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ON THE DISTRIBUTION OF ZEROS
OF THE HURWITZ ZETA-FUNCTION

RAMŪNAS GARUNKŠTIS AND JÖRN STEUDING

Abstract. Assuming the Riemann hypothesis, we prove asymptotics for the
sum of values of the Hurwitz zeta-function ζ(s, α) taken at the nontrivial zeros
of the Riemann zeta-function ζ(s) = ζ(s, 1) when the parameter α either tends
to 1/2 and 1, respectively, or is fixed; the case α = 1/2 is of special interest
since ζ(s, 1/2) = (2s − 1)ζ(s). If α is fixed, we improve an older result of
Fujii. Besides, we present several computer plots which reflect the dependence
of zeros of ζ(s, α) on the parameter α. Inspired by these plots, we call a zero
of ζ(s, α) stable if its trajectory starts and ends on the critical line as α varies
from 1 to 1/2, and we conjecture an asymptotic formula for these zeros.

1. Motivation

Let, as usual, s = σ + it denote a complex variable and define e(z) = exp(2πiz).
For σ > 1, the Hurwitz zeta-function is given by

ζ(s, α) =
∞∑

n=0

1
(n + α)s

,

where α is a parameter from the interval (0, 1]. The Hurwitz zeta-function can
be continued analytically to the whole complex plane except for a simple pole at
s = 1 with residue 1. For α = 1 the Hurwitz zeta-function becomes the Riemann
zeta-function ζ(s) := ζ(s, 1) which is of great importance in number theory. The
as-yet unsolved Riemann hypothesis (RH) states that all nontrivial (nonreal) zeros
of ζ(s) lie on the critical line σ = 1/2, or equivalently, that the ζ(s) does not vanish
in the half-plane σ > 1/2.

As a matter of fact, we have further that

(1) ζ(s, 1/2) = (2s − 1)ζ(s).

The second author showed that besides α = 1/2, 1 there are no identities of this
type; more precisely, in [10] it was proved that ζ(s, α)/ζ(s) is entire if and only if
α = 1/2 or 1.

The distribution of zeros of ζ(s, α) as a function of s depends drastically on the
parameter α. For instance, the Hurwitz zeta-function given by (1) vanishes for
s = 2πik/ log 2, k ∈ Z, and all other nonreal zeros are expected to lie on the critical
line σ = 1/2 (by RH). However, this example is somehow special.
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It is known that for any 1/2 < σ1 < σ2 < 1 and any transcendental or rational
α �= 1/2, 1 the function ζ(s, α) has more than cT zeros in the rectangle σ1 ≤ σ ≤ σ2,
|t| ≤ T , where c is a positive constant depending on σ1, σ2 and α (see Karatsuba and
Voronin [9] or Gonek [8]). This is also expected to hold for algebraic irrational α
(see [5] and Corollary 3 of [7]). Thus the analogue of RH for ζ(s, α) fails for generic
α �= 1/2, 1. In this note we are concerned with the change in the distribution of
zeros of ζ(s, α) while α tends to 1/2 and 1, respectively.

By partial summation,

ζ(s, α) =
1
αs

+
1

(1 + α)s
+

1
s − 1

(
3
2

+ α

)1−s

+ s

∫ ∞

3/2

1/2 − {u}
(u + α)s+1

du,

valid for σ > 0, where {u} denotes the fractional part of a real number u (see
Karatsuba and Voronin [9]). It is easy to see that the last integral converges uni-
formly for s from any compact subset of the half-plane σ > 0 and arbitrary α. It
thus follows that ζ(s, α) is a continuous function in s �= 1 and α. Now assume RH.
Then, by (1), for any T and any δ > 0, there exits a positive constant c = c(T, δ)
such that all nontrivial zeros �α = βα + iγα of all Hurwitz zeta-functions ζ(s, α)
with |1/2−α| ≤ c, which have imaginary part |γα| ≤ T , satisfy either |βα−1/2| ≤ δ
or |βα − 0| ≤ δ. (This phenomenon is illustrated by Figure 3 in Section 3.) It is
natural to ask how small c must be such that the zeros �α with |γα| ≤ T cluster
around the lines σ = 1/2, 1. It seems rather difficult to study the continuity of
the zeros of ζ(s, α) with respect to the parameter directly. Instead we consider the
sum of values ζ(s, α) taken at the nontrivial zeros of the Riemann zeta function
when the parameter α tends to 1 and 1/2, respectively. The obtained results are
presented in the next section. The third section is devoted to empirical calculations
of the Hurwitz zeta-function zeros.

