ ∈ H

−1/2
0 (Γ) ,

〈Wψ, ψ〉 ≥ C ‖ψ‖2
1/2,Γ ∀ψ ∈ H

1/2
0 (Γ) .
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2.2. The LDG formulation in the interior domain. We now let Th be a shape-
regular triangulation of Ω̄ (with possible hanging nodes) made up of straight trian-
gles K with diameter hK and unit outward normal to ∂K given by νK . As usual,
the index h also denotes h := maxK∈Th

hK . Then, the edges of Th are defined
as follows. An interior edge of Th is the (nonempty) interior of ∂K ∩ ∂K ′, where
K and K ′ are two adjacent elements of Th. Similarly, a boundary edge of Th is
the (nonempty) interior of ∂K ∩ Γ0 or ∂K ∩ Γ, where K is a boundary element
of Th. For each edge e, he represents its length. In addition, we define E(K) :=
edges of K, E int

h : list of interior edges (counted only once), EΓ
h : list of edges on Γ,

EΓ0
h : list of edges on Γ0, and Ih: interior grid generated by the triangulation, that

is, Ih :=
⋃
{e : e ∈ E int

h }. Also, we let Γ0
h and Γh be the boundaries Γ0 and Γ,

respectively, divided into edges.
In what follows we assume that Th is of bounded variation, which means that

there exists l > 1, independent of the meshsize h, such that l−1 ≤ hK

hK′
≤ l for

each pair K, K ′ ∈ Th sharing an interior edge. We note that the hypotheses on the
triangulation imply that the cardinality of E(K) is uniformly bounded, and that
for each e ∈ E(K) there holds hK ≤ C l he.

In order to introduce the LDG approach, we first multiply the partial differential
equations in (2.1) by smooth test functions τ and v, respectively, and integrate by
parts over each K ∈ Th. Then, the basic idea is to consider a discrete setting of the
resulting local conservation laws, but with the traces of σ and u on the boundary
∂K of each K ∈ Th being replaced by suitable numerical approximations σ̄ and ū,
respectively, which are named numerical fluxes.

To this end, given m ∈ N, we define the finite element spaces

(2.7) Vh :=
∏

K∈Th

P (K) and Σh :=
∏

K∈Th

P(K) ,

where P (K) := Pm(K) and P(K) := Pr(K), with r = m or r = m − 1. Here-
after, given an integer k ≥ 0 and a domain S ⊆ R

2, Pk(S) denotes the space
of polynomials of degree at most k on S. Also, given v := {vK}K∈Th

∈ Vh and
τ := {τK}K∈Th

∈ Σh, the components vK and τK coincide with the restrictions v|K
and τ |K , when v and τ are identified as elements in L2(Ω) and L2(Ω), respectively.
Further, when no confusion arises, we omit the subscript K and just write v and τ .

Hence, we consider the following formulation: find (σh, uh) ∈ Σh×Vh such that
for each K ∈ Th there holds

(2.8)

∫
K

σh · τ +
∫

K

uh (div τ ) −
∫

∂K

ū (τ · νK) = 0 ∀ τ ∈ Σh ,∫
K

σh · ∇v −
∫

∂K

(σ̄ · νK) v =
∫

K

f v ∀ v ∈ Vh ,

where the numerical fluxes ū and σ̄, usually depending on uh, σh, and the boundary
conditions are chosen so that some compatibility conditions are satisfied.
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The explicit definitions of these fluxes require the introduction of further nota-
tion. Given s > 1/2, we now let

Hs(Th) :=
∏

K∈Th

Hs(K) , L2(Ih) :=
∏

e∈E int
h

L2(e) ,

L2(Ih ∪ Γ0
h ∪ Γh) =

∏
e∈E int

h ∪EΓ0
h ∪EΓ

h

L2(e) , P0(Ih) :=
∏

e∈E int
h

P0(e) ,

P0(Ih ∪ Γ0
h) :=

∏
e∈E int

h ∪EΓ0
h

P0(e) and P0(Γh) :=
∏

e∈EΓ
h

P0(e) .

An analogue remark to the one given before, concerning components and restric-
tions of the elements in Vh and Σh, is valid here for each one of the above product
spaces. Also, we will not use any symbol for the trace on edges, provided it is
clear from which side of an interior edge we are taking the trace. Hence, given
v ∈ H1(Th), we define the averages {v} ∈ L2(Ih) and jumps [[v]] ∈ L2(Ih) on the
interior grid Ih by

{v}e := 1
2 (vK + vK′) and [[v]]e := vKνK + vK′νK′ ∀ e ∈ E(K) ∩ E(K ′) .

Similarly, for vector valued functions τ ∈ H1(Th), we define {τ} ∈ L2(Ih) and
[[τ ]] ∈ L2(Ih) by

{τ}e := 1
2 (τK + τK′) and [[τ ]]e := τK · νK + τK′ · νK′ ∀ e ∈ E(K) ∩ E(K ′) .

In addition, we let α ∈ P0(Ih ∪ Γ0
h) and β ∈ P0(Ih) be given functions and assume

that there exist C, c0, c1 > 0, independent of the grid, such that

(2.9) max
e∈E int

h

|βe| ≤ C and 0 < c0 ≤ hE α ≤ c1 ,

where hE ∈ P0(Ih ∪ Γ0
h) is defined by hE |e := he ∀ e ∈ E int

h ∪ EΓ0
h .

Then, using the approach in [8] and [28], the flux operators û : H1(Th) →
L2(Ih ∪ Γ0

h ∪ Γh) and σ̂ : H1(Th)×H1(Th)×L2(Γ) → L2(Ih ∪Γ0
h ∪Γh) are defined

componentwise as follows:

û(v)e :=

⎧⎪⎪⎨⎪⎪⎩
{v}e + βe · [[v]]e if e ∈ E int

h ,

0 if e ∈ EΓ0
h ,

ve if e ∈ EΓ
h ,

for all v ∈ H1(Th), and

σ̂(v, τ, ξ)e :=

⎧⎪⎪⎨⎪⎪⎩
{τ}e − [[τ ]]e βe − αe[[v]] if e ∈ E int

h ,

τe − αeveνe if e ∈ EΓ0
h ,

ξνe if e ∈ EΓ
h ,

for all (v, τ, ξ) ∈ H1(Th) × H1(Th) × L2(Γ).
We now introduce a discrete approximation of λ. To this end, we let Γh̃ be

a second partition of Γ, independent of the partition Γh inherited from Th, and
denote by EΓ

h̃
the corresponding list of edges ẽ. Then, given k̃ ∈ N, we define the
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subspaces:

(2.10)

Xh̃ :=
{

ξh̃ ∈ L2(Γ) : ξh̃|ẽ ∈ Pk̃(ẽ) ∀ ẽ ∈ EΓ
h̃

}
,

X0
h̃

=
{

ξh̃ ∈ Xh̃ :
∫

Γ

ξh̃ = 0
}

,

and let λh̃ ∈ X0
h̃

be an unknown approximating λ. Hence, we consider (2.8)
with numerical fluxes ū := û(uh) and σ̄ := σ̂(uh, σh, λh̃), integrate by parts the
second term of its first equation, and obtain the formulation: find (σh, uh, λh̃) ∈
Σh × Vh × X0

h̃
such that for each K ∈ Th there holds

(2.11)∫
K

σh · τ −
∫

K

∇uh · τ +
∫

∂K

(uh − ū) τ · νK = 0 ∀ τ ∈ Σh ,∫
K

σh · ∇v −
∫

∂K∩(Ω∪Γ0)

(σ̄ · νK) v −
∫

∂K∩Γ

λh̃ v =
∫

K

f v ∀ v ∈ Vh .

