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LOCAL A POSTERIORI ESTIMATES
FOR POINTWISE GRADIENT ERRORS

IN FINITE ELEMENT METHODS
FOR ELLIPTIC PROBLEMS

ALAN DEMLOW

Abstract. We prove local a posteriori error estimates for pointwise gradi-

ent errors in finite element methods for a second-order linear elliptic model
problem. First we split the local gradient error into a computable local resid-
ual term and a weaker global norm of the finite element error (the “pollution
term”). Using a mesh-dependent weight, the residual term is bounded in a
sharply localized fashion. In specific situations the pollution term may also
be bounded by computable residual estimators. On nonconvex polygonal and
polyhedral domains in two and three space dimensions, we may choose estima-
tors for the pollution term which do not employ specific knowledge of corner
singularities and which are valid on domains with cracks. The finite element
mesh is only required to be simplicial and shape-regular, so that highly graded
and unstructured meshes are allowed.

1. Introduction and results

We consider finite element approximations to the second-order linear elliptic
model problem

(1.1) − div(A∇u) = f in Ω,
u = 0 on ∂Ω,

where Ω is a bounded domain in R
n with n ≥ 2, A ∈ [W 1

∞(Ω)]n×n, and f ∈ L∞(Ω).
We shall particularly concentrate on the case where n = 2 or n = 3 and Ω is
polygonal or polyhedral, and will assume that this is the case unless otherwise noted.
Let T be a shape-regular simplicial decomposition of Ω. No further restrictions are
placed on T , so that highly graded and unstructured meshes are admitted. We then
take Sr

h to be the space of continuous functions which are piecewise polynomials of
degree r − 1 on T and which are 0 on ∂Ω. Finally, let uh ∈ Sr

h be the standard
Galerkin approximation to u, that is,

(1.2)
∫

Ω

A∇uh · ∇χ dx =
∫

Ω

fχ dx ∀ χ ∈ Sr
h.
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In this paper we provide sharp residual-based a posteriori upper bounds for
‖∇(u − uh)‖L∞(D), where D ⊂ Ω. These results are local counterparts to the
localized (or weighted) a posteriori estimates for ‖∇(u − uh)‖L∞(D), which were
proved in [De] when Ω is a convex polyhedron. Here we consider three cases:
D ⊂⊂ Ω, D abuts a flat portion of ∂Ω, and D abuts ∂Ω but is sufficiently removed
from nonconvex singular points (e.g., re-entrant corners) of ∂Ω. Note that the
second case includes subdomains D which lie on one side of a crack in Ω. We follow
the nomenclature of [Da88] and say that Ω has a crack or slit if interior(Ω) \Ω has
codimension 1 or 2, respectively.

Efficiently controlling local finite element errors generally involves bounding two
quantities, a local approximation error and a global pollution term which measures
the finite element error in a weaker norm. A priori estimates using this fundamental
idea to bound the local energy error first appeared in [NS74]. The current work
is a maximum-norm counterpart to the recent paper [LN03], where estimators for
the local energy norm which control both the local approximation error and the
global pollution term a posteriori are analyzed. Our estimates are also a posteriori
analogs to the weighted local a priori W 1

∞ estimates proved in [Sch00]. Assuming
that the mesh is quasi-uniform with diameter h on Bd(x0), let

(1.3) σx0(y) =
h

|x0 − y| + h
.

Also, for 1 ≤ p ≤ ∞, 1
p + 1

q = 1, and D ⊂ Ω, let

‖v‖W−k
p (D) = sup

‖ψ‖
Wk

q (D)=1,ψ=0 on ∂D\∂Ω

(v, ψ).

It was shown in [Sch00] that if A is sufficiently smooth on Bd(x0), dist(x0, ∂Ω) > d,
and d ≥ Ch for C sufficiently large, then

|∇(u − uh)(x0)|

≤ C[(ln
d

h
)s min

χ∈Sr
h

(‖σs
x0
∇(u − χ)‖L∞(Bd(x0)) +

1
d
‖σs

x0
(u − χ)‖L∞(Bd(x0)))

+ d−1−k−n
p ‖u − uh‖W−k

p (Bd(x0))
].

(1.4)

Here 0 ≤ s ≤ r − 1, 1 ≤ p ≤ ∞, k ≥ 0, and s = 1 if s = r − 1 and s = 0 otherwise.
Note that the maximum exponent s of the weight σx0 increases as r increases, so
that the local approximation term

min
χ∈Sr

h

(‖σs
x0
∇(u − χ)‖L∞(Bd(x0)) +

1
d
‖σs

x0
(u − uh)‖L∞(Bd(x0)))

is more localized to the point x0 in higher-order methods.
Before stating our a posteriori results, we introduce further notation. Let hT =

|T |1/n for T ∈ T , and let h = minT∈T hT and h̄ = maxT∈T hT . For a subset D of
Ω, we define TD = {T ∈ T : T ∩ D 
= ∅} and Dh =

⋃
T∈TD

T . For d > 0, we let Dd

be the union of all components of {x ∈ Ω : dist(x, D) < d} which have nontrivial
intersection with D. Analogous to (1.3), we also define the piecewise-constant
weight function

σD(T ) =
hT

dist(D, T ) + hT
.
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Letting S be a face shared by two elements T1 and T2 and letting �n be a unit normal
on S (with arbitrary orientation), we next define for vh ∈ Sr

h and x ∈ S

[A∇vh](x) = A(∇vh|T1 −∇vh|T2) · �n.

Finally we define the first-order elementwise maximum norm residual

ET = hT ‖f + div(A∇uh)‖L∞(T ) + ‖[A∇uh]‖L∞(∂T ).

We first prove the following a posteriori counterpart to the a priori interior result
(1.4). Our estimate is also valid up to flat portions of ∂Ω.

Theorem 1.1. Let Ω be an arbitrary domain in R
n, where n ≥ 2. Assume that

D ⊂ Ω and d > 0 are such that either dist(D, ∂Ω) > d or dist(D, ∂Ω) ≤ d, and
{x ∈ ∂Ω : dist(x, D) < d} lies in a single n − 1-dimensional hyperplane. Assume
that A is sufficiently smooth on Dd and that u ∈ C1,α(Dρ) for some 0 < α ≤ 1,
where ρ ≤ min(h, d

8 ). Then for any k ≥ 0 and 1 ≤ p ≤ ∞,

‖∇(u − uh)‖L∞(D) ≤ Capp(r)�ρ,d max
T∈TDd

σD(T )r−1ET

+ Cpold
−1−k−n

p ‖u − uh‖W−k
p (Dd) + Cρα|u|C1,α(Dρ).

(1.5)

Here Cpol depends on A and k, Capp(r) depends on A, the shape regularity of T ,
and r, and �ρ,d = ln d

ρ .

We note that Theorem 1.1 is valid independent of the boundary conditions under
consideration when Dd ⊂⊂ Ω.

The third term Cρα|u|C1,α(Dρ) in (1.5) arises from regularizing the δ-distribution
in our proofs. Choosing ρ = hβ for β ≥ 1 yields Cρα|u|C1,α(Dρ) = Chαβ|u|C1,α(D

hβ ),
so we may always ensure that this term is of higher order in the minimum mesh
diameter by choosing β large enough. In addition, it may be reabsorbed into the
left-hand side under the nondegeneracy assumption

(1.6) ‖∇(u − uh)‖L∞(Dρ) ≥ Chε|u|C1,α(Dρ)

for some ε > 0. In the following corollary, we show that if u satisfies a certain
smoothness and nondegeneracy assumption in a neighborhood of a single point in
D, then (1.6) holds (in slightly modified form) and we may in fact eliminate this
regularization penalty.