2. Statement of results

In [2] Fujii started to consider sums of values of Hurwitz zeta-functions taken
at the nontrivial zeros � of ζ(s). Using an approximate functional equation, he
obtained under assumption of RH that, for fixed α �= 1,

(2)
∑

0<γ≤T

ζ(�, α) = −
(

Λ
(

1
α

)
+ L(1,−α)

)
T

2π
+ O

(
T

9
10 log T

)
,

where

Λ(x) :=
{

log p if x = pk, where p ∈ P, k ∈ N,
0 otherwise,

is the von Mangoldt Λ-function, P denotes the set of prime numbers, and

L(s, α) :=
∞∑

n=1

e(αn)
ns

;

note that this series is convergent for σ > 0 if α is not an integer. In view of
(1) the main term in (2) vanishes if α = 1/2; in fact, it is also not difficult to
prove the converse which yields the claim on the entireness of ζ(s, α)/ζ(s) from
the previous section. In [10] the second author showed that Fujii’s formula (2)
holds unconditionally with the error term O(T 1−c(log T )−2/3

), where c is an absolute
positive constant. Our first aim is to improve Fujii’s error term under assumption
of RH.
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Theorem 1. Assuming RH, formula (2) is valid with the error term O(T
1
2+ 16

237+ε)
(note that 1

2 + 16
237 = 0.568 . . . ). Assuming GRH (i.e., the analogue of RH for

Dirichlet L-functions), this error term can be replaced by O(T
1
2+ε) if α is rational.

Our main interest is the behaviour of Fujii’s sum as the parameter α tends either
to 1/2 or to 1.

Theorem 2. Assume RH. For 2α − 1 = o(1/T ), as T → ∞,∑
0<γ≤T

ζ(�, α) =
log 2
2πi

(
1
2α

+ O

(
|2α − 1|
log T

)) (
1

2α − 1
− 1

2
+ O(|2α − 1|)

)

×
(

exp(−iT (2α − 1)) − 1 + O

(
1
T

))

+
T

4π
(log 2 + log(1 − cos 2πα) − iπ(2α − 1)) + O

(
T

1
2+ 16

237+ε
)

.

In particular, ∑
0<γ≤T

ζ(�, α) =i
log 2
4π

(2α − 1)T 2 +
log 2
12π

(2α − 1)2T 3

+ O
(
|2α − 1|3T 4 + T

1
2+ 16

237+ε
)

.

The situation is slightly different if α tends to 1. Similar to Theorem 2 one might
expect Fujii’s sum to be small. However, the series L(s,−1) in (2) coincides with
ζ(s), so it has a simple pole at s = 1 and the sum should be big. The following
theorems reflect these observations.

Theorem 3. Assume RH. Let (1 − α)−1 = T (log T )β, with β ≥ 0. Then, as
T → ∞, ∑

0<γ≤T

ζ(�, α) = − i

4π
T (log T )1−β − 1

12π
T (log T )1−2 β

+ O
(
T + T (log T )1−3β

)
.

Theorem 4. Assume RH. Let 0 < δ ≤ α ≤ 1. Then, as T → ∞,∑
0<γ≤T

ζ(�, α) �δ min{1 − α, |2α − 1|}T 2 log T,

uniformly in α.

The fourth section contains the proof of the first three theorems, and the fifth
section gives the proof of Theorem 4.