Next, we sum up (2.11) over all K ∈ Th, apply well-known algebraic identities,
and arrive at the global LDG formulation: find (σh, uh, λh̃) ∈ Σh × Vh × X0

h̃
such

that
(2.12)∫

Ω

σh · τ −
{∫

Ω

∇huh · τ − S(uh, τ )
}

= 0 ∀ τ ∈ Σh ,{∫
Ω

∇hv · σh − S(v, σh)
}

+ α(uh, v) −
∫

Γ

λh̃ v =
∫

Ω

f v ∀ v ∈ Vh ,

where ∇h stands for the piecewise defined gradient, and S : H1(Th)×H1(Th) → R

and α : H1(Th) × H1(Th) → R are the bilinear forms defined by
(2.13)

S(w, τ) :=
∫

Ih

[[w]] · ({τ} − [[τ ]] β) +
∫

Γ0

w (τ · ν) ∀ (w, τ) ∈ H1(Th) × H1(Th) ,

and

(2.14) α(w, v) :=
∫

Ih

α [[w]] · [[v]] +
∫

Γ0

α w v ∀ (w, v) ∈ H1(Th) × H1(Th) ,

with the traces of w, v, and τ on Γ0 being certainly defined elementwise, not
globally.

We remark that if w ∈ Ht(Ω), with t > 1, then [[w]] = 0 on Ih. Additionally, if
w = 0 on Γ0, then S(w, τ) = 0 for all τ ∈ H1(Th). Furthermore, if −∆w = f in Ω
and t > 3/2, then simple computations show, with σ := ∇w and λ := ∂νw, that
there holds
(2.15)∫

Ω

σ · τ −
{∫

Ω

∇hw · τ − S(w, τ)
}

= 0 ∀ τ ∈ H1(Th) ,{∫
Ω

∇hv · σ − S(v, σ)
}

+ α(w, v) −
∫

Γ

λ v =
∫

Ω

f v ∀ v ∈ H1(Th) .

We end this section by observing that the definitions of averages, jumps, and
fluxes, as well as the bilinear forms S and α, can be extended to (v, w, τ) ∈
H1/2+ε(Th) × H1/2+ε(Th) × H1/2+ε(Th) for any ε > 0.
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2.3. The coupled LDG-BEM scheme. We now let Γĥ be a third partition of
Γ, independent of the partition Γh inherited from Th, and denote by EΓ

ĥ
the cor-

responding list of edges ê. In addition, given k̂ ∈ N, we introduce the boundary
element subspaces:

(2.16)

Yĥ :=
{

ψĥ ∈ C(Γ) : ψĥ|ê ∈ Pk̂(ê) ∀ ê ∈ EΓ
ĥ

}
,

Y 0
ĥ

=
{

ψĥ ∈ Yĥ :
∫

Γ

ψĥ = 0
}

Zĥ :=
{

µĥ ∈ L2(Γ) : µĥ|ê ∈ Pk̂−1(ê) ∀ ê ∈ EΓ
ĥ

}
,

Z0
ĥ

=
{

µĥ ∈ Zĥ :
∫

Γ

µĥ = 0
}

.

Then, we substitute λ by λh̃ in the right-hand side of the boundary integral
equations (2.5) and define its discrete version as follows: find (ϕĥ, γĥ) ∈ Y 0

ĥ
× Z0

ĥ
such that

(2.17)
〈Wϕĥ, ψ〉 − 〈( 1

2I − K′)γĥ, ψ〉 = −〈λh̃, ψ〉 ∀ ψ ∈ Y 0
ĥ

,

〈µ, ( 1
2I − K)ϕĥ〉 + 〈µ,Vγĥ〉 = 0 ∀ µ ∈ Z0

ĥ
.

In addition, the transmission condition given by the first equation in (2.2) is imposed
weakly, at the discrete level, as follows:

(2.18) 〈ξ, uh〉 − 〈ξ, ϕĥ〉 = 0 ∀ ξ ∈ X0
h̃

.

Therefore, (2.12), (2.17), and (2.18) lead to our coupled LDG-BEM formulation:
find (σh, uh, λh̃, ϕĥ, γĥ) ∈ Σh × Vh × X0

h̃
× Y 0

ĥ
× Z0

ĥ
such that

(2.19)∫
Ω

σh · τ − ρ(uh, τ ) = 0 ,

ρ(v, σh) + α (uh, v) − 〈λh̃, v〉 =
∫

Ω

f v ,

〈ξ, uh〉 − 〈ξ, ϕĥ〉 = 0 ,

〈λh̃, ψ〉 + 〈Wϕĥ, ψ〉 − 〈( 1
2I − K′)γĥ, ψ〉 = 0 ,

〈µ, ( 1
2I − K)ϕĥ〉 + 〈µ,Vγĥ〉 = 0 ,

for all (τ, v, ξ, ψ, µ) ∈ Σh × Vh × X0
h̃
× Y 0

ĥ
× Z0

ĥ
, where ρ : H1(Th) × H1(Th) → R

is the bilinear form defined by

(2.20) ρ(v, τ) :=
∫

Ω

∇hv · τ − S(v, τ) ∀ (v, τ) ∈ H1(Th) × H1(Th) .

It is important to remark here that λh̃ plays the role of a mortar-type auxiliary
unknown gluing the LDG and BEM formulations in a suitable way, as we will see
below in Section 3, where the unique solvability and stability of (2.19) is proved. On
the contrary, the eventual replacement of λh̃ in (2.19) by the exterior approximation
γĥ of the normal derivative of u would yield an overdetermined coupled formulation
with 5 equations and 4 unknowns. This would certainly add further difficulties
for computing the solution (whenever it exists) of the resulting linear system. In
particular, determining the linearly independent equations could be expensive and
numerically unstable.
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On the other hand, we also note that an element-by-element formulation for
the LDG part, suitable for computational implementation, is straightforward from
(2.19). In addition, the constant κ needed to compute the behaviour at infinity of
the solution u can be approximated a posteriori either by

κĥ = − 1
|Γ|

∫
Γ

{
( 1
2I − K)ϕĥ + Vγĥ

}
or κh :=

1
|Γ|

∫
Γ

uh .