Corollary 1.2. Assume that D, d, and Ω satisfy the geometric conditions of Theo-
rem 1.1 and that A is sufficiently smooth on Dd. In addition, assume that there exist
a point x1 ∈ D and an η > 0 such that |Dγu(x1)| ≥ C∗ > 0 for some multi-index
γ with |γ| = r and ‖u‖W r+1

∞ (Bη(x1))
≤ C∗∗. Finally, assume that u ∈ C1,α(Dη̃) for

some 0 < α < 1 and η̃ > 0. Then

‖∇(u − uh)‖L∞(D) ≤ Capp(r)�̃h,d max
T∈TDd

σD(T )r−1ET

+ Cpold
−1−k−n

p ‖u − uh‖W−k
p (Dd).

(1.7)

Here

�̃h,d = | ln[min(
1
d
(

C∗

C∗∗ + C(D, d)‖f‖L∞(Ω)
)

r
α ,

h
r
α

d
,
η

r
α

d
,
η̃

r
α

d
)]|.
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For polynomial degree r − 1 = 1 the smoothness assumption of Corollary 1.2
essentially appears in [BM87] (in the H1 context) and [Noc95] (in the L∞ context).
There the mesh is required to resolve the ball Bη(x1), leading to a posteriori state-
ments which only have asymptotic validity. Here we decouple this nondegeneracy
condition from the finite element mesh and thus gain an estimate which is valid
on coarse meshes. The price we pay for this improvement is the presence of the
logarithmic factor �̃h,d which depends on a priori quantities in the pre-asymptotic
range.

The smoothness and nondegeneracy assumption of Corollary 1.2 is met in many,
but not all, practical situations. If D contains a subdomain of Ω, then u will gener-
ally be smooth on some portion of that subdomain unless A or f is pathological. A
simple example where u is not sufficiently smooth on D occurs when f is piecewise
constant and D is a line segment across which f has a jump. Here u has Hölder
continuous first derivatives on D but generally not a higher degree of smoothness.
This situation may be remedied by taking D to be a small neighborhood of the
line segment in question so that f is smooth on some subdomain of D. Note also
that the a priori-dependent higher order term Cρα|u|C1,α(Dρ) in (1.5) is removed in
(1.7), but at the expense of the constant �̃h,d on the right-hand side which depends
on u and f in the pre-asymptotic range. However, �̃h,d is only logarithmically (and
thus weakly) dependent upon u and f . In addition,

�̃h,d = ln
d

h
r
α

when

h ≤ min(η̃, η,
C∗

C∗∗ + C(D, d)‖f‖L∞(Ω)
).

Ignoring the factor �̃h,d is thus very similar to ignoring factors of ln 1
h , which is

routinely done in computational practice.
We emphasize that (1.5) and (1.7) hold on very coarse meshes. Note especially

that in contrast to both the a priori estimate (1.4) and the local a posteriori results
of [LN03], Theorem 1.1 and Corollary 1.2 do not require a priori that the mesh
resolve the layer Dd \D. Refinement algorithms using (1.5) will however naturally
tend to resolve Dd \ D.

We next discuss the two terms on the right-hand side of (1.7). The first term
maxT∈TDd

σD(T )r−1ET in (1.7) corresponds to the local approximation error over
Dd. Note that σD ≡ 1 on Dh, and σD(T ) ≈ h(T ) if dist(T, D) is of unit size. Thus
using the weight σD we are able to bound this local residual term in an increasingly
sharp fashion as the polynomial order r − 1 is increased.

The second term d−1−k−n
p ‖u−uh‖W−k

p (Dd) in (1.7) measures the pollution effect
of the solution from outside of D. In order to gain a computable estimator from
(1.7), it is necessary to bound this term a posteriori. In principle it is advantageous
to measure the pollution error in the weakest norm possible. However, conveniently
bounding negative norms of u − uh generally requires that ∂Ω and A be relatively
smooth, in which case one may in principle instead prove a global weighted (local-
ized) estimate similar to that proved in [De]. It should also be noted that rigorous
adaptive strategies for problems on curved domains have only been investigated in
limited cases which do not include either maximum norm estimators or negative
norm estimators; cf. [DR98] for the energy and L2 norms.
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When Ω is a (possibly nonconvex) polyhedral domain in R
2 or R

3 and A = I,
several possibilities exist for bounding the pollution term in (1.7). In R

2, one may
make use of precise knowledge of the singularities arising at re-entrant corners of
∂Ω to bound ‖u− uh‖L2(Ω) by a weighted residual estimator; cf. [LN03]. However,
precise knowledge of singularities is often not available in R

3. Here one may instead
use residual-based bounds for ‖u − uh‖L∞(Ω); cf. [Noc95], [DDP00], and [NSSV].
Finally, for p “large” but not ∞ (e.g., p = 5), we may use the regularity results for
general polyhedral domains given in [Da92] to bound ‖u − uh‖Lp(Ω) by a residual
estimator which does not require specific knowledge of boundary singularities.

In computational experiments we considered the effectiveness of error estima-
tors and indicators derived from (1.7) for controlling local gradient errors in plane
polygonal crack domains via adaptive mesh refinement. The initial solution was
computed on a coarse, uniform initial mesh with h = h̄ ≈ 1. The pollution error
was measured in L2, L5, and L∞ using the residual estimators described in the
preceding paragraph and using quadratic and cubic elements. When d ≈ 1, mea-
suring the pollution term in L5 yielded the best error reduction with respect to
the number of degrees of freedom, though all three options (L2, L5, and L∞) were
competitive. When d � 1 (for example, when D is close to the crack tip), the
factor d−1−n

p in (1.7) becomes relatively large, especially for p = 2. In our tests the
extra regularity gained from measuring the pollution term in the weaker L2 norm
instead of the L∞ or L5 norm did not compensate for the extra negative power of
d, and measuring the pollution term in L∞ or L5 yielded a more efficient adaptive
algorithm.

An outline of this note is as follows. In §2, we give further preliminaries and
discussion of our assumptions. In §3 we prove Theorem 1.1 and Corollary 1.2,
and state and prove results similar to (1.5) and (1.7) which also hold near convex
corners of Ω. In §4 we discuss in more detail a posteriori bounds for the pollution
term in (1.5) and (1.7). In §5 we present some numerical examples on a plane crack
domain.

2. Preliminaries

In this section we give some preliminary lemmas and definitions.

2.1. Finite element space and mesh. In addition to the definitions of the pre-
vious section, we first state a bound on the growth of the diameters of elements in
shape-regular meshes; cf. [De] for a proof. In the following proposition, we denote
by h(y) the quantity h(Ty), where y ∈ T .

Proposition 2.1. Assume that the triangulation T is shape-regular. Then there
exists a constant CT depending only on the shape-regularity of T such that for the
barycenter xT of each element T ∈ T , there holds for each point y ∈ Ω \ T

(2.1) h(y) ≤ CT |xT − y|.

Next we state approximation results. Let PT be the union of all elements sharing
a vertex with T , let P ′

T be the union of all elements sharing vertices with elements in
PT , and let P ′′

T = (P ′
T )′. We shall employ the Scott-Zhang interpolation operator Ih

defined in [SZ90] which preserves homogeneous boundary conditions on polyhedral
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domains and which for 1 ≤ p ≤ ∞ satisfies

(2.2) ‖v − Ihv‖Lp(T ) ≤ Chj
T ‖v‖W j

p (PT ), 1 ≤ j ≤ r,

and

(2.3) ‖v − Ihv‖W 1
p (T ) ≤ Chj

T ‖v‖W 1+j
p (PT ), 0 ≤ j ≤ r − 1.

We shall actually apply Ih in a slightly modified form. Assume that v ∈ H1
0 (D)

for some D ⊂ Ω, and dist(supp(v), ∂D \ ∂Ω) > 0. We may define Ih so that
supp(Ihv) ⊂ Dh. Indeed, doing so only requires that for each nodal point ai ∈ ∂Dh,
the face associated to ai in [SZ90] does not lie in the interior of Dh, a choice which
may be made in the definition of Ih. Ih then depends on D, but the constants C
in (2.2) and (2.3) do not.