3. Illustrations

Figure 1 shows the zeros and the absolute value of the Hurwitz zeta-function
ζ(s, α) for α near to 1 and 1/2, respectively. This particular example suggests
that the same perturbation (namely 0.0008) for α ≈ 1 and α ≈ 1/2 produce larger
perturbations for the zeros of ζ(s, α) with α near to 1/2. On first sight this seems
to be different from what Theorem 2 and 3 predict. Possibly this can be explained
by Figure 2, which shows the dependence on α for the sums

∑
0<γ<1010

|ζ(�, α)| and

∣∣∣∣∣
∑

0<γ<1010

ζ(�, α)

∣∣∣∣∣
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Figure 1. The left graphic corresponds to the case α = 0.9992,
the right to α = 0.5008. In both pictures the graph is given by
|ζ(1/2 + it, α)| + 1/2, 1000 ≤ t ≤ 1010. Squares indicate the zeros
of ζ(s) and dots those of the corresponding ζ(s, α), lying above or
below the straight line σ = 1/2 according to having a real part less
than or larger than 1/2. In the right graphic we do not draw zeros
of ζ(s, 0.5008) which are clustered around the line σ = 0.
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Figure 2. The left picture shows the graph of
∑

0<γ<1010 |ζ(�, α)|,
the right one the graph of

∣∣∣∑0<γ<1010 ζ(�, α)
∣∣∣, 0.5 < α < 1.

for α ∈ (1/2, 1). The first sum is larger for α near to 1/2 while the second sum is
larger for α near 1. One of the motivations for this paper was Figure 3, where the
trajectories of several zeros of ζ(s, α) are shown, as α varies in the range 0.5 ≤ α ≤ 1.
For example, it shows that the trajectories which start at the 30th and the 33rd
zeros of ζ(s) = ζ(s, 1) end at zeros of ζ(s, 1/2) on the line σ = 1. We believe that
all trajectories which start at nontrivial zeros of the Riemann zeta-function end
at zeros of ζ(s, 1/2) lying on either σ = 1 or the critical line σ = 1/2. We call a
zero � of ζ(s) stable if its trajectory ends on the critical line as α → 1/2; otherwise
the zero is called unstable. Denoting the zeros of ζ(s) with positive ordinate by
�n = βn + iγn (in ascending order), we find among the first 500 zeros the following
unstable zeros, indicated by their index n:

1, 3, 6, 9, 13, 17, 21, 26, 30, 33, 40, 44, 50, 54, 61, 67, 70, 78, 79,
90, 93, 101, 109, 112, 117, 124, 134, 139, 147, 149, 153, 165, 167,
175, 186, 189, 197, 201, 214, 218, 219, 234, 235, 240, 253, 255, 266,
270, 275, 282, 288, 300, 313, 317, 334, 342, 344, 355, 359, 361, 371,
384, 387, 394, 409, 418, 422, 434, 444, 458, 476, 488, 492, 493, 499,
500.
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Figure 3. Trajectories of several zeros of ζ(s, α), 0.5 ≤ α ≤ 1;
starting with the 30th zero of ζ(s) = ζ(s, 1) and ending with the
35th.

Figure 3 suggest that the zeros for α = 1 should migrate to zeros of a smaller
imaginary part at α = 1/2. The number of nontrivial zeros of ζ(s) and ζ(s, 1/2)
up to T is asymptotically equal to

T

2π
log

T

2πe
+ O(log T ) and

T

2π
log

T

2πe
+

T

2π
log 2 + O(log T ),

respectively (see [6]), and T
2π log 2+O(1) many of these zeros of ζ(s, 1/2) lie on the

line σ = 0. Therefore, we may expect that the number of unstable zeros up to T is
asymptotically equal to

T
log 2
2π

(
1 − log 2

log T
2πe

)
;

on average, we conjecture that about
1

log 2
log

T

2πe

stable zeros lie in between two consecutive unstable zeros with an imaginary part
approximately equal to T . We do not expect that there are many pairs of consec-
utive unstable zeros. Among the first 500 zeros (with positive real part) we found
only five pairs of such unstable twins:

78, 79; 218, 219; 234, 235; 492, 493 and 499, 500.
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The computations in this section are based on numerical solutions of the differential
equation

∂z0(α)
∂α

= −
∂ζ(z,α)

∂α
∂ζ(z,α)

∂z

,

where z = z0(α), ζ(z0(α), α) = 0. For initial conditions the zeros of ζ(s, 1) were
used.