2.4. The reduced coupled LDG-BEM scheme. In order to study the solvabil-
ity and stability of (2.19), and following the usual analysis for LDG methods, we
derive in this section an equivalent reduced formulation. For this purpose, we now
let Sh : H1(Th) → Σh be the linear operator associated to the bilinear form S when
restricted to H1(Th)×Σh. In other words, given w ∈ H1(Th), Sh(w) is the unique
element in Σh satisfying∫

Ω

Sh(w) · τ = S(w, τ) ∀ τ ∈ Σh .

According to a remark given in the previous subsection, we observe that if w is
such that w ∈ Ht(Ω), with t > 1, and w = 0 on Γ0, then Sh(w) = 0.

Next, we let Bh : H1(Th) × H1(Th) → R be the bilinear form defined by
(2.21)

Bh(w, v) := α(w, v) +
∫

Ω

(∇hw − Sh(w)) · (∇hv − Sh(v)) ∀w, v ∈ H1(Th) ,

and denote by ΠΣh
the L2(Ω)-projection onto Σh. We have the following technical

result.

Lemma 2.1. Let w ∈ Ht(Ω), with t > 3/2, such that w = 0 on Γ0 and ∆w ∈
L2(Ω). Then

Bh(w, v) =
∫

Ω

(−∆w) v + S(v,∇w−ΠΣh
(∇w)) +

∫
Γ

v (∇w·ν) ∀ v ∈ H1(Th) .

Proof. Because of the hypotheses on w we easily find that [[w]] = 0 on Ih, Sh(w) = 0,
and α(w, v) = 0 for all v ∈ H1(Th). It follows that

Bh(w, v) =
∫

Ω

∇w · ∇hv −
∫

Ω

∇w · Sh(v)

=
∑

K∈Th

∫
K

∇w · ∇v −
∫

Ω

ΠΣh
(∇w) · Sh(v)

=
∑

K∈Th

{∫
K

(−∆w) v +
∫

∂K

(∇w · νK) v

}
− S(v, ΠΣh

(∇w)) .

In addition, since ∆w ∈ L2(Ω), we have ∇w ∈ H(div ; Ω) and hence [[∇w]] = 0.
Therefore, we deduce that∑

K∈Th

∫
∂K

(∇w · νK) v =
∫

Ih

{v} [[∇w]] +
∫

Ih

[[v]] · {∇w} +
∫

∂Ω

v (∇w · ν)

=
∫

Ih

[[v]] · {∇w} +
∫

Γ0

v (∇w · ν) +
∫

Γ

v (∇w · ν) = S(v,∇w) +
∫

Γ

v (∇w · ν) ,

which, together with the previous expression for Bh(w, v), completes the proof. �

The equivalence between (2.12) and a reduced problem involving Bh is now
established.
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Lemma 2.2. Let (σh, uh, λh̃) ∈ Σh × Vh ×X0
h̃

be a solution of (2.12). Then there
holds

(2.22) Bh(uh, v) =
∫

Ω

f v +
∫

Γ

λh̃ v ∀ v ∈ Vh .

Conversely, if (uh, λh̃) ∈ Vh ×X0
h̃

satisfies (2.22) and σh := ∇huh −Sh(uh), then
(σh, uh, λh̃) is a solution of (2.12).

Proof. Let (σh, uh, λh̃) ∈ Σh × Vh × X0
h̃

be a solution of (2.12). According to the
first equation of (2.12) and the definition of Sh, we can write∫

Ω

σh · τ −
∫

Ω

(∇huh − Sh(uh) ) · τ = 0 ∀ τ ∈ Σh ,

which, noting that ∇huh ∈ Σh, yields σh = ∇huh − Sh(uh). Then, replacing this
expression in the second equation of (2.12) we obtain (2.22). The converse result
follows readily. We omit details. �

At this point we observe that for all w, v ∈ Vh we can write

Bh(w, v) = α(w, v) +
∫

Ω

∇hw · ∇hv +
∫

Ω

Sh(w) · Sh(v)

− S(w,∇hv) − S(v,∇hw) =: B0
h(w, v) ,

where B0
h is a bilinear form defined in H2(Th)×H2(Th). Because of the coincidence

in the discrete spaces, B0
h also serves for a primal formulation of the LDG (see [2]).

Furthermore, we note that if w ∈ Ht(Ω), with t > 3/2, is such that w = 0 on Γ0

and ∆w ∈ L2(Ω), then

B0
h(w, v) =

∫
Ω

(−∆w) v +
∫

Γ

v (∇w · ν) ∀ v ∈ H2(Th) .

In the forthcoming analysis we utilize the bilinear form Bh, which adds an in-
consistency term depending on S (see Lemma 2.1) but is defined in the larger space
H1(Th) × H1(Th).

We now let D and D̄ : (H1/2(Γ) × H−1/2(Γ)) × (H1/2(Γ) × H−1/2(Γ)) → R

be the bilinear forms obtained after adding and subtracting the equations in (2.5),
that is,

D((ϕ, γ), (ψ, µ)) := 〈Wϕ, ψ〉 − 〈( 1
2I − K′)γ, ψ〉 + 〈µ, ( 1

2I − K)ϕ〉 + 〈µ,Vγ〉

and

D̄((ϕ, γ), (ψ, µ)) := 〈Wϕ, ψ〉 − 〈( 1
2I − K′)γ, ψ〉 − 〈µ, ( 1

2I − K)ϕ〉 − 〈µ,Vγ〉

for all (ϕ, γ), (ψ, µ) ∈ H1/2(Γ) × H−1/2(Γ).
According to the mapping properties of the boundary integral operators we ob-

serve that D and D̄ are bounded. In addition, as a consequence of (2.6), we deduce
that D̄ is symmetric and that D is strongly elliptic on H

1/2
0 (Γ)×H

−1/2
0 (Γ). In par-

ticular, the ellipticity of D allows us to define the linear operator gĥ : H−1/2(Γ) →
Y 0

ĥ
×Z0

ĥ
, where, given ξ ∈ H−1/2(Γ), gĥ(ξ) := (g1

ĥ
(ξ),g2

ĥ
(ξ)) is the unique element

in Y 0
ĥ
× Z0

ĥ
such that

(2.23) D(gĥ(ξ), (ψ, µ)) = 〈ξ, ψ〉 ∀ (ψ, µ) ∈ Y 0
ĥ
× Z0

ĥ
,
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or, equivalently, with D̄ instead of D,

(2.24) D̄(gĥ(ξ), (ψ, µ)) = 〈ξ, ψ〉 ∀ (ψ, µ) ∈ Y 0
ĥ
× Z0

ĥ
.

Thanks to the lifting operator gĥ, we can now establish the following equivalence
result.