In addition to the above interpolation results, we shall also employ the following
lemma showing that ‖∇(u−uh)‖L∞ may be bounded below as well as above. This
result is proven in Lemma 3.3 of [HSWW01], though our statement of the lemma
is slightly different. We let Πr−1 = [P r−1]n, where P r−1 denotes the polynomials
of degree r − 1.

Lemma 2.2. Let T1 be a shape-regular simplex of diameter ρ̃, and assume that
u ∈ W r+1

∞ (T1). Then

min
χ∈Πr−1

‖∇(u − χ)‖L∞(T1) ≥ C(ρ̃r−1|u|W r
∞(T1) − ρ̃r‖u‖W r+1

∞ (T1)
).

Finally, we define local residuals which are useful for estimating ‖u−uh‖W−k
p (Ω).

With k ≥ 0 and 1 ≤ p < ∞, let

ηk,p(T )p = h
p(2+k)
T ‖f + div(A∇uh)‖p

Lp(T ) + h
p(k+1)+1
T ‖[A∇uh]‖p

Lp(∂T ).

2.2. Definition of reference domains. Our proofs involve carrying out duality
arguments over subdomains of Ω. When carrying out arguments near flat portions
of ∂Ω and near the boundary of polyhedral domains, we shall need to carefully
control the size and shape of these subdomains. We thus define reference domains
to which we may scale portions of Ω lying near ∂Ω.

In the case of polyhedral domains Ω in R
2 or R

3, one may construct a set
{P1, ..., PM−1} of polyhedron with the following properties:

(1) Pi contains at most one vertex of ∂Ω. If Pi does not contain a vertex, then
it intersects at most one edge. In addition, diam(Pi) ≤ 1, 1 ≤ i ≤ M1.

(2) There exist c3 > 0 and d0 ≤ 1 such that if x ∈ Ω, dist(x, ∂Ω) ≤ c3d, and
d ≤ d0, then the following holds. There is a polyhedron Pi such that Pi is
convex if and only if the component of B2d(x) ∩ Ω containing x is convex.
In addition there is a copy Px,d of Pi which is scaled by d, translated, and
rotated so that Px,d ⊂ Ω, x ∈ Px,d, and dist(x, ∂Px,d \ ∂Ω) ≥ c1d for some
c1 depending only on Ω.

Construction of the set {P1, ..., PM−1} is elementary but tedious, so we omit it.
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Next we define a smooth reference domain which we shall use when proving
estimates near flat portions of ∂Ω. Let C̃ =

√
3

2 , and fix c̃ such that 1
2 < c̃ < C̃.

We then let P0 be a domain such that ∂P0 is smooth, P0 contains the half-ball
Bc̃(0) ∩ R

n
+, and P0 is contained in the half-ball BC̃(0) ∩ R

n
+. Also note that

dist(x, ∂P0 \ {(x1, ..., xn) : xn = 0}) > c2, where x ∈ R
n satisfies xi = 0, 1 ≤ i ≤

n − 1, and 0 < xn ≤ 1
2 .

Finally, for notational convenience we let PM = B1/2(0).

2.3. Regularized δ-distribution. Our proofs make use of regularized Green’s
and δ-functions. Here we give properties of regularized (or discrete) δ-functions.
To a given point x0 ∈ T and parameter ρ ≤ hT , we first associate a shape-regular
simplex T0 ⊂ T such that x0 ∈ T0 and such that |T0|1/n is equivalent to ρ. Following
for example [SW95], we may then define a function δx0 ∈ C∞

0 (T0) such that for any
polynomial P of degree less than r − 1,

(2.4) P (x0) =
∫

T0

δx0P dx

and

(2.5) ‖δx0‖W p
k (T0) ≤ Cρ−k−n(1− 1

p ), 1 ≤ p ≤ ∞, k = 0, 1.

In the following proposition, we show that δx0 behaves like the usual δ distribu-
tion up to a penalty term.

Proposition 2.3. Assume that u ∈ Ck,α(T0) for some 1 ≤ k ≤ r−1 and 0 < α ≤ 1,
and that χ ∈ Sr

h. Then there exists a unit vector ν such that

(2.6) |∇(u − χ)(x0)| ≤ C(|(u − χ, ∂δx0)| + ρk+α−1|u|Ck,α(T0)
),

where the first-order directional derivative ∂ is defined by ∂v = ∇v · ν.

Proof. First note that for some unit vector ν, |∇(u−χ)(x0)| = |∂(u−uh)(x0)|. Let
T0 be as described above. For any polynomial P of degree r − 1 , we may then use
(2.4) and (2.5) to compute

∂(u − χ)(x0) = ∂(u − P )(x0) + ∂(P − χ)(x0)

≤ ‖∂(u − P )‖L∞(T0) + |
∫

T0

∂(P − χ)δx0 dx|

≤ ‖∂(u − P )‖L∞(T0) + |(∂(P − u), δx0)| + |(u − χ, ∂δx0)|
≤ C‖∂(u − P )‖L∞(T0) + |(u − χ, ∂δx0)|.

(2.7)

Letting P be an appropriate interpolant of u on the subelement T0, we find that

(2.8) ‖∂(u − P )‖L∞(T0) ≤ Cρk+α−1|u|Ck,α(T0)
.

Collecting (2.7) and (2.8) completes the proof of (2.6). �
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2.4. Pointwise estimates for derivatives of Green’s functions. Our proofs
involve scaling local dual problems to the reference domains P0, ..., PM . Recall from
§2.2 that for d ≤ d0, we associate to a given point x ∈ Ω a subdomain Px,d ⊂ Ω.
Here Px,d is a copy of some Pj that is scaled by d, rotated by a rotation matrix
R, and translated to the point x. We must also transform the coefficient matrix A
from Px,d to Pj , which we accomplish via the definition Ã(x̃) = A(x+dR(x̃− x̃0)).
Here x̃ ∈ Pj , d ≤ d0 is a parameter as in §2.2, R is a rotation matrix, and x̃0 is an
appropriately chosen fixed point in Pj . Finally we note that if A ∈ W k

∞(Px,d), then

(2.9) ‖Ã‖W k
∞(Pj) ≤ C(d0)‖A‖W k

∞(Px,d).

In addition, Ã has the same ellipticity properties as A. Also, C(d0) increases with
d0, so we may replace C(d0) with C(diam(Ω)).

Next we let G(y, z) be a Green’s function satisfying
∫

Pj
Ã∇G(y, z) · ∇v(z) dz =

v(y) for sufficiently smooth v ∈ H1
0 (Pj). The following pointwise estimates for

derivatives of G in the case that Pj is smooth or convex are essential to our proofs.

Lemma 2.4. Assume that Ã and ∂Pj are sufficiently smooth. Then for |α+β| > 0,

(2.10) |Dα
y Dβ

z G(y, z)| ≤ CG|y − z|2−n−|α+β|.

Here CG depends on Pj and the ellipticity properties and sufficiently strong Sobolev
norms of Ã. Using (2.9) and the following comments, we may restate this depen-
dence as: CG depends on the diameter of Ω and on the ellipticity properties and
sufficiently strong Sobolev norms of A on Px,d.

Assume that Ã is Dini-continuous, Pj is a convex polyhedron, and |β| ≤ 1 and
|α| ≤ 1. Then (2.10) holds if n > 2, and for n = 2,

(2.11) |Dα
y Dβ

z G(y, z)| ≤ CG|y − z|2−n−|α+β| log
1

|y − z| .

Here CG depends on d0, the ellipticity properties and Dini-continuity of A on Px,j,
and the geometry of Pj.