4. The method of Conrey, Ghosh, and Gonek

The proofs of the first three theorems rely on the method of Conrey, Ghosh, and
Gonek [1], namely the idea to interpret the sum in question as a sum of residues,
resp. a contour integral∑

0<γ<T

ζ(s, α) =
1

2πi

∫
C

ζ ′

ζ
(s)ζ(s, α)ds,(3)

which can be evaluated by Gonek’s lemma. First of all, we have to choose an
appropriate path of integration C according to the condition of summation. Note
that the first nontrivial zero with positive imaginary part is 1/2 + i 14.13 to two
decimal places. By the Riemann–von Mangoldt formula for the number of nontrivial
zeros of ζ(s),

N(T ) := #{� = β + iγ : 0 < γ ≤ T} =
T

2π
log

T

2πe
+ O(log T ),(4)

it follows that the zeros � cannot lie too dense: for any given T0 > 1 there exists a
T ∈ (T0, T0 + 1] such that

min
γ

|T − γ| 	 1
log T

.(5)

Now let a = 1 + 1/ log T and define the contour C to be the rectangle with vertices
a + i, a + iT , 1 − a + iT , 1 − a + i. By the calculus of residues (3) holds and, say,

1
2πi

∫
C

ζ ′

ζ
(s)ζ(s, α)ds

=
1

2πi

(∫ a+iT

a+i

+
∫ 1−a+iT

a+iT

+
∫ 1−a+i

1−a+iT

+
∫ a+i

1−a−i

)
ζ ′

ζ
(s)ζ(s, α)ds(6)

=:
4∑

j=1

Ij .

Let 0 < δ < 1/2 be fixed. We shall evaluate the integrals Ij , j = 1, . . . , 4, uniformly
in α for the range δ ≤ α ≤ 1. The case of fixed α corresponds to Theorem 1, the
case of α → 1/2 to Theorem 2, and, finally, α → 1 to Theorem 3.

In the half-plane of absolute convergence σ > 1 we may rewrite the integrand
in (6) as a Dirichlet series and interchange summation and integration. It is easily
seen that

ζ ′

ζ
(s) = −

∞∑
m=2

Λ(m)
ms

.
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This leads to

(7) I1 = − 1
2π

∞∑
m=2

∞∑
n=0

Λ(m)
(m(n + α))a

∫ T

1

dt

(m(n + α))it
.

By the Laurent expansions at s = 1,
ζ ′

ζ
(s) =

−1
s − 1

+ γ + O(s − 1),

ζ(s, α) =
1

s − 1
+ γ(α) + O(s − 1),

valid for s → 1, we get
∞∑

m=2

∞∑
n=0

Λ(m)
(m(n + α))a

�
∞∑

m=2

∞∑
n=0

Λ(m)
(m(n + δ))a

� ζ ′

ζ
(a)ζ(a, δ) � (log T )2.

For fixed α the integral in (7) is bounded unless n = 0 and mα = 1. Thus

I1 = −Λ
(

1
α

)
T

2π
+ O

(
(log T )2

)
.(8)

For α → 1/2 (but �= 1/2) we have∫ T

1

dt

(2α)it
=

∫ T

0

dt

(2α)it
+ O(1) =

1 − exp(−iT log(2α))
i log(2α)

+ O(1)

and

I1 =
exp(−iT log(2α)) − 1

2πi(2α)a log(2α)
log 2 + O

(
(log T )2

)
.

