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A SECOND-ORDER MAGNUS-TYPE INTEGRATOR
FOR QUASI-LINEAR PARABOLIC PROBLEMS

C. GONZÁLEZ AND M. THALHAMMER

Abstract. In this paper, we consider an explicit exponential method of clas-
sical order two for the time discretisation of quasi-linear parabolic problems.
The numerical scheme is based on a Magnus integrator and requires the evalua-
tion of two exponentials per step. Our convergence analysis includes parabolic
partial differential equations under a Dirichlet boundary condition and pro-
vides error estimates in Sobolev spaces. In an abstract formulation the initial
boundary value problem is written as an initial value problem on a Banach

space X
u′(t) = A

(
u(t)

)
u(t), 0 < t ≤ T, u(0) given,

involving the sectorial operator A(v) : D → X with domain D ⊂ X indepen-
dent of v ∈ V ⊂ X. Under reasonable regularity requirements on the problem,
we prove the stability of the numerical method and derive error estimates in the
norm of certain intermediate spaces between X and D. Various applications
and a numerical experiment illustrate the theoretical results.

1. Introduction

In this paper, we are concerned with the numerical solution of initial value prob-
lems of the form

(1.1) u′(t) = A
(
u(t)

)
u(t), 0 < t ≤ T, u(0) given.

Our main interest is to study (1.1) in an abstract setting where A(v) : D ⊂ X → X
is a family of sectorial operators on a Banach space X which is defined for elements
v ∈ V ⊂ Xγ in an open subset of some intermediate space D ⊂ Xγ ⊂ X. The scope
of applications includes quasi-linear parabolic partial differential equations under
a boundary condition of Dirichlet type which arise in the modelling of diffusion
processes with state-dependent diffusivity and in the study of fluids in porous media.

In the present work, we pursue our convergence and stability analysis of Magnus-
type integrators for the time discretisation of nonautonomous parabolic problems
[11, 26, 27] and study an explicit exponential integration scheme for abstract quasi-
linear problems (1.1). The numerical method considered relies on a second-order
Magnus integrator and requires the evaluation of two exponentials at each step.

In the last few years, due to the progress of the art and the increasing potential-
ity for the efficient calculation of the matrix exponential in nondubious ways [22]
(see [10, 16] and references cited therein), numerical methods based on the Magnus
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expansion have received a lot of attention. This is confirmed by a variety of recent
works; as a small selection we mention [5, 7, 17, 18, 19, 29]. Following an approach
studied by Magnus [21] for a linear system of nonautonomous ordinary differential
equations

(1.2) y′(t) = A(t)y(t), y(0) given,

the solution is represented by the exponential of a time-dependent matrix Ω

y(t) = eΩ(t)y(0), t ≥ 0,

which is given by an infinite series of iterated integrals involving matrix commuta-
tors of A

(1.3) Ω(t) =
∫ t

0

A(τ ) dτ − 1
2

∫ t

0

[ ∫ τ

0

A(σ) dσ, A(τ )
]
dτ + · · · .

In order to obtain a numerical approximation to the exact solution of (1.2), the
Magnus expansion (1.3) is truncated and the integrals are determined by means of
a quadrature formula. For instance, applying the midpoint rule to the first integral
and omitting the remaining terms yields the second-order approximation

(1.4) y1 = ehA(h/2)y0

to the exact solution value at time h > 0. Here, the numerical starting value y0 is
a suitable approximation to the exact initial value y(0). Such interpolatory Mag-
nus integrators were considered, e.g., by Iserles and Nørsett in [18], in the context
of geometric integration, and, as proven by Hochbruck and Lubich in [17]. This
method class is also eminently suited for the time integration of spatial discretisa-
tions of time-dependent Schrödinger-type equations. In [11, 26], the second-order
Magnus-type integrator (1.4) was studied for abstract parabolic problems and fur-
ther extended to linear and semilinear equations.

The above considerations motivate the following Magnus-type integrator for dif-
ferential equations of the form (1.1). For some initial value u0 ≈ u(0) and a stepsize
h > 0, the numerical solution u1 is determined by the relation

(1.5a) u1 = ehA(U01)u0 ≈ u(h).

As auxiliary approximation to the exact solution value at the midpoint of the
interval [0, h], the additional internal stage U01 is calculated by means of a first-
order integrator

(1.5b) U01 = eh/2 A(u0)u0 ≈ u
(
h/2

)
.

By Taylor series expansions it is straightforward to show that this scheme has
classical order 2. It is notable that (1.5) can also be considered as a Runge–Kutta
Munthe–Kaas method.