The estimate (2.10) may be found in [Kr69] for smooth domains and coefficients
and for arbitrary α and β. For |α|, |β| ≤ 1, Dini-continuous Ã, and n ≥ 3 it may
be found in [GW82] assuming that ∂Ω satisfies a uniform exterior sphere condition.
This condition is met by both convex and smooth domains. The proof given in
[GW82] does not carry directly over to n = 2 due to the logarithmic nature of the
singularity, but one may use the same method to obtain the suboptimal estimate
(2.11) so long as the estimate

|G(x, y)| ≤ C(λ, Λ, Ω) log
1

|x − y|

is known. This estimate is contained in [DM95] under the weak restrictions of
L∞ and uniformly elliptic coefficients and Lipschitz boundary ∂Ω. The suboptimal
estimate (2.11) will only add an additional logarithmic factor to the results of
Corollary 3.2 below (for cases where D is close to a convex corner of ∂Ω) in the
case n = 2.
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3. Theoretical results

In this section we first prove Theorem 1.1 and Corollary 3.2 and then state and
prove a corollary which allows estimation of ‖∇(u − uh)‖L∞(D) when D is close to
convex corners in Ω.

3.1. Proof of Theorem 1.1. We first let ρ̃ be a parameter satisfying ρ ≤ ρ̃ ≤ h
which we shall fix later. Let then {K} be a finite set of shape-regular simplices
whose closures cover D, whose diameters are equivelent to ρ̃, and which have the
property that for each K ∈ {K}, K ∩ D 
= ∅ and K ⊂ T for some T ∈ TD. Let
then

(3.1) K = interior
( ⋃

{K}
K

)
,

and note that D ⊂ K ⊂ Dρ̃.
Assume that ‖∇(u− uh)‖L∞(K) = |∇(u− uh)(x0)|, and let T0 be the simplex of

size ρ associated to x1 in §2.3. Let then x0 satisfy

‖∇(u − uh)‖L∞(K) = |∇(u − uh)(x0)|.
Employing (2.6) with k = 1 yields

‖∇(u − uh)‖L∞(D) ≤ ‖∇(u − uh)‖L∞(K)

≤ C|(u − uh, ∂δx0)| + Cρα|u|C1,α(K).
(3.2)

To complete the proof of Theorem 1.1, we let ρ̃ = ρ above and then associate
a scaled reference domain to the point x0. If dist(x0, ∂Ω) ≥ d

2 , we take Px0,d =
Bd/2(x0) ⊂ Ω. If dist(x0, ∂Ω) < d

2 , we associate a scaled copy of P0 to x0, where P0

is defined in §2.2. Let x̃0 be the projection of x0 onto ∂Ω. Since we have assumed
that {x ∈ ∂Ω : dist(D, ∂Ω) < d} is contained in a plane, B√

3
2 d

(x̃0)∩Ω is a half-ball.
Thus we let Px0,d be a copy of P0 which is scaled by d and which is translated and
rotated so that x0 ∈ Px0,d, the flat portion of Px0,d coincides with ∂Ω, and the
origin of P0 is mapped to x̃0. Note that then dist(x0, ∂Px0,d \ ∂Ω) ≥ c2d with c2 as
defined in §2.2.

Let ω be a smooth cutoff function satisfying 0 ≤ ω ≤ 1; ω ≡ 1 on Bc2d/2(x0);
ω ≡ 0 on ∂B3c2d/4(x0) \ ∂Ω; and ‖Djω‖L∞(Px0,d) ≤ Cd−j , j ≥ 0. We next define a
regularized Green’s function gx0 which solves a dual problem whose right-hand side
is a regularized δ-distribution as defined in §2.3. We thus let gx0 ∈ H1

0 (Px0,d) solve

(3.3)
∫

Px0,d

A∇v · ∇gx0 dx =
∫

Px0,d

v∂δx0 dx ∀ v ∈ H1
0 (Px0,d),

and then compute
(u − uh, ∂δx0) = (ω(u − uh), ∂δx0)

=
∫

Px0,d

A∇(ω(u − uh)) · ∇gx0 dx

= [
∫

Px0,d

A∇(u − uh) · ∇(ωgx0) dx]

+ [
∫

Px0,d

(u − uh)A∇ω · ∇gx0 dx −
∫

Px0,d

gx0A∇(u − uh) · ∇ω dx]

= [I] + [II].

(3.4)
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First we consider the term II. Integrating by parts, we compute that

−
∫

Px0,d

gx0A∇(u − uh) · ∇ω dx =
∫

Px0,d

(u − uh) div(gx0A∇ω) dx

so that with 1
q = 1 − 1

p ,

(3.5) |II| ≤ ‖u − uh‖W−k
p (Px0,d)‖A∇ω · ∇gx0 + div(gx0A∇ω)‖W k

q (Px0,d).

Applying Hölder’s inequality and Leibniz’s rule, we find that

‖A∇ω · ∇gx0 + div(gx0A∇ω)‖W k
q (Dd)

≤ C‖A‖W k+1
∞ (Dd)d

n
q

∑
i+j≤k

[|gx0 |W i+1
∞ (supp(∇ω))|ω|W j+1

∞ (supp(∇ω))

+ |gx0 |W i
∞(supp(∇ω))|ω|W j+2

∞ (supp(∇ω))]

≤ C‖A‖W k+1
∞ (Dd)d

n
q

∑
i+j≤k

[d−j−1|gx0 |W i+1
∞ (supp(∇ω))

+ d−j−2|gx0 |W i
∞(supp(∇ω))].

(3.6)

In order to bound |gx0 |W i
∞(supp(∇ω)), we scale to the reference domain P0 or PM as

appropriate. With x̃ ∈ Pi (i = 0 or i = M) representing the natural transformation
of x ∈ Px0,d to Pi, we define g̃(x̃) = gx0(x), δ̃(x̃) = δx0(x), and Ã(x̃) = A(x). It is
easy to compute that − div(Ã∇g̃) = d∂δ̃ and ‖δ̃‖L1(Pj) ≤ Cd−n. Recall that ω ≡ 1
on Bc2d/2(x0), so that dist(supp(∇ω), supp(δx0)) ≥ c2d

4 (since ρ < d/8), and for
any x ∈ supp(∇ω), dist(x̃, supp(δ̃)) ≥ c2

4 . Using these facts and applying (2.10),
we find that for any x ∈ supp(∇ω) and m ≥ 0,

|Dmgx0(x)| = d−m|Dmg̃(x̃)| = d−m|
∫

Pi

Dm
x̃ G(x̃, y)d∂δ̃ dy|

= d−m+1|
∫

Pi

∂yDm
x̃ G(x̃, y)δ̃ dy|

≤ d−m+1‖∂Dm
x (x, ·)‖L∞({y:|y−x̃|>.25c2})‖δ̃‖L1(Pi)

≤ C(A, c2, m)d−m+1−n.

(3.7)

Thus

C‖A‖W k+1
∞ (Dd)d

n
q

∑
i+j≤k

[d−j−1|gx0 |W i+1
∞ (supp(∇ω))

+ dj+2|gx0 |W i
∞(supp(∇ω))]

≤ CG‖A‖W k+1
∞ (Dd)d

n−n
p

∑
i+j≤k

d−j−1−i−n

≤ Cd−1−k−n
p .

(3.8)

Inserting (3.8) into (3.6) and the resulting inequality into (3.5) bounds the term II
as desired.

In order to bound the term I, we first note that the definition of Ih given in §2.1
yields that for T ∈ TPx0,d

, supp(Ih(ωgx0)) ⊂ Px0,d. Thus we may use (2.1), (2.2),
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and (2.3) and compute as in (4.5) and (4.6) of [De] to find that

I =
∫

Px0,d

A∇(u − uh) · ∇(ωgx0) dx

=
∫

Px0,d

A∇(u − uh) · ∇(ωgx0 − Ih(ωgx0)) dx

≤
∑

T⊂TPx0,d

ET (h−1
T ‖ωgx0 − Ih(ωgx0)‖L1(T ) + ‖∇(ωgx0 − Ih(ωgx0)‖L1(T ))

≤
∑

T∈TPTx0
:T⊂P ′′

Tx0

ET ‖ωgx0‖W 1
1 (PT )

+
∑

T∈TPd,x0
\P

T ′′
x0

hr−1
T ET |ωgx0 |W r

1 (PT )

≤ max
T∈TPTx0

:T⊂P ′′
Tx0

ET ‖ωgx0‖W 1
1 (PT )

+
∑

T∈TPd,x0
\PT ′′

x0

(
hT

dist(x0, T ) + hT

)r−1

(dist(x0, T ) + hT )r−1|ωgx0 |W r
1 (PT )

≤ C(‖ωgx0‖W 1
1 (Px0,d) +

∫
Px0,d\P ′

Tx1

|x − x0|r−1|Dr(ωgx0)| dx)

· max
T∈TPx0,d

(σx0(T ))r−1ET .