By

(2α)−a =
1
2α

+ O

(
−|2α − 1|

log T

)
,

log(2α) = log(1 + 2α − 1) = 2α − 1 + O
(
(2α − 1)2

)
,

and
1

log(2α)
=

1
2α − 1

− 1
2

+ O(|2α − 1|),

we obtain

I1 =
log 2
2πi

(
1
2α

+ O

(
|2α − 1|
log T

)) (
1

2α − 1
− 1

2
+ O(|2α − 1|)

)

×
(

exp(−iT (2α − 1)) − 1 + O

(
1
T

))
+ O

(
(log T )2

)
.(9)

Expanding in powers of T and 2α − 1, this expression is equal to

− log 2
( 1

2π
T − i

4π
T 2(2α − 1) − 1

12π
T 3(2α − 1)2 +

i

48π
T 4(2α − 1)3

)
+ O

(
T 5(2α − 1)4 + (log T )2

)
.

Clearly, for α → 1,

I1 � (log T )2.(10)
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Now we show that the integrand is small on the horizontal paths. For the
logarithmic derivative we have the partial fraction decomposition

ζ ′

ζ
(s) =

∑
|t−γ|≤1

1
s − �

+ O(log |t + 2|) for − 1 ≤ σ ≤ 2, |t| ≥ 1

(for a proof see [9]). With regard to (4) and (5) it follows that

ζ ′

ζ
(σ + iT ) � (log T )2 for − 1 ≤ σ ≤ 2, T ≥ 1.(11)

Recall that the Hurwitz zeta-function satisfies the identity

ζ(1 − s, α) =
Γ(s)
(2π)s

(
e
(s

4

)
L(s,−α) + e

(
−s

4

)
L(s, α)

)
.(12)

Thus, an application of the Phragmen–Lindelöf principle yields the estimate

ζ(s, α) � |t| 12 log |t + 2| for − 1
log T

≤ σ ≤ 1 +
1

log T
, |t| ≥ 1,

uniformly in δ ≤ α ≤ 1 and |t| � T . Hence,

(13) I2, I4 � T
1
2 (log T )3.

It remains to evaluate I3. Substituting s 
→ 1 − s, we find that

I3 = − 1
2πi

∫ a+iT

a+i

ζ ′

ζ
(1 − s)ζ(1 − s, α)ds.

Now we shall use functional equations to transform the latter integral into a more
suitable expression. Functional equations for ζ(s) can be written in the form

ζ(s) = ∆(s)ζ(1 − s),

where

∆(s) :=
(2π)s

2Γ(s) cos πs
2

.

By this and (12) we obtain, say,

I3 = − 1
2πi

∫ a+iT

a+i

∆′

∆
(s)

Γ(s)
(2π)s

e
(
−s

4

)
L(s, α)ds

− 1
2πi

∫ a+iT

a+i

∆′

∆
(s)

Γ(s)
(2π)s

e
(s

4

)
L(s,−α)ds

+
1

2πi

∫ a+iT

a+i

ζ ′

ζ
(s)

Γ(s)
(2π)s

e
(
−s

4

)
L(s, α)ds(14)

+
1

2πi

∫ a+iT

a+i

ζ ′

ζ
(s)

Γ(s)
(2π)s

e
(s

4

)
L(s,−α)ds

=
4∑

j=1

Fj .

We have ∆(s)∆(1 − s) = 1. If δ = ±1, then

e
(
δ s

4

)
2 cos πs

2

=
{

O (exp (−π|t|)) if δt ≥ 0,
1 + O (exp (−π|t|)) otherwise.(15)
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Moreover, for |t| ≥ 1,

∆′

∆
(s) = − log

|t|
2π

+ O

(
1
|t|

)
.

From these estimates it follows that

F1 = − 1
2πi

∫ a+iT

a+i

∆′

∆
(s)∆(1 − s)L(s, α)ds + O(1).

Furthermore, we find that

1
2πi

∫ a+iT

a+i

∆′

∆
(s)∆(1 − s)L(s, α)ds(16)

=
∫ T

1

(
− log

τ

2π
+ O

(
1
τ

))
d

1
2πi

∫ a+iτ

a+i

∆(1 − s)L(s, α)ds.