The objective of the present work is to analyse the stability and convergence
behaviour of the numerical method (1.5) in the situation where (1.1) constitutes
a quasi-linear parabolic initial boundary value problem written as an initial value
problem on a Banach space.

Our paper is organised as follows. In Section 2, we state the fundamental hy-
potheses on the differential equation in (1.1), and we further specify several appli-
cations that can be cast into our abstract setting. In Section 3, we introduce the
Magnus-type integrator whose favourable stability and convergence properties in
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connection with parabolic problems are analysed in detail in the subsequent Sec-
tions 4 and 5. In particular, under reasonable regularity requirements on the data
and the solution of the initial value problem (1.1), we state an error estimate in the
norm of a certain intermediate space between the underlying Banach space X and
the domain D. In Section 6, we finally comment on an extension of the Magnus-
type integrator to equations with an additional inhomogeneity and illustrate the
theoretical result by a numerical example.

2. Problem class and applications

In this section, we state the fundamental assumptions on the problem class
considered and illustrate the abstract framework by several applications. The hy-
potheses on the initial value problem (1.1) primarily rely on González & Palen-
cia [13] where Runge–Kutta time discretisations for quasi-linear parabolic problems
were studied. However, in our notation we follow Lunardi [20] and the previous
works [11, 26]. For an extensive treatise of quasi-linear evolution equations, we
refer to the works of Amann [1]–[4]. The theory of sectorial operators and analytic
semigroups is described in detail in the monographs [15, 20, 25]. A comprehensive
overview of interpolation theory is given in [20]; see also [6, 28].

To simplify the notation, we henceforth do not distinguish the arising constants.
Thus, the positive quantities K, L, M > 0 and C > 0 possibly have different values
at different occurrences.

2.1. Quasi-linear equation. We consider a complex Banach space (X, ‖·‖X) and
a dense subspace (D, ‖·‖D) that we assume to be continuously embedded in X. For
0 < µ < 1 we denote by Xµ some intermediate space between X and D such that
the norm in Xµ fulfills the relation

‖x‖Xµ
≤ K‖x‖1−µ

X ‖x‖µ
D, x ∈ D,

with a constant K > 0. Specifically, we set X0 = X and X1 = D.
The right-hand side of the differential equation in (1.1) is defined by the map

A : V → L(D, X) where V ⊂ Xγ is an open subset of some intermediate space Xγ

with 0 ≤ γ < 1. In view of applications, the requirement that the domain of the
unbounded linear operator A(v) : D → X is independent of v ∈ V implies that
in general only initial boundary value problems involving a boundary condition of
Dirichlet type are covered by our analysis. The fundamental assumptions on A are
as follows.

Hypothesis 2.1. (i) The closed linear operator A(v) : D → X is uniformly secto-
rial for v ∈ V . Thus, there exist constants a ∈ R, 0 < φ < π/2, and M > 0 such
that for every v ∈ V and for any complex number λ ∈ C in the complement of the
sector

Sφ(a) =
{
z ∈ C : |arg(a − z)| ≤ φ

}
∪ {a},

the resolvent
(
λI − A(v)

)−1 : X → X exists and further satisfies the estimate

(2.1)
∥∥∥(

λI − A(v)
)−1

∥∥∥
X←X

≤ M

|λ − a| , λ ∈ C \ Sφ(a).

(ii) The graph norm of A(v) and the norm in D are equivalent, i.e., for every
v ∈ V the following relation holds with a constant K > 0:

(2.2) K−1‖x‖D ≤ ‖x‖X +
∥∥A(v)x

∥∥
X

≤ K‖x‖D, x ∈ D.
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(iii) For some 0 ≤ ϑ < 1 the intermediate space X1+ϑ between D and the domain
of A(v)2 does not depend on v ∈ V . Moreover, the map A : V → L(X1+ϑ, Xϑ) is
Lipschitz-continuous with respect to v; that is, the estimate

(2.3)
∥∥A(v) − A(w)

∥∥
Xϑ←X1+ϑ

≤ L‖v − w‖Xγ
, v, w ∈ V,

is valid with a constant L > 0.

By Hypothesis 2.1(ii), a suitable choice for the intermediate space Xγ , 0 ≤ γ < 1,
is the real interpolation space or the intermediate Calderón space, whereas, due
to the nonapplicability of Heinz’s theorem, a fractional power space may depend
on A(v), v ∈ V ⊂ Xγ .