(3.9)

We may compute exactly as in (3.7) (with |x − x0| replacing d) that

|Digx0(x)| ≤ C|x − x0|−i+1−n

for x ∈ Px0,d \ P ′
Tx0

. Thus switching to polar coordinates and noting that |Diω| ≤
d−i ≤ t−i for 0 ≤ t ≤ d, we find that∫

Px0,d\P ′
Tx1

|x − x0|r−1|Dr(ωgx0)| dx

≤ C

∫ d

ChT

|t|r−1|t|−r+1−n|t|n−1 dt

≤ C

∫ d

ChT

t−1 ≤ C ln
d

ChT
≤ �ρ,d.

(3.10)

Using the Poincaré inequality ‖gx0‖L1(Px0,d) ≤ Cd‖∇gx0‖L1(Px0,d) and recalling
that ‖∇ω‖L∞(Px0,d) ≤ Cd−1, we find that ‖ωgx0‖W 1

1 (Pd,x0 ) ≤ C‖∇gx0‖L1(Px0,d).
One may scale the argument of Lemma 3.8 of [De] to the reference domain Pj

associated to Px0,d to find

(3.11) ‖∇gx0‖L1(Px0,d) ≤ C�ρ,d.

Inserting (3.10) and (3.11) into (3.9) bounds the term I as desired. In order to
complete the proof of Theorem (1.1), we note that since x0 ∈ Dh and Px0,d ⊂ Dd,
σx0 ≤ σDh = σD and ‖u − uh‖W−k

p (Px0,d) ≤ ‖u − uh‖W−k
p (Dd).



30 ALAN DEMLOW

Remark 3.1. It is possible to prove Theorem 1.1 for p ≥ 2 under the assumption
that solutions u of (1.1) satisfy the regularity shift estimate

(3.12) ‖u‖Hm+2(Ω) ≤ C‖f‖Hm(Ω)

for m = max(r− 1, k). The proof of Theorem 4.1 of [De] relies on such a regularity
estimate with k = 0 to prove that the correct order of weight is obtained.

3.2. Proof of Corollary 1.2. We prove Corollary 1.2 by making appropriate mod-
ifications to the proof of Theorem 1.1. First we fix

(3.13) ρ̃ = min(η, η̃, h,
C∗

2(C∗∗ + C|u|C1,α(Dη̃))
,
d

8
).

We then recall the definition of K from (3.1) and also recall that {K} is composed
of elements of size ρ̃. Next note that x1 ∈ K1 for some K1 ∈ {K}, where x1 is the
point specified in the statement of Corollary 1.2. Noting that K1 ⊂ Bν(x1) since
ρ̃ ≤ ν, we then employ Lemma 2.2 to obtain

‖∇(u − uh)‖L∞(K) ≥ ‖∇(u − uh)‖L∞(K1)

≥ Cρ̃r−1(|u|W r
∞(K1) − ρ̃‖u‖W r+1

∞ (K1)
)

≥ ρ̃r−1(C∗ − ρ̃C∗∗).

(3.14)

Here we have incorporated the inconsequential constant C from (3.14) into C∗ and
C∗∗. Since ρ̃ ≤ C∗

2C∗∗ , we thus have

(3.15) ‖∇(u − uh)‖L∞(K) ≥
C∗

2
ρ̃r−1.

Note next that since ρ̃ ≤ η̃, K ⊂ Dη̃ and ρ̃ ≤ C∗

2C|u|C1,α(K)
. Defining

(3.16) ρ = ρ̃
r
α ,

we find that

Cρα|u|C1,α(K) ≤
C∗

2r
ρ̃r−1

≤ 1
2

C∗

2
ρ̃r−1 ≤ 1

2
‖∇(u − uh)‖L∞(K).

(3.17)

Inserting (3.17) into (3.2) and kicking backing the term 1
2‖∇(u− uh)‖L∞(K) yields

‖∇(u − uh)‖L∞(D) ≤ C|(u − uh, ∂δx0)|.
Bounding |(u − uh, ∂δx0)| exactly as in the proof of Theorem 1.1 above yields

‖∇(u − uh)‖L∞(D) ≤ C ln
d

ρ
max

T∈TDd

σD(T )r−1 + Cd−1−k−n
p ‖u − uh‖W−k

p (Dd).

Recalling (3.13) and (3.16) then yields

‖∇(u − uh)‖L∞(D) ≤ Capp(r)˜̃�h,d max
T∈TDd

σD(T )r−1ET

+ Cpold
−1−k−n

p ‖u − uh‖W−k
p (Dd).

Here

(3.18) ˜̃�h,d = | ln[min(
1
d
(

C∗

C∗∗ + C|u|C1,α(K)

)
r
α ,

h
r
α

d
,
η

r
α

d
,
η̃

r
α

d
)]|.
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Finally we employ the local regularity result

(3.19) |u|C1,α(K) ≤ C(D, d)‖f‖L∞(Ω).

This result may be obtained by noting that |u|C1,α(K) ≤ |u|C1,α(Dd/2)
and applying

for example Corollary 8.36 and Theorem 8.15 of [GT98]. Inserting (3.19) into (3.18)
completes the proof of Corollary 1.2.

3.3. Results near convex corners of Ω. When D lies near a convex vertex
or edge of ∂Ω, it is still possible to prove a weighted a posteriori estimate for
‖∇(u − uh)‖L∞(D). However, in general we can only show that the local residual
portion of the estimate admits a factor of σD(T ) and not σD(T )r−1 as in (1.5)
and (1.7). This is due to the reduced regularity of solutions to elliptic problems
on domains which are merely convex and not smooth. In particular, increasing the
allowed power of the weight σD(T ) requires bounding increasingly high derivatives
of the regularized Green’s function gx0 defined in §3.1. For convex domains, we
generally only have bounds for second derivatives of solutions to elliptic problems,
which corresponds to one factor of σD(T ).

Corollary 3.2. Let Ω be a polygonal or polyhedral domain in R
2 or R

3. Assume
that D ⊂ Ω and 0 < d ≤ d0 (where d0 depends on Ω) are such that for each x ∈ ∂Ω
with Bd(x)∩D 
= ∅, any component of Bd(x)∩Ω which has nontrivial intersection
with D is convex. Assume also that A is sufficiently smooth and that u ∈ C1,α(Dη̃)
for some η̃ > 0 and 0 < α < 1. Let ρ ≤ min(h, d

8 , η̃). Then for 1 ≤ p ≤ ∞,

‖∇(u − uh)‖L∞(D) ≤ Capp(r)(�ρ,d)µ(n) max
T∈TDd

σD(T )ET

+ Cpold
−1−n

p ‖u − uh‖Lp(Dd) + Cρα|u|C1,α(Dρ).
(3.20)

Here µ(2) = 2 and µ(3) = 1. Next, assume in addition that there exist a point
x1 ∈ D and an η > 0 such that |Dγu(x1)| ≥ C∗ for some multiindex γ with |γ| = r
and ‖u‖W r+1

∞ (Bη(x1))
≤ C∗∗. Then

‖∇(u − uh)‖L∞(D) ≤ Capp(r)(�̂h,d)µ(n) max
T∈TDd

σD(T )ET

+ Cpold
−1−k−n

p ‖u − uh‖W−k
p (Dd).

(3.21)

Here

(3.22) �̂h,d = | ln[min(
1
d
(

C∗

C∗∗ + C|u|C1,α(Dη̃

)
r
α ,

h
r
α

d
,
η

r
α

d
,
η̃

r
α

d
)]|.