Lemma 2.3. Let (σh, uh, λh̃, ϕĥ, γĥ) ∈ Σh × Vh × X0
h̃
× Y 0

ĥ
× Z0

ĥ
be a solution of

(2.19). Then there holds

(2.25)
Bh(uh, v) − 〈λh̃, v〉 =

∫
Ω

f v ∀ v ∈ Vh ,

〈ξ, uh〉 + 〈ξ,g1
ĥ
(λh̃)〉 = 0 ∀ ξ ∈ X0

h̃
.

Conversely, if (uh, λh̃) ∈ Vh × X0
h̃

satisfies (2.25) and σh := ∇huh − Sh(uh),
(ϕĥ, γĥ) := gĥ(−λh̃), then (σh, uh, λh̃, ϕĥ, γĥ) is a solution of (2.19).

Proof. Let (σh, uh, λh̃, ϕĥ, γĥ) ∈ Σh × Vh × X0
h̃
× Y 0

ĥ
× Z0

ĥ
be a solution of (2.19).

It is easy to realize that the last two equations in (2.19) imply that

(2.26) (ϕĥ, γĥ) = gĥ(−λh̃) := (g1
ĥ
(−λh̃),g2

ĥ
(−λh̃)) .

Therefore, replacing ϕĥ by g1
ĥ
(−λh̃) in the third equation of (2.19), and applying

Lemma 2.2, we arrive at (2.25). The converse result follows from the definition of
gĥ and Lemma 2.2. Further details are omitted. �

3. Unique solvability and stability

In this section we prove the unique solvability and stability of (2.19) through the
corresponding analysis of the equivalent reduced formulation (2.25). To this end,
we follow [8] and first introduce the seminorms

|v|21,h := ‖∇hv‖2
0,Ω , |v|2∗ := ‖h−1/2

E [[v]]‖2
0,Ih

+ ‖h−1/2
E v‖2

0,Γ0
∀ v ∈ H1(Th) ,

and the norm
|||v|||2h := |v|21,h + |v|2∗ ∀ v ∈ H1(Th) .

In addition, in order to deal with the mortar-type unknown λh̃, we need to define
the seminorm:

(3.1) |ξ|ĥ := sup
0�=ψ

ĥ
∈Y

ĥ

〈ξ, ψĥ〉
‖ψĥ‖1/2,Γ

∀ ξ ∈ H−1/2(Γ) ,

which clearly satisfies |ξ|ĥ ≤ ‖ξ‖−1/2,Γ for all ξ ∈ H−1/2(Γ). Moreover, through-
out the rest of the paper we assume that | · |ĥ is a norm in Xh̃, which is equivalent
to ‖ · ‖−1/2,Γ in Xh̃.

In particular, we will show in Lemma 3.1 that the lower bound

|ξ|ĥ ≥ C ‖ξ‖−1/2,Γ

holds for all ξ ∈ Xh̃ if a technical condition on the mesh sizes is satisfied. Indeed,
let us now assume that the partition Γh̃ is uniformly regular, which means that there
exists c > 0, independent of h̃, such that |ẽ| ≥ c h̃ for all ẽ ∈ EΓ

h̃
. This assumption

yields the inverse inequality for Xh̃, which says that for any real numbers s and t
with −1/2 ≤ s ≤ t ≤ 0, there exists C > 0 such that

(3.2) ‖ξ‖t,Γ ≤ C h̃s−t ‖ξ‖s,Γ ∀ ξ ∈ Xh̃ .
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Also, we recall here the approximation property of the space Yĥ, which establishes
that for any 1/2 < t ≤ 3/2 and for any ψ ∈ Ht(Γ), there exists ψ̂ĥ ∈ Yĥ such that

(3.3) ‖ψ − ψ̂ĥ‖1/2,Γ ≤ C ĥt−1/2 ‖ψ‖t,Γ .

Then, we can prove the following result.

Lemma 3.1. There exist positive constants C0, C̃, independent of the meshsizes,
such that for each ĥ ≤ C0 h̃ there holds

|ξ|ĥ ≥ C̃ ‖ξ‖−1/2,Γ ∀ ξ ∈ Xh̃ .

Proof. Given ξ ∈ Xh̃, we let z ∈ H1(Ω) be the unique weak solution of the
boundary value problem

−∆z + z = 0 in Ω , z = 0 on Γ0 , ∂νz = ξ on Γ .

Since ξ ∈ H−1/2+δ(Γ) for some δ > 1/2, we have z ∈ H1+δ(Ω) and ‖z‖1+δ,Ω ≤
c ‖ξ‖−1/2+δ,Γ. In addition, there also holds ‖z‖1,Ω ≤ c ‖ξ‖−1/2,Γ. Then, we let
ψ := z|Γ ∈ H1/2+δ(Γ) and apply the approximation property (3.3) to deduce the
existence of ψ̂ĥ ∈ Yĥ such that

‖ψ − ψ̂ĥ‖1/2,Γ ≤ C ĥδ ‖ψ‖1/2+δ,Γ .

Next, using trace theorem and inverse inequality (3.2), we find that

‖ψ − ψ̂ĥ‖1/2,Γ ≤ C ĥδ ‖ψ‖1/2+δ,Γ ≤ C ĥδ ‖z‖1+δ,Ω

≤ C ĥδ ‖ξ‖−1/2+δ,Γ ≤ C

{
ĥ

h̃

}δ

‖ξ‖−1/2,Γ .
(3.4)

Similarly, applying triangle inequality, estimate (3.4), and trace theorem, and
then assuming that ĥ ≤ h̃, we obtain

‖ψ̂ĥ‖1/2,Γ ≤ ‖ψ − ψ̂ĥ‖1/2,Γ + ‖ψ‖1/2,Γ

≤ C

{
ĥ

h̃

}δ

‖ξ‖−1/2,Γ + ‖z‖1,Ω ≤ C ‖ξ‖−1/2,Γ .
(3.5)

On the other hand, it is easy to see that

(3.6) 〈ξ, ψ〉 = 〈∂νz, z〉 = ‖z‖2
1,Ω ≥ C ‖∂νz‖2

−1/2,Γ = C ‖ξ‖2
−1/2,Γ .

Consequently, employing (3.4), (3.5), and (3.6), we can write

|ξ|ĥ := sup
0�=ψ

ĥ
∈Y

ĥ

〈ξ, ψĥ〉
‖ψĥ‖1/2,Γ

≥
|〈ξ, ψ̂ĥ〉|
‖ψ̂ĥ‖1/2,Γ

≥ C
|〈ξ, ψ̂ĥ〉|
‖ξ‖−1/2,Γ

≥ |〈ξ, ψ〉|
‖ξ‖−1/2,Γ

−
|〈ξ, ψ̂ĥ − ψ〉|
‖ξ‖−1/2,Γ

≥ c̄ ‖ξ‖−1/2,Γ − C̄

{
ĥ

h̃

}δ

‖ξ‖−1/2,Γ ,

which completes the proof with constants C0 and C̃ depending on c̄, C̄, and δ. �

We now concentrate on the analysis of the reduced coupled LDG-BEM scheme
(2.25). We begin with the necessary estimates for the bilinear form Bh.
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Lemma 3.2. There exist positive constants c, C, independent of h, such that

(3.7) |Bh(w, v)| ≤ c |||w|||h |||v|||h ∀w, v ∈ H1(Th)

and

(3.8) Bh(v, v) ≥ C |||v|||2h ∀ v ∈ H1(Th) .