To evaluate these integrals we shall use a variant of Gonek’s lemma.

Lemma 5. Assume that∑
m≤x

|am| � x and bn � 1.

Let 1 < c ≤ 1 + 1/ log τ and 0 < δ < 1, then

1
2πi

∫ c+iτ

c+i

∆(1 − s)
∞∑

m=1

am

ms

∞∑
n=0

bn

(n + α)s
ds

=
∑

m≥1,n≥0
m(n+α)≤ τ

2π

ambn e(−m(n + α)) + O
(
τ

1
2 (c − 1)−2

)

uniformly in α ∈ [δ, 1].

Proof. In [1] it was shown that, for any r > 0 and any c0 ∈ (0, 2),

1
2πi

c+iτ∫
c+i

∆(1 − s)r−sds =
{

e(−r) + E(r, c)r−c if r ≤ τ
2π ,

E(r, c)r−c otherwise,

uniformly for c ∈ [c0, 2], where

E(r, c) � τ c− 1
2 +

τ c+ 1
2

|τ − 2πr| + τ
1
2
.

Applying this result, we obtain that the integral of the theorem is equal to∑
m≥1,n≥0

m(n+α)≤ τ
2π

ambn e(−m(n + α))

+ O

⎛
⎝ ∑

m≥1,n≥0

(
ambnτ c− 1

2

(m(n + α))c
+

ambnτ c+ 1
2

|τ − 2πm(n + α)| + τ
1
2

1
(m(n + α))c

)⎞
⎠ .
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In order to evaluate the error term we divide the range of summation m ≥ 1, n ≥ 0
into the following three sets:

A : |τ − 2πm(n + α)| >
1
2
τ,

B : τ
1
2 ≤ |τ − 2πm(n + α)| ≤ 1

2
τ,

C : |τ − 2πm(n + α)| < τ
1
2 .

We find that∑
A

� τ
1
2

∑
m≥1,n≥0

am

(m(n + α))c
� τ

1
2 (c − 1)−2,

∑
B

� τ
1
2

∑
m≥1,n≥1

am

(mn)c

+τ c+ 1
2

∑
m≥1

am

mc

∑
τ

1
2 ≤|τ−2πm(n+α)|≤ 1

2 τ

1
|τ − 2πm(n + α)|(m(n + α))c

� τ
1
2 (c − 1)−2 + τ

1
2

∑
m≥1

am

mc
� τ

1
2 (c − 1)−2,

and ∑
C

� τ
1
2

∑
m≥1,n≥1

am

(mn)c

+τ c
∑
m≥1

am

mc

∑
|τ−2πm(n+α)|<τ

1
2

1
(m(n + α))c

� τ
1
2 (c − 1)−2 + τ

1
2 (c − 1)

∑
m≥1

am

mc
� τ

1
2 (c − 1)−2.

This proves the lemma. �

We continue with the proofs of the theorems. Using Lemma 5 we find for the
integral in formula (16) that

1
2πi

∫ a+iτ

a+i

∆(1 − s)L(s,−α)ds =
∑

n≤ τ
2π

e(αn) + O
(
τ

1
2 (log T )2

)

uniformly in α for δ ≤ α ≤ 1, as τ → ∞. The sum on the right-hand side is small
for fixed 0 < α < 1 and large for α = 1. Writing [α] := α − {α} for the integral
part of α, we get

F1 =
∫ T

1

(
log

τ

2π
+ O

(
1
τ

))
d

(
[α]

τ

2π
+ O

(
τ

1
2 (log T )2

))
.