Proof of Corollary 3.2. The proof of Corollary 3.2 requires only relatively small
modifications to the proofs of Theorem 1.1 and Corollary 1.2. For the sake of
brevity, we shall thus only redefine notation as necessary and shall refer back to
the previous proofs when possible.

First we choose a point x0 ∈ K as in (3.2). If dist(x0, ∂Ω) > c3d, we may proceed
exactly as in the proof of Theorem 1.1. If dist(x0, ∂Ω) ≤ c3d, the hypotheses of
Corollary 3.2 imply that the polygon Pi and scaled polygon Px0,d associated to x0 in
property (2) of §2.2 are convex. Also note that Px0,d ⊂ Dd since diam(Pi) ≤ 1. As in
the proof of Theorem 1.1, we let ω be a smooth cutoff function satisfying 0 ≤ ω ≤ 1,
ω ≡ 1 on B c1

2 d(x0) for some c1 as defined in §2.2, ω ≡ 0 on ∂B.75c2d(x0) \ ∂Ω, and
‖Djω‖L∞(Px0,d) ≤ Cd−j , j = 0, 1, 2.
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Next we define gx0 as in (3.3) and then proceed as in (3.4) through (3.8) while
recalling that k = 0. We must be careful that we only apply the Green’s function
estimates (2.10) and (2.11) with |α| ≤ 1 an |β| ≤ 1. Indeed, we see that when k = 0
we only apply (3.7) with 0 ≤ i ≤ 1. Thus we may bound the term II from (3.4)
essentially exactly as before. Note also that since we only apply the suboptimal
Green’s function estimate (2.11) at a unit distance from the singularity, the extra
logarithmic factor when n = 2 does not enter into the estimate of the term II.

Next we bound the term I from (3.7). Computing as in (3.9), we find that

I ≤ (‖ωgx0‖W 1
1 (Px0,d) +

∫
Px0,d\P ′

Tx0

|x − x0||D2(ωgx0)| dx)

· max
T∈TPx0,d

σx0(T )ET .
(3.23)

Next note that |x−x0| ≤ Cd for x ∈ Px0,d. Using this fact, scaling the argument
of Lemma 4.5 of [De], and using (3.7), we find that∫

Px0,d\PTx0

|x − x0||D2(ωgx0)| dx ≤
∫

Px0,d\PTx0

ω2|x − x0||D2gx0 | dx

+
∫

supp(∇ω)

d|∇ω||∇gx0 | dx +
∫

supp(∇ω)

d|D2ω||gx0 | dx

≤
∫

Px0,d\PTx0

|x − x0||D2gx0 | dx

+ Cdn‖∇gx0‖L∞(supp(∇ω)) + Cdn−1‖gx0‖L∞(supp(∇ω))

≤ C((�ρ,d)µ(n) + dn‖∇gx0‖L∞(supp(∇ω)) + dn−1‖gx0‖L∞(supp(∇ω)))

≤ C((�ρ,d)µ(n) + 1).

(3.24)

Collecting (3.11) and (3.24) into (3.23) yields

I ≤ C(�ρ,d)µ(n) max
T∈TPx0,d

σx0(T )ET ,

which completes the proof of (3.20) when D = x0. In order to complete the proof
of (3.20) when D is an arbitrary set fulfilling the given hypotheses, we again note
that σx0 ≤ σDh = σD and ‖u − uh‖Lp(Px0,d) ≤ ‖u − uh‖Lp(Dd).

The proof of (3.21) requires very little modification of the proof of Corollary 1.2.
The only difference is that we are not aware of a reference for the local regularity
estimate (3.19) in the current situation with D near a convex, but not necessarily
smooth, portion of ∂Ω.

4. Controlling the pollution term

In this section we discuss strategies for controlling the pollution term
‖u − uh‖W−k

p (Ω) arising in Theorem 1.1. In principle it is most efficient to use
the weakest possible norm to measure the pollution error. However, in practice
choosing a norm weaker than an Lp norm is not always possible, and for computa-
tional efficiency choosing the L∞ norm is often sufficient.

First we discuss conditions under which we may measure the pollution error in a
negative norm, that is, when we may choose k > 0 in Theorem 1.1 or Corollary 1.2.
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We shall limit our discussion to the case p = 2. As is noted in [LN03], conveniently
bounding ‖u − uh‖W−k

2 (Ω) requires the Hk+2 regularity estimate

(4.1) ‖v‖Hk+2(Ω) ≤ C‖f‖Hk(Ω)

for solutions v of (1.1). This estimate generally requires that A ∈ W k+1
∞ (Ω)n×n

and that ∂Ω be of class Ck+2 (though the latter requirement may sometimes be
relaxed; cf [NS74], where it is also shown to hold on squares). If (4.1) holds and Ω
is polyhedral, it is not difficult to show, using standard arguments, that

(4.2) ‖u − uh‖W−k
2 (Ω) ≤ C(A)(

∑
T∈T

ηk,2(T )2)
1
2 .

Combining this estimate with (1.7) yields a computable a posteriori estimator for
‖∇(u − uh)‖L∞(D). Note though that if (4.1) holds and Ω is a convex polyhedron,
then under the conditions of Theorem 1.1 it is also possible to prove the global
weighted estimate

(4.3) ‖∇(u − uh)‖L∞(D) ≤ C�h max
T∈T

(σD(T ))k+1ET + Chαβ |u|C1,α(Ω);

cf. Remark 3.1. The estimate (4.3) is essentially as sharp as that obtained by in-
serting (4.2) into (1.7) and is computationally more convenient, so there generally
is little to be gained by using the local estimate (1.7) in situations with high reg-
ularity. When ∂Ω is smooth (which is the most realistic situation when assuming
(4.1)), rigorous handling of residual estimators near the boundary has not been in-
vestigated either for maximum norm residuals or for negative norm-type residuals.
The case p = 2 and k = 0 was investigated in [DR98].

We consider three options for controlling the pollution term when computing
on nonconvex polyhedral domains. In our discussion, we shall assume that the
operator under consideration is the Laplacian, as not all results cited here are
readily available for other operators.

First we describe the a posteriori estimate for ‖u − uh‖L2(Ω) proved in [LN03]
for plane polygonal domains. For simplicity we assume that Ω ⊂ R

2 is a polygonal
domain with exactly one re-entrant corner having vertex V and opening angle
ω > π. Let t denote the distance to V , and define the regularized distance b(x) =√

t(x)2 + h(x)2. Let β = 1− π
ω and let W2(T ) = maxx∈T b(x)−β. Slightly modifying

Lemma 3.3 of [LN03] yields

(4.4) ‖u − uh‖2
L2(Ω) ≤ C̃2(r)�h

∑
T∈T

W2(T )2η0,2(T )2.

Here �h is a generic logarithmic factor having the form (ln 1
h )k for some fixed k ≥ 0.

Combining (4.4) with (1.7) yields

‖∇(u − uh)‖L∞(D) ≤ Capp(r)�̃h,d max
T∈TDd

σD(T )r−1ET

+ C2(r)d−2�h(
∑
T∈T

W2(T )2η0,2(T )2)
1
2 ,

where C2(r) = CpolC̃2 depends on A, Ω, and r. Ignoring logarithmic factors, we
thus define the computable error estimator

E2 =
1
2
[Capp(r) max

T∈TDd

σD(T )r−1 + C2(r)d−2(
∑
T∈T

ρ2
T η0,2(T )2)

1
2 ].
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If more than one re-entrant corner is present, the simple weight W2(T ) must be
replaced by the maximum over the re-entrant corners of the corresponding weights.
Also, it is assumed in [LN03] that ω < 2π, that is, crack domains are not considered.
However, the decomposition of solutions of (1.1) into singular and regular parts used
for proving (4.4) also holds on crack domains; see for example [Da88], Theorem
14.10. The use of (4.4) for ω = 2π is thus at least heuristically justified.