Proof. We refer to Proposition 3.1 in [28] (see also Lemmas 4.1 and 4.2 in [5] for
the corresponding nonlinear case). We only recall here, for further use, that

(3.9) |S(w, τ)| ≤ C |w|∗

{ ∑
K∈Th

hK‖τ‖2
0,∂K

}1/2

∀ (w, τ) ∈ H1(Th)×H1(Th) ,

which, according to a discrete trace inequality and a simple inverse estimate, yields

(3.10) ‖Sh(w)‖0,Ω ≤ C |w|∗ ∀w ∈ H1(Th) .

�
The boundedness of the operator gĥ with respect to the seminorm | · |ĥ is now

established.

Lemma 3.3. There exists a positive constant C, independent of the meshsizes,
such that for all ξ ∈ H−1/2(Γ)

‖gĥ(ξ)‖ := ‖g1
ĥ
(ξ)‖1/2,Γ + ‖g2

ĥ
(ξ)‖−1/2,Γ ≤ C |ξ|ĥ .

Proof. Since D is elliptic on H
1/2
0 (Γ) × H

−1/2
0 (Γ), there exists C > 0 such that

C ‖(ψ, µ)‖2 ≤ D((ψ, µ), (ψ, µ)) ∀ (ψ, µ) ∈ H
1/2
0 (Γ) × H

−1/2
0 (Γ) .

In particular, given ξ ∈ H−1/2(Γ), it follows that

C ‖gĥ(ξ)‖2 ≤ D(gĥ(ξ),gĥ(ξ)) = 〈ξ,g1
ĥ
(ξ)〉 ≤ |ξ|ĥ ‖g

1
ĥ
(ξ)‖1/2,Γ ≤ |ξ|ĥ ‖gĥ(ξ)‖ ,

which yields the required estimate. �
A symmetry property and further estimates for the first component of gĥ are

shown next.

Lemma 3.4. There holds

(3.11) 〈ξ,g1
ĥ
(µ)〉 = 〈µ,g1

ĥ
(ξ)〉 ∀ ξ, µ ∈ H−1/2(Γ).

In addition, there exist positive constants c, C, independent of the meshsizes, such
that

(3.12) |〈ξ,g1
ĥ
(µ)〉| ≤ c |ξ|ĥ |µ|ĥ ∀ ξ, µ ∈ H−1/2(Γ)

and

(3.13) 〈ξ,g1
ĥ
(ξ)〉 ≥ C |ξ|2

ĥ
∀ ξ ∈ H

−1/2
0 (Γ) .

Proof. Let ξ , µ ∈ H−1/2(Γ). Using the definition of gĥ (cf. (2.24)) and the sym-
metry of D̄, we obtain

〈ξ,g1
ĥ
(µ)〉 = D̄(gĥ(ξ),gĥ(µ)) = D̄(gĥ(µ),gĥ(ξ)) = 〈µ,g1

ĥ
(ξ)〉 ,

which proves (3.11). Now, noting that g1
ĥ
(µ) ∈ Y 0

ĥ
⊆ Yĥ and applying the definition

of | · |ĥ and Lemma 3.3, we can write

|〈ξ,g1
ĥ
(µ)〉| ≤ |ξ|ĥ ‖g

1
ĥ
(µ)‖1/2,Γ ≤ |ξ|ĥ ‖gĥ(µ)‖ ≤ c |ξ|ĥ |µ|ĥ ,

which is (3.12).
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On the other hand, we note that each ψĥ ∈ Yĥ can be decomposed as ψĥ = ψ0
ĥ
+c,

with ψ0
ĥ

:=
(
ψĥ − 1

|Γ|
∫
Γ

ψĥ

)
∈ Y 0

ĥ
and c := 1

|Γ|
∫
Γ

ψĥ ∈ P0(Γ). This decomposition

is stable, and there exists C > 0 such that ‖ψ0
ĥ
‖1/2,Γ ≤ C‖ψĥ‖1/2,Γ for all ψĥ ∈ Yĥ.

In addition, given ξ ∈ H
−1/2
0 (Γ), it is clear that 〈ξ, ψĥ〉 = 〈ξ, ψ0

ĥ
〉 for all ψĥ ∈ Yĥ.

Therefore, applying the definition of gĥ (cf. (2.23)), and the boundedness and
ellipticity of D, it follows that

|ξ|ĥ = sup
0�=ψ

ĥ
∈Y

ĥ

〈ξ, ψĥ〉
‖ψĥ‖1/2,Γ

≤ C sup
0�=ψ

ĥ
∈Y 0

ĥ

〈ξ, ψĥ〉
‖ψĥ‖1/2,Γ

= C sup
0�=ψ

ĥ
∈Y 0

ĥ

D(gĥ(ξ), (ψĥ, 0))
‖ψĥ‖1/2,Γ

≤ C ‖gĥ(ξ)‖

≤ C̄ D(gĥ(ξ),gĥ(ξ))1/2 = C̄ 〈ξ,g1
ĥ
(ξ)〉1/2 ,

which yields (3.13). �

We now define the bilinear form Ah,ĥ :
(
H1(Th) × L2(Γ)

)
×

(
H1(Th) × L2(Γ)

)
→

R by

(3.14) Ah,ĥ((w, µ), (v, ξ)) := Bh(w, v) − 〈µ, v〉 + 〈ξ, w〉 + 〈ξ,g1
ĥ
(µ)〉 ,

for all (w, µ), (v, ξ) ∈ H1(Th) × L2(Γ). Then, the main result of this section is
established as follows.

Theorem 3.1. The coupled LDG-BEM scheme (2.19), and hence the equivalent
formulation (2.25), is uniquely solvable, and there holds the stability estimate:

|||uh|||h + |λh̃|ĥ + ‖σh‖0,Ω + ‖ϕĥ‖1/2,Γ + ‖γĥ‖−1/2,Γ ≤ C ‖f‖0,Ω .

Proof. We first observe, by virtue of Lemma 2.3, that the unique solvability of
(2.19) is equivalent to that of problem (2.25), which can be reformulated as: find
(uh, λh̃) ∈ Vh × X0

h̃
such that

(3.15) Ah,ĥ((uh, λh̃), (v, ξ)) =
∫

Ω

f v ∀ (v, ξ) ∈ Vh × X0
h̃

.