Quasi-linear parabolic initial boundary value problems where the above assump-
tions hold true are specified below in Subsection 2.2.

Remark 2.2. In the situation of Hypothesis 2.1 with ϑ = 0, the unique solvability of
the abstract initial value problem (1.1) is ensured. Namely, it is shown in Amann [2]
that the quasi-linear differential equation defines a semiflow in Xβ ∩ V for every
γ < β < 1. However, the limiting case β = γ is not covered by this result.

We note that for a linear operator F : X → D, relation (2.2) implies the bounds∥∥A(v)F
∥∥

X←X
≤ K‖F‖D←X , ‖F‖D←X ≤ K

(
1 +

∥∥A(v)F
∥∥

X←X

)
.

Besides, after possibly enlarging the constant M > 0, the following extension of the
resolvent estimate (2.1) is valid:

(2.4)
∥∥∥tν−µ

(
λI − tA(v)

)−1
∥∥∥

Xν←Xµ

≤ M

|λ − at| , t > 0, 0 ≤ µ ≤ ν ≤ 1;

see also [12]. For any fixed v ∈ V the sectorial operator A(v) : D → X is the
infinitesimal generator of an analytic semigroup

(
etA(v)

)
t≥0

on X. Here, the linear
operator

(2.5) etA(v) =
1

2πi

∫
Γ

eλ
(
λI − tA(v)

)−1 dλ, t > 0,

is defined through the integral formula of Cauchy, where Γ denotes a path that
surrounds the spectrum of A(v). If t = 0, let etA(v) = I. Therefore, due to (2.4),
the estimates

(2.6)

∥∥tν−µetA(v)
∥∥

Xν←Xµ
≤ M, 0 ≤ t ≤ T, 0 ≤ µ ≤ ν ≤ 1,∥∥t1+ν−µA(v) etA(v)

∥∥
Xν←Xµ

≤ M, 0 ≤ t ≤ T, 0 ≤ µ, ν ≤ 1,

are valid; see also [20, Chapter 2]. Consequently, by means of the identity

etA(v) − I =
∫ t

0

A(v)eτA(v) dτ,

we obtain the bound

(2.7)
∥∥etA(v) − I

∥∥
Xν←Xµ

≤ Mt−ν+µ, t > 0, 0 ≤ µ, ν ≤ 1.

For later use, we further introduce the bounded linear operators,

(2.8a)
ϕ
(
tA(v)

)
=

1
t

∫ t

0

e(t−τ)A(v) dτ, t > 0, ϕ
(
tA(v)

)
= I, t = 0,

ψ
(
tA(v)

)
=

1
t2

∫ t

0

τe(t−τ)A(v) dτ, t > 0, ψ
(
tA(v)

)
=

1
2

I, t = 0,
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which are related to the analytic semigroup. Moreover, with the help of the integral
formula of Cauchy, the validity of the relation

ψ
(
tA(v)

)
− 1/2 ϕ

(
tA(v)

)
= tA(v)χ

(
tA(v)

)
with a bounded linear operator χ

(
tA(v)

)
follows. More precisely, as a direct con-

sequence of the defining relations and (2.6), we obtain the estimate∥∥tν−µϕ
(
tA(v)

)∥∥
Xν←Xµ

+
∥∥tν−µψ

(
tA(v)

)∥∥
Xν←Xµ

+
∥∥χ

(
tA(v)

)∥∥
Xµ←Xµ

≤ M, 0 ≤ t ≤ T, 0 ≤ µ ≤ ν ≤ 1,
(2.8b)

with a constant M > 0.
We close this subsection with some useful abbreviations. In the rest of the paper,

the closed ball in Xµ with radius  > 0 and center v∗ ∈ Xµ is denoted by

(2.9) Bµ(v∗, ) =
{
v ∈ Xµ : ‖v − v∗‖Xµ

≤ 
}
⊂ Xµ.

Further, for a family f = (fn)0≤n≤N of bounded maps fn : In ⊂ R → Xµ or for a
sequence g = (gn)0≤n≤N in Xµ, we set

(2.10)

∥∥f
∥∥

Xµ,∞ = max
0≤n≤N

∥∥fn

∥∥
Xµ,∞,

∥∥fn

∥∥
Xµ,∞ = max

t∈In

∥∥fn(t)
∥∥

Xµ
,∥∥g

∥∥
Xµ,∞ = max

0≤n≤N

∥∥gn

∥∥
Xµ

.

2.2. Applications. The following initial boundary value problem can be cast into
the abstract setting of Subsection 2.1; see also [13].