Precise knowledge of singularities on polyhedral domains is not always available,
especially in three space dimensions. In these cases one must seek bounds which do
not rely explicitly on domain geometry. Computationally it is simplest to measure
the pollution term in L∞. Using the earlier works [Noc95] and [DDP00], it was
shown in [NSSV] that

(4.5) ‖u − uh‖L∞(Ω) ≤ C̃∞(r)(ln
1
h

)2 max
T∈T

hT ET .

Inserting (4.5) into (1.7) yields

‖∇(u − uh)‖L∞(D) ≤ Capp(r)�̃h,d max
T∈TDd

σD(T )r−1ET

+ CpolC̃∞(r)
1
d
�h max

T∈T
hTET

≤ C�h max
T∈T

max(Capp(r)σ̃D(T )r−1, C∞(r)
hT

d
)ET .

Here C∞(r) depends on A, Ω, and r, σ̃D(T ) = σD(T ) if T ∈ TDd
and σ̃(T ) = 0

otherwise, and �h is again a generic logarithmic factor. We thus define

E∞ = max
T∈T

max(Capp(r)σ̃D(T )r−1, C∞(r)
hT

d
)ET .

A third option is to measure the pollution term in Lp with p “large” but not ∞.
For solutions to (1.1) with A = I on arbitrary polyhedral or polygonal domains in
R

2 or R
3,

(4.6) ‖u‖W 2
q (Ω) ≤ Cq‖f‖Lq(Ω)

for 1 < q < 4/3; cf. [Da92]. This estimate enables the construction of a residual
estimator in Lp, where 1

p = 1 − 1
q and 1 < q < 4/3. Given (4.6), it is not difficult

to show using a standard duality argument that

(4.7) ‖u − uh‖Lp(Ω) ≤ Cq(r)(
∑
T∈T

η0,p(T )p)
1
p .

In our computational experiments we shall choose p = 5, so that q = 5
4 and Cq is

unknown but fixed. Inserting (4.7) with p = 5 into (1.7) yields

‖∇(u − uh)‖L∞(D) ≤ Capp(r)�ρ,d max
T∈TDd

σD(T )r−1ET + C5(r)(
∑
T∈T

η0,5(T )5)
1
5 ,

where C5(r) = Cq(r)Cpol depends on A, Ω, and r. We thus define

E5 =
1
2
[Capp(r) max

T∈TDd

σD(T )r−1ET + C5(r)(
∑
T∈T

η0,5(T )5)
1
5 ].
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5. Computational examples

In this section we describe computational experiments whose purpose is to illus-
trate Theorem 1.1, Corollary 1.2, and Corollary 3.2 in the case that Ω is a plane
crack domain.

5.1. Algorithm. Our computational algorithm is as follows. We use the standard
adaptive procedure of recursively solving the discrete equation (1.2) on an initial
mesh, marking the mesh for refinement using the chosen error indicator, refining
the mesh, and then repeating the procedure until a given error tolerance is reached.
We shall use a “maximum strategy” (see, e.g., [Ver94]) for deciding which elements
to mark for refinement, that is, we mark the element T̃ for refinement if

I(T̃ ) ≥ θ max
T∈T

I(T ),

where I is the relevant elementwise error indicator and 0 < θ < 1 is chosen appro-
priately. When measuring the pollution term in L∞, we mark the element T̃ for
refinement if

max(Capp(r)σ̃D(T̃ )r−1, C∞(r)
hT̃

d
)ET̃ ≥ .25E∞.

When measuring the pollution error in L2 or L5, a direct comparison between
elementwise residuals arising from the pollution and approximation terms is not
possible. Instead, we set

e∞ = Capp(r) max
T∈TDd

σD(T )r−1ET .

Letting W5(T ) = 1, we also define for p = 2 or p = 5

ep = Cp(r)(
∑
T∈T

Wp(T )pη0,p(T )p)
1
p ,

so that Ep = 1
2 (e∞+ep). We employ the following simple algorithm for determining

which elements of the mesh to refine:
(1) If 1

2e∞ ≥ .4Ep:
for each T̃ ∈ TDd

, mark T̃ for refinement if

(5.1) Capp(r)σD(T̃ )r−1ET̃ ≥ .25e∞.

(2) If 1
2ep ≥ .4Ep:

for each T̃ ∈ T , mark T̃ for refinement if

(5.2) Wp(T̃ )η0,p(T̃ ) ≥ .5 max
T∈T

Wp(T )η0,p(T ).

Thus we refine the mesh based on the elementwise approximation or pollution error
indicators if the corresponding error estimator e∞ or ep accounts for at least 40% of
the total error estimate Ep. We note that a similar marking strategy for comparing
residual contributions which accumulate differently was also used in [NSV03] and
[NSSV]. The threshold values θ = .25 in (5.1) and θ = .5 in (5.2) were chosen
based on computational experience and may be varied. Finally, all computations
were performed using the finite element toolbox ALBERTA [SS00], [SS05].

The constants Capp(r) and Cp(r), p = 2, 5,∞, must also be estimated. The
choice of these constants affects the effectiveness of the above algorithm both for
error estimation and error indication, that is, in choosing which elements to mark
for refinement. In particular, the ratio Capp

Cp
must be chosen properly in order to
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gain an effective error indicator. For a given subdomain D, error estimator Ep, and
discrete solution uh, we define the effectivity index

Ieff(D) =
‖∇(u − uh)‖L∞(D)

Ep
.

Ideally Ieff(D) = 1. In our computations Capp(r) was fixed by running sim-
ple model problems on square domains and choosing values of Capp(r) for which
Ieff(Ω) ≈ 1. This procedure yielded Capp(4) = .13 (cubics) and Capp(3) = .26
(quadratics). Cp(r) was fixed in an experiment described below. The resulting
values we use are C2(3) = .08Capp(3); C5(3) = .06Capp(3); C∞(3) = .05Capp(3);
C2(4) = .06Capp(4); C5(4) = .04Capp(4); and C∞(4) = .025Capp(4).

5.2. Experiments illustrating Corollary 1.2. Let Ω1 = (−1, 1) × (−1, 1) \
[0, 1) × {0}. Ω1 is depicted in Figure 1, along with the initial mesh used for all
computations on Ω1. With t and θ denoting polar coordinates, let

φ(t, θ) = t1/2 sin
θ

2
and

u(x, y) = cos
πx

2
cos

πy

2
φ(t(x, y), θ(x, y)).

Note that u|∂Ω = 0 and that φ is the (most) singular function which naturally arises
in expansions of solutions of (1.1) into regular and singular parts. Additionally, we
take A = I and let f = −∆u.

In our experiments we varied several parameters: the subdomain D under con-
sideration, the polynomial degree r − 1, and the norm which is used to measure
the pollution term. Let D1 = {(x, y) ∈ Ω : |(x, y) − (.05, 0)| < 0.025, y > 0}.
Note that D1 is relatively close to the crack tip (0, 0) and lies on one side of
the crack, as pictured in Figure 1. When estimating ‖∇(u − uh)‖L∞(D1) we shall
take d = 0.025 so that D1,d = {(x, y) ∈ Ω : |(x, y) − x1| < 0.05, y > 0}. Our
second subdomain is removed from the crack tip. Let (x2, y2) = (0, 1), and let
D2 = {(x, y) ∈ Ω : |(x, y) − (0, 1)| < .1}. We shall take d = 0.8 when estimating
‖∇(u − uh)‖L∞(D2), so D2,d is a half-disc of radius .9 centered at x2.

Figure 1. Ω1 along with subdomains D1, D1,d, D2, and D2,d, and
the initial mesh.
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Experiment 1 (Approximation of ∇u|D2). Computations on the subdomain D2 were
used to fix the constants Cp(r). In particular, we took Cp(r) to be the smallest
choice of Cp(r) for which Ieff(D2) ≤ 1 for all iterations of the resulting adaptive
algorithm. Note that this is a rather conservative way to choose Cp and generally
results in overapproximation of the error. Starting with the initial mesh displayed
in Figure 1, the algorithm described in the preceding section was employed with
a tolerance of 10−5 for both quadratic (r = 3) and cubic (r = 4) elements. Using
quadratic elements, 93598 degrees of freedom were required to reach the prescribed
tolerance using E2, 88790 using E5, and 112193 using E∞. Using cubic elements,
14487 elements were required to reach the prescribed tolerance using E2, 13837
using E5, and 17152 using E∞. Thus slightly better results are obtained here
by using the L5 norm to measure the pollution error, though the performance
of algorithms resulting from all three choices of p was competitive. For higher
numbers of degrees of freedom, the effectivity index was between about .2 and .6
for all choices of error indicator, confirming that our choice of Cp(r) was perhaps
too conservative.