It follows from (3.8) and (3.13) that Ah,ĥ is elliptic on the product space Vh×X0
h̃

endowed with the norm (||| · |||2h + | · |2
ĥ
)1/2, and hence the discrete scheme (3.15) is

uniquely solvable. Then, applying the estimate ‖v‖0,Ω ≤ C |||v|||h ∀ v ∈ Vh (see
[1]) and the ellipticity of Ah,ĥ again, we deduce that

|||uh|||h + |λh̃|ĥ ≤ C sup
0�=vh∈Vh

1
|||vh|||h

∣∣∣∣ ∫
Ω

f vh

∣∣∣∣ ≤ C ‖f‖0,Ω .

The remaining unknowns are written in terms of uh and λh̃ (see Lemma 2.3),
and therefore they can be bounded using (3.10) and Lemma 3.3. We omit further
details. �
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4. A priori error analysis

In order to perform the a priori error analysis for the solution of our discrete
scheme (2.19), we need further notation. We let

ε(ĥ, h̃) := sup
0�=ξ

h̃
∈X

h̃

‖ξh̃‖0

|ξh̃|ĥ
define the boundary function hΓ ∈ P0(Γh) by hΓ|e := he ∀ e ∈ EΓ

h , and introduce
two new norms,

|||v|||2
h,ĥ,h̃

:= |||v|||2h + ε(ĥ, h̃)2 ‖v‖2
0,Γ ∀ v ∈ H1(Th)

and
‖ξ‖2

h,ĥ
:= |ξ|2

ĥ
+ ‖h−1/2

Γ ξ‖2
0 ∀ ξ ∈ L2(Γ) ,

where the term ‖v‖0,Γ refers to the L2(Γ) norm of the piecewisely defined trace of
v ∈ H1(Th).

Assuming that | · |ĥ is equivalent to ‖ · ‖−1/2,Γ on Xh̃, which is guaranteed by
Lemma 3.1, and applying the inverse inequality (3.2), it follows that ε(ĥ, h̃) ≤
C h̃−1/2. This upper bound will be used below in Lemma 4.4.

We now prove a boundedness property of Ah,ĥ with respect to the mesh-depen-
dent norms.

Lemma 4.1. There exists C > 0 such that

|Ah,ĥ((w, µ), (v, ξ))| ≤ C
(
|||w|||h,ĥ,h̃ + ‖µ‖h,ĥ

) (
|||v|||h + |ξ|ĥ

)
,

for all (w, µ) ∈ H1(Th) × L2(Γ) and (v, ξ) ∈ Vh × Xh̃.

Proof. It is easy to see, according to the definitions of ||| · |||h,ĥ,h̃ and ε(ĥ, h̃), that
(4.1)

|〈w, ξ〉| ≤ ε(ĥ, h̃) ‖w‖0,Γ |ξ|ĥ ≤ |||w|||h,ĥ,h̃ |ξ|ĥ ∀w ∈ H1(Th), ∀ ξ ∈ Xh̃ .

On the other hand, by using a discrete trace inequality (see equation (2.4) in
[1]), a local inverse inequality, and the estimate ‖v‖0,Ω ≤ C |||v|||h ∀ v ∈ Vh (see
[1]), we find that for arbitrary v ∈ Vh

‖h1/2
Γ v‖2

0,Γ =
∑
e∈EΓ

h

he ‖v‖2
0,e ≤ C

∑
K∈Th,Γ

{
‖v‖2

0,K + h2
K |vh|21,K

}
≤ C

∑
K∈Th,Γ

‖v‖2
0,K ≤ C ‖v‖2

0,Ω ≤ C |||v|||2h ,

where Th,Γ denotes the triangles of Th with sides on Γ. It follows, using Cauchy–
Schwarz’s inequality in L2(Γ), that
(4.2)
|〈µ, v〉| ≤ ‖h−1/2

Γ µ‖0,Γ ‖h1/2
Γ v‖0,Γ ≤ C ‖µ‖h,ĥ |||v|||h ∀µ ∈ L2(Γ), ∀ v ∈ Vh .

The result is then a straightforward consequence of (3.7), (3.12), (4.1), and (4.2).
�

The following theorem provides a Strang-type error estimate for the solution of
our discrete scheme (2.19).
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Theorem 4.1. There exists C > 0, independent of the meshsizes, such that

|||u − uh|||h + |λ − λh̃|ĥ + ‖σ − σh‖0,Ω + ‖ϕ − ϕĥ‖1/2,Γ + ‖γ − γĥ‖−1/2,Γ

≤ C

{
Rh,ĥ,h̃(u) + inf

vh∈Vh

|||u − vh|||h,ĥ,h̃ + inf
ξ

h̃
∈X0

h̃

‖λ − ξh̃‖h,ĥ

+ inf
ψ

ĥ
∈Y 0

ĥ

‖ϕ − ψĥ‖1/2,Γ + inf
µ

ĥ
∈Z0

ĥ

‖γ − µĥ‖−1/2,Γ

}
,

(4.3)

where Rh,ĥ,h̃(u) is a consistency term given by

(4.4) Rh,ĥ,h̃(u) := sup
(0,0) �=(vh,ξ

h̃
)∈Vh×X0

h̃

Ah,ĥ((u, ∂νu), (vh, ξh̃)) −
∫

Ω

f vh

|||vh|||h + |ξh̃|ĥ
.

Proof. Applying the ellipticity of Ah,ĥ, adding and subtracting (u, ∂νu) in the first
component of Ah,ĥ, and then using (3.15) and Lemma 4.1, we deduce that for
arbitrary (vh, ξh̃) ∈ Vh × X0

h̃
there holds

|||uh − vh|||h + |λh̃ − ξh̃|ĥ ≤ C
{

Rh,ĥ,h̃(u) + |||u − vh|||h,ĥ,h̃ + ‖λ − ξh̃‖h,ĥ

}
,

which, employing triangle inequality, yields

(4.5)

|||u − uh|||h + |λ − λh̃|ĥ

≤ C

{
Rh,ĥ,h̃(u) + inf

vh∈Vh

|||u − vh|||h,ĥ,h̃ + inf
ξ

h̃
∈X0

h̃

‖λ − ξh̃‖h,ĥ

}
.