Since [α] vanishes exactly for α �= 1, we get for fixed α

F1 = [α]
T

2π
log

T

2πe
+ O

(
T

1
2 (log T )3

)
.(17)
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It is easy to see that, for α → 1/2,

F1 � T
1
2 (log T )3.(18)

Next we consider the case α → 1. First of all, for |α − 1| � x−1,∑
n≤x

e(αn) =
∑
n≤x

e(n(α − 1))

=
∑
n≤x

(
1 + 2πin(α − 1) − 2(πn(α − 1))2 + O

(
(n(α − 1))3

) )

=[x] + 2πi
1 + [x]

2
[x](α − 1) − 2(π(α − 1))2

2[x]3 + 3[x]2 + [x]
6

+ O
(
[x]4(α − 1)3

)
=x + πix2(α − 1) − 2

3
(π(α − 1))2x3 + O

(
x4(α − 1)3 + 1

)
.

Hence

1
2πi

∫ a+iτ

a+i

∆(1 − s)L(s,−α)ds

=
τ

2π
+

i

4π
τ2(α − 1) − 1

12π
τ3(α − 1)2 + O

(
((1 − α)3τ4) + τ

1
2 (log τ )2 + 1

)
.

After a short computation this leads to

F1 =
T

2π
log

T

2πe
+

i(α − 1)T 2

4π
log

T

2πe
+

i(α − 1)T 2

8π

− (α − 1)2T 3

12π
log

T

2πe
− (α − 1)2T 3

18π

+ O
(
(1 − α)3T 4 log T + T

1
2 (log T )3

)
.

Putting (1 − α)−1 = T (log T )β, where β ≥ 0, we find that

F1 =
T

2π
log T +

i

4π
T (log T )1−β − 1

12π
T (log T )1−2β(19)

+ O
(
T (log T )1−3β + T

)
.

By the same reasoning we get

F3 =
1

2πi

∫ a+iT

a+i

∆(1 − s)
ζ ′

ζ
(s)L(s, α)ds + O(1).

Lemma 5 yields

1
2πi

∫ a+iT

a+i

∆(1 − s)
ζ ′

ζ
(s)L(s, α)ds

= −
∑

mn≤ T
2π

Λ(m) e(αn) + O
(
T

1
2 (log T )2

)
.
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Let U be a positive parameter such that U is not the ordinate of any zero of ζ(s).
By Perron’s formula,

−
∑

mn≤ T
2π

Λ(m)e(αn) =
1

2πi

∫ a+iU

a−iU

ζ ′

ζ
(s)L (s, α)

(
T

2π

)s ds

s

+ O

(
log T +

T (log T )2

U

)
,(20)

uniformly in α for δ ≤ α ≤ 1, as T → ∞. It follows from the calculus of residues
that

1
2πi

∫ a+iU

a−iU

ζ ′

ζ
(s)L (s, α)

(
T

2π

)s ds

s

=
1

2πi

{∫ b−iU

a−iU

+
∫ b+iU

b−iU

+
∫ a+iU

b+iU

}
ζ ′

ζ
(s)L (s, α)

(
T

2π

)s ds

s

+ Res s=1
ζ ′

ζ
(s)L (s, α)

(
T

2π

)s 1
s
,(21)

where we choose b = 1/2 + 1/ log T . The residue is easily seen to be equal to
−L(1, α)T/(2π). The integrals contribute to the error term. Here we calculate this
error term under RH; the unconditional case is given in [10]. In [4] the first author
has proved (unconditionally) that, for any ε > 0, 0 < α < 1, and t ≥ 1,

L

(
1
2

+ it, α

)
�ε t

32
205+ε +

1√
α

+
e−πt

√
1 − α

,(22)

as t → ∞. From [3] we have, under the same conditions,

L(1 + it, α, ) � tε.

Then, by the Phragmén–Lindelöf principle (see §5.6.5 of [11]) and L(s, α) =
L(s, 1 − α), we derive that for 1/2 ≤ σ ≤ 1 + ε, 0 < α < 1, and |t| ≥ 1,

L(s, α) � |t| 64
205 (1−σ)+ε +

1√
α

+
1√

1 − α
.

It follows from the proof of Theorem 1.1 in Chapter 4 of [6] that, for 0 < α < 1
and |t| ≤ 1,

L

(
1
2

+
1

log T
+ it, α

)
� 1√

α
+

1√
1 − α

.