Example 2.3. Let Ω be an open and bounded domain in Rd with regular bound-
ary ∂Ω. We consider the following partial differential equation for a real-valued
function U : Ω × [0, T ] → R : (x, t) = (x1, x2, . . . , xd, t) → U(x, t)

(2.11a) ∂tU(x, t) = A
(
U(x, t)

)
U(x, t), x ∈ Ω, 0 < t ≤ T,

subject to a homogeneous Dirichlet boundary condition and an initial condition

(2.11b) U(x, t) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T, U(x, 0) = U0(x), x ∈ Ω.

Here, for v ∈ C1(Ω) and w ∈ C2(Ω) the second-order differential operator A is
defined through

(2.12) A
(
v(x)

)
w(x) =

d∑
i,j=1

aij

(
x, v(x),∇v(x)

)
∂xixj

w(x), x ∈ Ω.

We suppose that the real-valued coefficients aij , which are defined on an open do-
main Ω×Λ ⊂ Rd×R×Rd, satisfy suitable regularity and boundedness assumptions,
and we further impose the ellipticity condition

d∑
i,j=1

aij(x, p, q) ξiξj ≥ κ
d∑

i=1

ξ2
i , (x, p, q) ∈ Ω × Λ, ξ ∈ R

d,

for some κ > 0.
By suppressing the spatial variable, the initial boundary value problem (2.11)

takes the form of an abstract initial value problem (1.1) on the Banach space

X = Lp(Ω), d < p < ∞.
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More precisely, we set
(
u(t)

)
(x) = U(x, t) and define the linear operator A(v)

through
(
A(v)w

)
(x) = A

(
v(x)

)
w(x). Then, by choosing

D = W 2,p(Ω) ∩ W 1,p
0 (Ω), V = Xγ , 1/2 + d (2p)−1 < γ < 1,

it follows that Hypothesis 2.1 is satisfied with ϑ = 0. In particular, due to the
imbedding Xγ ⊂ C1(Ω), the linear operator A(v) : D → X is well defined for
elements v ∈ Xγ ; see [15, Section 1.6]. If the coefficients of the differential operator
do not depend on the derivative, the less restrictive condition d (2p)−1 < γ < 1
follows.

The following illustration describes the movement of a fluid of variable density
through a porous medium under the influence of gravity and hydrodynamic disper-
sion. It is shown in Clément et al. [9] that the specified system of elliptic-parabolic
partial differential equations when reformulated as an abstract evolution equation
on a suitably chosen Banach space leads to a quasi-linear parabolic problem.

Example 2.4. Let Ω ⊂ R2 be a rectangle or an open and bounded domain in R2

with regular boundary ∂Ω. Elements x = (x1, x2)T ∈ R
2 are meanwhile interpreted

as columns. We consider a system of elliptic-parabolic partial differential equations
for functions U, V : Ω × [0, T ] → R : (x, t) → U(x, t)

(2.13a)

{
−∆V (x, t) = ∂x1U(x, t),
∂tU(x, t) + divF (x, t) = 0,

x ∈ ∂Ω, 0 < t ≤ T,

with map F = (F1, F2)T : Ω × [0, T ] → R2 defined by

(2.13b) F (x, t) = curlV (x, t) U(x, t) − D
(
curl V (x, t)

)
∇U(x, t).

Here, we set curl V = (−∂x2V, ∂x1V )T and further employ the standard notations
∇U = (∂x1U, ∂x2U)T , ∆V = ∂2

x1
V + ∂2

x2
V , and divF = ∂x1F1 + ∂x2F2. The

system (2.13a) is subject to the boundary conditions

(2.13c) V (x, t) = 0, νT F (x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,

where ν = (ν1, ν2)T is the outward normal unit vector on ∂Ω. Moreover, we impose
a certain initial condition U(x, 0) = U0(x) for x ∈ Ω. Specifically, the real-valued
functions Dij : R2 → R : q → D(q) that define the hydrodynamic dispersion matrix
D(q) =

(
Dij(q)

)
1≤i,j≤2

are given by

(2.13d) Dij(q) =

⎧⎨⎩
(
c1 + c2

√
q2
1 + q2

2

)
δij + c3

qiqj√
q2
1+q2

2

, if q = 0,

c1δij , if q = 0.