This bounds the first and second term of the error. Now, since σ = ∇u =
∇u − Sh(u) and σh = ∇huh − Sh(uh) (cf. Lemma 2.2), we easily obtain, using
(3.10), that

(4.6) ‖σ − σh‖0,Ω ≤ C |||u − uh|||h ,

which, thanks to (4.5), bounds the third term.
Next, we note that (ϕĥ, γĥ) := gĥ(−λh̃) is a nonconforming Galerkin approxi-

mation with a modified right-hand side (λh̃ instead of λ) of the solution (ϕ, γ) of
the elliptic problem (2.5). Therefore, by the first Strang Lemma we have

‖ϕ − ϕĥ‖1/2,Γ + ‖γ − γĥ‖−1/2,Γ

≤ C

{
inf

ψ
ĥ
∈Y 0

ĥ

‖ϕ − ψĥ‖1/2,Γ + inf
µ

ĥ
∈Z0

ĥ

‖γ − µĥ‖−1/2,Γ + |λ − λh̃|ĥ

}
,

since the seminorm | · |ĥ measures the approximation error in the right-hand side.
The above estimate together with (4.5) and (4.6) complete the proof. �

The Strang-type estimate (4.3) will be used to derive the explicit a priori error
estimate. To this end, we now observe, according to the C∞-regularity of the
harmonic function u in the exterior of the support of f , that ϕ = u|Γ ∈ Hs(Γ)
and λ = γ = ∂νu ∈ Hs(Γ) for any s ∈ R. In addition, a usual regularity result on
Lipschitz domains guarantees that u ∈ H1+δ(Ω), for some δ > 1/2.
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On the other hand, the following lemma establishing well-known approxima-
tion properties of piecewise polynomials (see, e.g., [9], [20]) is needed for the local
estimates.

Lemma 4.2. Given a nonnegative integer k, let Πk
K : L2(K) → Pk(K) be the

linear and bounded operator given by the L2(K)-orthogonal projection, which satis-
fies Πk

K(p) = p for all p ∈ Pk(K), and let I be a generic identity operator. Then
there exists C > 0, independent of the meshsizes, such that for each s, t satisfying
0 ≤ s ≤ k + 1 and 0 ≤ s < t, there holds

(4.7) | (I− Πk
K)(w) |s,K ≤ C h

min{t,k+1}−s
K ‖w‖t,K ∀w ∈ Ht(K) ,

and for each t > 1/2 there holds

(4.8) ‖ (I− Πk
K)(w) ‖0,∂K ≤ C h

min{t,k+1}−1/2
K ‖w‖t,K ∀w ∈ Ht(K) .

In order to now estimate the consistency term Rh,ĥ,h̃(u), we recall from (2.7)
that the orthogonal projector ΠΣh

reduces locally to Πr
K on each K ∈ Th, where

r = m or r = m − 1, with m ∈ N.

Lemma 4.3. There exists C > 0, independent of the meshsizes, such that

Rh,ĥ,h̃(u) ≤ C

{ ∑
K∈Th

h
2 min{δ,r+1}
K ‖u‖2

1+δ,K

+ inf
ψ

ĥ
∈Y 0

ĥ

‖ϕ − ψĥ‖
2
1/2,Γ + inf

µ
ĥ
∈Z0

ĥ

‖γ − µĥ‖
2
−1/2,Γ

}1/2

.

Proof. It follows easily from the definition of Ah,ĥ (cf. (3.14)) and Lemma 2.1 that

Ah,ĥ((u, ∂νu), (vh, ξh̃)) =
∫

Ω

fvh + S(vh,∇u − ΠΣh
(∇u)) + 〈ξh̃, ϕ + g1

ĥ
(λ)〉

for all (vh, ξh̃) ∈ Vh × X0
h̃
. Then, replacing the above in (4.4), using the first

estimate in (3.9), and employing the equivalence of | · |ĥ and ‖ · ‖−1/2,Γ in Xh̃, we
find

Rh,ĥ,h̃(u) ≤ C

{ ∑
K∈Th

hK‖∇u − ΠΣh
(∇u)‖2

0,∂K

}1/2

+ C ‖ϕ + g1
ĥ
(λ)‖1/2,Γ .

Next, applying (4.8) to w = ∇u|K ∈ Hδ(K), we deduce that∑
K∈Th

hK‖∇u − ΠΣh
(∇u)‖2

0,∂K =
∑

K∈Th

hK‖(I− Πr
K)(∇u)‖2

0,∂K

≤ C
∑

K∈Th

h
2 min{δ,r+1}
K ‖u‖2

1+δ,K .

Finally, since gĥ(−λ) := (g1
ĥ
(−λ),g2

ĥ
(−λ)) is the Galerkin approximation of the

solution (ϕ, γ) of the elliptic problem (2.5), we obtain from the Cea lemma that

‖ϕ + g1
ĥ
(λ)‖1/2,Γ ≤ C

{
inf

ψ
ĥ
∈Y 0

ĥ

‖ϕ − ψĥ‖1/2,Γ + inf
µ

ĥ
∈Z0

ĥ

‖γ − µĥ‖−1/2,Γ

}
,

which completes the proof. �
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We now let ΠVh
be the L2(Ω)-projection onto Vh and observe from (2.7) that ΠVh

reduces locally to Πm
K on each K ∈ Th, with m ∈ N. Then, we have the following

result.

Lemma 4.4. Assume that h = O(h̃). Then, there exists C > 0, independent of the
meshsizes, such that

inf
vh∈Vh

|||u − vh|||h,ĥ,h̃ ≤ C

{ ∑
K∈Th

h
2 min{δ,m}
K ‖u‖2

1+δ,K

}1/2

.

Proof. We clearly have
(4.9)
inf

vh∈Vh

|||u − vh|||2h,ĥ,h̃
≤ |||u − ΠVh

u|||2
h,ĥ,h̃

= |||u − ΠVh
u|||2h + ε(ĥ, h̃)2 ‖u − ΠVh

u‖2
0,Γ .

Then, the upper bound for ||| · |||h, given by Lemma 5.3 in [5], establishes that

|||u − ΠVh
u|||2h ≤ C

∑
K∈Th

{
|(I− Πm

K)(u)|21,K + h−1
K ‖(I− Πm

K)(u)‖2
0,∂K

}
,

which, applying (4.7) and (4.8) with s = 1 and t = 1 + δ, yields

(4.10) |||u − ΠVh
u|||2h ≤ C

∑
K∈Th

h
2 min{δ,m}
K ‖u‖2

1+δ,K .

On the other hand, using a discrete trace inequality (see equation (2.4) in [1]),
we can write

‖u − ΠVh
u‖2

0,Γ ≤ C
∑

K∈Th,Γ

{
h−1

K ‖(I− Πm
K)(u)‖2

0,K + hK |(I− Πm
K)(u)|21,K

}
,

which, now applying (4.7) with s = 0 and s = 1, and using that ε(ĥ, h̃)2 ≤ C h̃−1

and that h = O(h̃), gives

(4.11) ε(ĥ, h̃)2 ‖u − ΠVh
u‖2

0,Γ ≤ C
∑

K∈Th,Γ

h
2 min{δ,m}
K ‖u‖2

1+δ,K .

Thus, the required upper bound follows from (4.9), (4.10), and (4.11). �

We now estimate the distance to X0
h̃

with respect to the mesh-dependent norm
‖ · ‖h,ĥ.

Lemma 4.5. Assume that h = O(h̃). Then, for each t > 1/2 there exists C > 0,
independent of the meshsizes, such that

inf
ξ

h̃
∈X0

h̃

‖ξ − ξh̃‖h,ĥ ≤ C h̃min{t−1/2,k̃} ‖ξ‖t,Γ ∀ ξ ∈ Ht(Γ) ∩ H
−1/2
0 (Γ) .