Using these bounds together with (11) we get∫ b±iU

a±iU

ζ ′

ζ
(s)L (s, α)

(
T

2π

)s ds

s
� TU−1+ε +

T

U

(
1√
α

+
1√

1 − α

)

and∫ b+iU

b−iU

ζ ′

ζ
(s)L (s, α)

(
T

2π

)s ds

s
� T

1
2 log2 T

(
U

32
205+ε +

(
1√
α

+
1√

1 − α

)
log T

)
.
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First, let us assume that α → 1/2 or that α is fixed. Choosing U = T
205
474 we find

that, for δ ≤ α < 1 − δ,

F3 = −
∑

mn≤ T
2π

Λ(m)e((1 − α)n) + O
(
T

1
2 (log T )2

)
(23)

= −L(1, 1 − α)
T

2π
+ O

(
T

1
2+ 16

237+ε
)

.

In view of

L(1, 1 − α) = −1
2

(log 2 + log(1 − cos 2πα) + iπ(1 − 2α)) ,(24)

we get, for α → 1/2,

F3 =
T

2π
log 2 + iπ(1 − 2α)

T

4π
+ O

(
T

1
2+ 16

237 + T (1 − 2α)2
)

.(25)

Now suppose that α → 1. In this case we insert the prime number theorem
under assumption of RH,∑

m≤x

Λ(m) = x + O
(
x

1
2 (log x)2

)
,

in (23). We obtain

F3 = −
∑

n≤ T
2π

e((1 − α)n)
∑

m≤ T
2πn

Λ(m) + O
(
T

1
2 (log T )2

)

= −
∑

n≤ T
2π

(1 + O(n(1 − α)))

(
T

2πn
+ O

((
T

n

) 1
2

(
log

T

n

)2
))

= − T

2π
log T + O(T + T 2(1 − α)).

as T → ∞. Taking (1 − α)−1 = T (log T )β , β ≥ 0, we obtain

F3 = − T

2π
log T + O(T ).(26)

In view of (15) we find for α ∈ [δ, 1]

F2, F4 = Oδ (1) .(27)

Now the first part of Theorem 1 follows by (3), (6), (8), (13), (14), (17), (27),
(23). The second part of Theorem 1 follows in the same way as the first part, only
in the formula (20) we choose U = T

1
2 , and instead of (22) we use the bound

L

(
1
2

+ it, α

)
� tε,

which is valid under GRH, for α is fixed rational number (for the proof see [4]).
Theorem 2 follows from (3), (6), (9), (13), (14), (18), (23), (24), (25), and (27).
Theorem 3 can be obtained from (3), (6), (10), (13), (14), (19), (26), and (27).
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5. Proof of Theorem 4

If 0 < σ0 ≤ σ ≤ 2 and 2π ≤ |t| ≤ πx, then

ζ(s, α) =
∑

0≤n≤x

1
(n + α)s

+
x1−s

s − 1
+ Oσ0(x

−σ),

as x → ∞ (see [9]). For t ≥ 1, as n → ∞,

|(n + α2)s − (n + α1)s| � t|α1 − α2|
n1−σ

.

Thus for σ0 ≤ σ ≤ 1, as t → ∞,

|ζ(s, α1) − ζ(s, α2)| � t|α1 − α2|.
Hence, under RH,∑

0<γ≤T

ζ(�, α) =
∑

0<γ≤T

(
ζ

(
1
2

+ iγ, α

)
− ζ

(
1
2

+ iγ,
1
2

) )

�
∣∣∣∣α − 1

2

∣∣∣∣ ∑
0<γ≤T

γ �
∣∣∣∣α − 1

2

∣∣∣∣ T 2 log T,

∑
0<γ≤T

ζ(�, α) =
∑

0<γ≤T

(
ζ

(
1
2

+ iγ, α

)
− ζ

(
1
2

+ iγ, 1
) )

�|α − 1|T 2 log T,

where we have used the Riemann–von Mangoldt formula for a number of nontrivial
zeros. Theorem 4 is proved.
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