The positive constants c1, c2, and c3 involve certain characteristic quantities such
as the transversal and longitudinal dispersion length, the molecular diffusion coef-
ficient, as well as the tortuosity and porosity of the medium. As usual, δij denotes
the Kronecker symbol. In particular, the ellipticity condition

2∑
i,j=1

Dij(q) ξiξj ≥ κ
(
ξ2
1 + ξ2

2

)
, q ∈ R

2, ξ ∈ R
d,

holds for some κ > 0.
Using the well-known result that the differential operator −∆ subject to a ho-

mogeneous Dirichlet boundary condition is invertible in Lp(Ω), we express the
solution V of (2.13a) in terms of U . That is, denoting the inverse operator by
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(−∆|γ)−1, we get the relation V = (−∆|γ)−1∂x1U . Furthermore, by introducing
the solution-dependent coefficients ai and aij , 1 ≤ i, j ≤ 2, such that

− curlV (x, t) = − curl
(
(−∆|γ)−1∂x1U(x, t)

)
=

(
a1

(
U(x, t)

)
a2

(
U(x, t)

)) ,

D
(
curl V (x, t)

)
=

(
a11

(
U(x, t)

)
a12

(
U(x, t)

)
a21

(
U(x, t)

)
a22

(
U(x, t)

)) ,

problem (2.13) takes the form

(2.14a) ∂tU(x, t) = A
(
U(x, t)

)
U(x, t), x ∈ Ω, 0 < t ≤ T,

with differential operator A given by

A
(
U(x, t)

)
U(x, t) =

2∑
i=1

∂xi
ai

(
U(x, t)

)
U(x, t)

+
2∑

i,j=1

∂xi
aij

(
U(x, t)

)
∂xj

U(x, t).

(2.14b)

In addition, the solution U fulfills the boundary condition

(2.14c)
2∑

i=1

νiai

(
U(x, t)

)
U(x, t) +

2∑
i,j=1

νiaij

(
U(x, t)

)
∂xj

U(x, t) = 0

for x ∈ ∂Ω and 0 < t ≤ T as well as the initial condition U(x, 0) = U0(x) for x ∈ Ω.
In order to cast this parabolic initial boundary value problem into our abstract

framework, we set

Y = W 1,p′
(Ω), X = Y ′, D = W 1,p(Ω),

for 2 < p < ∞ and 1/p′ = 1 − 1/p. Besides, we define A(u)u for u ∈ D through

(2.15)
〈
A(u)u, v

〉
=

2∑
i=1

〈
∂xi

v, ai(u)u
〉

+
2∑

i,j=1

〈
∂xi

v, aij(u)∂xj
u
〉
, v ∈ Y,

where we employ the standard notation〈
f, g

〉
=

∫
Ω

f(x)g(x) dx, f ∈ Lp(Ω), g ∈ Lp′
(Ω).

In (2.15), due to the imbedding W 1,p(Ω) ⊂ C
(
Ω

)
, the coefficients ai(u) and aij(u)

are defined pointwise on the closure of Ω. The investigations in [9] imply that
the operator family A : V → L(D, X) satisfies Hypothesis 2.1 with V = Xγ for
1/2 + 1/p < γ < 1 and ϑ = 0.

3. Magnus-type integrator

In the rest of this paper, we specify the numerical scheme for the time discreti-
sation of quasi-linear parabolic problems.

Henceforth, for integers n ≥ 0 let tn = nh be the grid points associated with
a constant stepsize h > 0. The numerical approximation un+1 to the value of the
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exact solution of the abstract initial value problem (1.1) at time tn+1 is determined
through the recurrence formula

(3.1)
Un1 = eh/2 Anun, An = A(un),

un+1 = ehAn1un, An1 = A
(
Un1

)
, n ≥ 0.

Here, similarly as for Runge–Kutta methods, the numerical solution un+1 is com-
puted by means of an additional internal stage Un1, which is a first-order approxi-
mation to the exact solution value at the midpoint tn1 = tn + h/2.

Provided that the exponential is available, the benefits of the Magnus-type in-
tegrator (3.1) are its explicitness and favourable stability properties. Namely, the
utilisation of exponentials instead of rational functions enhances the stability prop-
erties of the integrator. In this respect, we refer to González & Palencia [13] where
the stability and convergence behaviour of Runge–Kutta time discretisations for
quasi-linear parabolic problems is studied. However, in [13] the requirement of
strong A(θ)-stability implies that the Runge–Kutta method is implicit.

In the nonstiff case, by employing Taylor series expansions, it is straightforward
to prove that the numerical method (3.1) has classical order two. In the situation
where (1.1) constitutes an abstract quasi-linear parabolic problem on a Banach
space, its convergence behaviour is analysed in Section 5.