Experiment 2 (Approximation of ∇u|D1). The same algorithm as above was used
for computations on D1. A graph of the error reduction obtained using Ep with
quadratic and cubic elements and with p = 2, 5,∞ is displayed in Figure 2 and
Figure 3. Here the best results for both cubic and quadratic elements were obtained
using E∞, with similar results being obtained using E5 and considerably worse
results being obtained using E2. Graphs of the effectivity indices resulting from
using cubic elements are shown in Figure 4. The effectivity indices for quadratic
elements are similar. In particular, for both cubics and quadratics Ieff(D1) is of
moderate size even for small numbers of degrees of freedom, and remains between
about .4 and 1.6 for larger numbers of degrees of freedom.

Figure 2. Error reduction when using quadratic elements to ap-
proximate ∇u|D1 .



38 ALAN DEMLOW

Figure 3. Error reduction when using quadratic and cubic ele-
ments to approximate ∇u|D1 .

We conjecture that the poorer results obtained when using E2 are due to over-
approximation of the pollution error because of the factor d−1−n

p . Here this factor
is d−1 = 40 when p = ∞ and d−2 = 1600 when p = 2. Thus the extra regu-
larity gained by approximating the pollution term in the weaker L2 norm does
not compensate for the increased penalty due to the small size of the domain

Figure 4. Effectivity indices resulting from using cubic elements
to approximate ∇u|D1 .
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D1,d. It is interesting to note that on crack domains ‖u − uh‖L2(Ω) has a strictly
higher rate of convergence than ‖u − uh‖L∞(Ω) on quasiuniform meshes. This fact
might seem to indicate that it is more efficient to measure the pollution term in L2

than in L∞. As was shown in [SW79], however, the mesh may be refined so that
‖u−uh‖L∞ decreases optimally with the number of degrees of freedom, and numer-
ical tests in [DDP00] confirm that adaptive algorithms based on residual estimators
for ‖u − uh‖L∞(Ω) lead to such a refined mesh.

Note also that since D1 has positive measure, the error should asymptotically
decline as DOF−1 for quadratic elements and DOF−1.5 for cubic elements, where
DOF is the number of degrees of freedom. However, in Figures 2 and 3 the error
appears to decline as DOF−1.5 and DOF−2 for quadratic and cubic elements, re-
spectively, at least for p = 5 and p = ∞. These are the optimal rates of convergence
for the pollution term when it is measured in Lp, p = 2, 5,∞. It appears that since
|D1| � |Ω|, the higher rate of convergence for the pollution term ‖u − uh‖Lp(Ω)

dominates in the pre-asymptotic range.

Experiment 3 (Effect of the weight σD). With our final experiment on Ω1 we illus-
trate the effect of the weight σD. An a posteriori counterpart to the “traditional”
unweighted local maximum norm estimates of [SW95] would lead for example to
the estimator

Ẽ∞ = max
T∈T

max(Capp(r)δDd
(T ), C∞(r)

hT

d
)ET ,

where δDd
(T ) = 1 if T ∈ TDd

and δDd
(T ) = 0 otherwise. Note that when d =

.025 the subdomain D1,d abuts directly on the crack tip, where ∇u is unbounded.
Assume that hTtip � d, Ttip ∈ TDd

, and that Ttip contains the crack tip. Using the
weighted estimator E∞, we see that the local residual contribution from Ttip is

max ( Capp(r)σD(Ttip)r−1, C∞(r)
hTtip

d )ETtip

≤C max(Capp(r)(
hTtip

d )r−1, C∞(r)
hTtip

d )ETtip ≤ C(r)
hTtip

d ETtip .

That is, the residual contribution from Ttip is comparable to an L∞-type residual
estimator as ETtip is multiplied by a factor of hTtip . Using Ẽ∞ with d = .025, on
the other hand, yields an elementwise contribution of

max(Capp(r), C∞(r)
hTtip

d
)ETtip ≥ c(r)ETtip .

Since ETtip heuristically measures the W 1
∞ error over an area where ∇u is not

bounded, we expect ETtip to blow up as the mesh is refined. One may easily confirm
this expectation in practice. We must therefore choose d even smaller than .025
in order to employ Ẽ∞ on D1, and we took d = .0125 in our experiments. Thus
there are two disadvantages to using Ẽ∞ instead of E∞: the elements contained
in Dd \ D will not be multiplied by extra factors of hT , and we must sometimes
choose d smaller, thus potentially overemphasizing the pollution term.

Meshes resulting from using E∞ and Ẽ∞ to approximate ∇u|D1 are displayed
in Figure 5. When using Ẽ∞, we took d = .0125. Both pictures in Figure 5 show
the same neighborhood of the origin, and both resulted in about the same actual
error (6.6× 10−5 for E∞ and 6.3× 10−5 for Ẽ∞) and error estimate (E∞ = Ẽ∞ =
1.57 × 10−4). However, the mesh resulting from employing E∞ had 23512 degrees
of freedom versus 37393 for the mesh resulting from using Ẽ∞. The algorithm
employing Ẽ∞ required about 1.35 times more degrees of freedom than that using
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Figure 5. Meshes for calculation of ∇uh|D1 using E∞ (left, 23512
DOF) and Ẽ∞ (right, 37393 DOF). Both are zoomed in toward the
origin and display the square [−1

8 , 1
8 ]2. The region D1 is also

marked.

E∞ to reach the tolerance .01, 1.45 times more to reach the tolerance .001, 1.54
times more to reach the tolerance .0001, and 1.65 times more to reach the tolerance
.00001. Thus the weighted estimator has a clear performance advantage over the
unweighted estimator, as one would expect. It is also clear from Figure 5 that Ẽ∞
causes much heavier refinement in D1,d \D. Finally note that both meshes display
clearly separated regions of high refinement near the origin and near D1.

5.3. Experiment illustrating Corollary 3.2. Corollary 3.2 states that we may
apply weighted estimators near convex corners of Ω, but only with one power of

Figure 6. Left: the domain Ω2; D is represented by the thick
line segment and dot. Right: mesh with 44983 DOF resulting
from using cubic elements and E∞.



LOCAL A POSTERIORI ESTIMATES FOR POINTWISE ERRORS 41

the weight σD. In order to illustrate this fact, we conducted a simple experiment
on the domain Ω2 pictured in Figure 6. Here Ω2 is a square with 2 connected line
segments removed, that is, Ω2 is a crack domain where the crack itself consists
of two connected line segments. We took D = {(.9,−.9)} ∪ {0} × (0, 1

6 ] (i.e., the
union of a line segment and a point) in order to emphasize that D need not be
connected or a subdomain. In fact, it may be chosen as any subset of Ω2. Also,
d = .6. The unknown solution u ∈ H1

0 (Ω2) of −∆u = 1 in Ω2, u = 0 on ∂Ω2

was approximated on D using cubic elements and the estimator E∞. The mesh
resulting from approximating ∇u|D to a tolerance of 10−5 using the error estimator

E∞ = max
T∈T

max(Capp(r)σ̃D(T ), C∞(r)
hT

d
)ET

derived from Corollary 3.2 is shown in Figure 6. Four areas of heavy mesh refine-
ment are clear: one near the crack tip (−.5, .5), two at the origin (one on each side
of the crack), and one near the point (.9,−.9) ∈ D. Thus the heaviest refinement
occured at the re-entrant corners and near D, as was expected.
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