Proof. Let ξ ∈ Ht(Γ)∩H
−1/2
0 (Γ) with t > 1/2. Then, there exists w ∈ Ht+1/2(Ω)

such that w = ξ on Γ and ‖w‖t+1/2,Ω ≤ C ‖ξ‖t,Γ. Next, we observe from the
definition of ‖ · ‖h,ĥ that ‖ · ‖h,ĥ ≤ C h−1/2 ‖ · ‖0,Γ on L2(Γ), and hence, using that

h = O(h̃), we find that

(4.12) inf
ξ

h̃
∈X0

h̃

‖ξ − ξh̃‖h,ĥ ≤ C h̃−1/2 inf
ξ

h̃
∈X0

h̃

‖ξ − ξh̃‖0,Γ .
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Now, to each ẽ ∈ EΓ
h̃

we associate a regular triangle K̃ ⊆ Ω such that ∂K̃∩Γ = ẽ,
and set Th̃,Γ for the list of all of them. Then, we define the function µh̃ ∈ Xh̃ by

µh̃|ẽ = Πk̃
K̃

(w)|ẽ for all ẽ ∈ EΓ
h̃
, and denote by µ0

h̃
its component in X0

h̃
. It follows

easily that

‖ξ − µ0
h̃
‖2
0,Γ ≤ ‖ξ − µh̃‖

2
0,Γ = ‖w − µh̃‖

2
0,Γ

=
∑
ẽ∈EΓ

h̃

‖w − µh̃‖
2
0,ẽ ≤

∑
K̃∈T

h̃,Γ

‖w − Πk̃
K̃

(w)‖2
0,∂K̃

,

which, applying (4.8) to k = k̃ and w ∈ Ht+1/2(Ω), yields

‖ξ − µ0
h̃
‖2
0,Γ ≤ C

∑
K̃∈T

h̃,Γ

h
2 min{t,k̃+1/2}
K̃

‖w‖2
t+1/2,K̃

≤ C h̃2 min{t,k̃+1/2} ‖ξ‖2
t,Γ ,

and hence

(4.13) inf
ξ

h̃
∈X0

h̃

‖ξ − ξh̃‖
2
0,Γ ≤ C h̃2 min{t,k̃+1/2} ‖ξ‖2

t,Γ .

In this way, (4.12) and (4.13) complete the proof. �

We now recall general approximation properties of the spaces Y 0
ĥ

and Z0
ĥ
. Note

that (3.3) is a particular case of (4.14) with Yĥ instead of Y 0
ĥ

.

(AP(Y 0
ĥ
)) For each s > 1/2 there exists C > 0, independent of ĥ, such that

(4.14)
inf

ψ
ĥ
∈Y 0

ĥ

‖ψ − ψĥ‖1/2,Γ ≤ C ĥmin{s,k̂+1}−1/2 ‖ψ‖s,Γ ∀ψ ∈ Hs(Ω) ∩ H
1/2
0 (Γ) .

(AP(Z0
ĥ
)) For each t̂ > −1/2 there exists C > 0, independent of ĥ, such

that
(4.15)

inf
µ

ĥ
∈Z0

ĥ

‖µ − µĥ‖−1/2,Γ ≤ C ĥmin{t̂,k̂}+1/2 ‖µ‖t̂,Γ ∀µ ∈ H t̂(Ω) ∩ H
−1/2
0 (Γ) .

Consequently, we summarize the a priori error estimate of our coupled LDG-
BEM scheme (2.19) in the following theorem.

Theorem 4.2. Assume that h = O(h̃), that the partition Γh̃ is uniformly regular,
and that ĥ ≤ C0 h̃, where C0 > 0 is the constant given by Lemma 3.1. Also, let r,
m, k̃, k̂, and k̂ − 1 be the polynomial degrees defining locally the subspaces Σh, Vh,
X0

h̃
, Y 0

ĥ
, and Z0

ĥ
(cf. (2.7), (2.10), (2.16)), respectively, and let (σh, uh, λh̃, ϕĥ, γĥ) ∈

Σh × Vh ×X0
h̃
× Y 0

ĥ
× Z0

ĥ
be the unique solution of our coupled formulation (2.19).

In addition, let δ > 1/2 be such that the exact solution u of (1.2)–(1.3) belongs to
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H1+δ(Ω). Then there exists C > 0, independent of the meshsizes, such that
(4.16)

|||u − uh|||h + |λ − λh̃|ĥ + ‖σ − σh‖0,Ω + ‖ϕ − ϕĥ‖1/2,Γ + ‖γ − γĥ‖−1/2,Γ

≤ C

{ (
hmin{δ,r+1} + hmin{δ,m}

)
‖u‖1+δ,Ω + h̃min{t−1/2,k̃} ‖λ‖t,Γ

+ ĥmin{s,k̂+1}−1/2 ‖ϕ‖s,Γ + ĥmin{t̂,k̂}+1/2 ‖γ‖t̂,Γ

}
,

for all t > 1/2, s > 1/2, and t̂ > −1/2.

Proof. If follows straightforward from Theorem 4.1, Lemmas 4.3, 4.4, 4.5, and the
approximation properties (AP(Y 0

ĥ
)) and (AP(Z0

ĥ
)). �

As announced in the Introduction, here we observe that the estimate (4.16) is
optimal with respect to the meshsizes h and ĥ, and suboptimal with respect to
h̃. However, because of the regularity of the exact solution u in the exterior of
the support of f , the above can be circumvented by assuming λ sufficiently regular,
whence the optimal rate of convergence is recovered. In particular, we can establish
the following corollary.

Theorem 4.3. There exists C > 0, independent of the meshsizes, such that

|||u − uh|||h + |λ − λh̃|ĥ + ‖σ − σh‖0,Ω + ‖ϕ − ϕĥ‖1/2,Γ + ‖γ − γĥ‖−1/2,Γ

≤ C

{ (
hmin{δ,m} + ĥmin{δ,k̂+1/2}

)
‖u‖1+δ,Ω + h̃min{1,k̃} ‖λ‖3/2,Γ

}
.

(4.17)

Proof. It suffices to take s = 1/2 + δ, t̂ = −1/2 + δ, and t = 3/2. Then, we
observe that hmin{δ,r+1} ≤ hmin{δ,m} since r + 1 ≥ m, and use that ‖ϕ‖1/2+δ,Γ +
‖γ‖−1/2+δ,Γ ≤ C ‖u‖1+δ,Ω. �

It is also clear from (4.16) and (4.17) that m, k̂, and k̃ must all be ≥ 1.
We end this paper by remarking that further developments, including nonlinear

boundary value problems, a posteriori error analysis, adaptivity, and corresponding
numerical experiments, will be reported in forthcoming works.
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