Remark 3.1. We note that the solution of (3.1) remains well defined in Xβ ∩ V for
any γ < β ≤ 1. Namely, whenever un lies in Xβ ∩ V it follows from (2.6) that Un1

is bounded in Xβ ∥∥Un1

∥∥
Xβ

≤ M‖un‖Xβ
.

On the other hand, for h > 0 sufficiently small it holds∥∥Un1 − un

∥∥
Xγ

≤
∥∥eh/2 An − I

∥∥
Xγ←Xβ

‖un‖Xβ
≤ Mhβ−γ‖un‖Xβ

≤ ,

that is, the internal stage Un1 is contained in a ball Bγ(un, ) ⊂ Xγ and thus
in V for suitably chosen  > 0; see also (2.7) and (2.9). In particular, it follows
Un1 ∈ Xβ ∩ V , and therefore the sectorial operator A(Un1) is well defined. Now,
similar considerations to before show that also un+1 belongs to Xβ ∩ V .

For a family (Fi)i≥0 of noncommutative operators on a Banach space, we employ
the product notation

n∏
i=m

Fi = FnFn−1 · · ·Fm, n ≥ m,

n∏
i=m

Fi = I, n < m.

As a consequence, by solving the recursion for the numerical solution in (3.1), we
get the relation

un+1 =
n∏

i=0

ehAi1u0 = ehAn1ehAn−1,1 · · · ehA01u0, n ≥ 0.

Our first objective is to study the stability behaviour of this numerical approxima-
tion. This is done in Section 4.
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4. Stability

In this section, we analyse the stability behaviour of the numerical method (3.1);
that is, we study the dependence of the numerical approximation on the initial value
and the effect of additional perturbations. Several auxiliary estimates are collected
in Subsection 4.2.

4.1. Stability result. For the following considerations we employ the assumptions
and notation introduced in the previous Sections 2 and 3. In particular, we denote
by 0 ≤ γ < 1 and 0 ≤ ϑ < 1 the constants specified in Hypothesis 2.1. Further, in
view of Example 2.3 and the discussion in Subsection 6.2, it is senseful to suppose
ϑ ≤ γ.

Henceforth, we fix γ < β ≤ 1 and u0 ∈ Xβ. According to our numerical
scheme (3.1) for initial values v0, w0 ∈ Xβ and additional perturbations pn, qn ∈ Xβ

for n ≥ 1, we consider the recursions

(4.1)
vn+1 = ehA(Vn1)vn + hpn+1, Vn1 = eh/2 A(vn)vn,

wn+1 = ehA(Wn1)wn + hqn+1, Wn1 = eh/2 A(wn)wn, n ≥ 0.

We note that similar considerations as in Remark 3.1 imply that Vn1 and vn+1

belong to Xβ ∩ V provided that vn ∈ Xβ ∩ V , pn+1 ∈ Xβ is bounded, and h > 0 is
sufficiently small. The analogue is valid for wn+1.

Furthermore, the following result shows that these recurrence formulas remain
bounded in Xβ. Especially, it follows that the Magnus-type integrator (3.1) starting
from u0 ∈ Xβ ∩ V is applicable up to time T .

Theorem 4.1 (Stability). Suppose that Hypothesis 2.1 is fulfilled with ϑ > 0. For
γ < β ≤ 1 let v0 ∈ Xβ∩V and w0 ∈ Xβ∩V and assume that pn and qn are bounded
in Xβ for n ≥ 1. Then, for h > 0 chosen sufficiently small the solutions of (4.1)
satisfy the bound

‖vn − wn‖Xβ
≤ C

(
‖v0 − w0‖Xβ

+ max
1≤j≤n

‖pj − qj‖Xβ

)
, 0 ≤ nh ≤ T,

with constant C > 0 not depending on n and h.

Proof. Our proof is based on a fixed-point iteration based on a global representation
of the solutions in (4.1). For this purpose, we introduce several notations.

For the following, we choose u0 ∈ Xβ and fix γ < ζ < β and 0 < α < β − ζ. For
constants  > 0 and L̃ > 0 we set

Z =
{
z = (zn)0≤nh≤T : z0 ∈ Bβ(u0, ) ∩ V, zn ∈ Xζ ∩ V for n ≥ 1

and nh ≤ T, ‖zn − zm‖Xζ
≤ L̃(tn − tm)α for 0 ≤ mh ≤ nh ≤ T

}
.

(4.2)

In particular, for z∗ ∈ Bβ(u0, ) ∩ V , we denote Zz∗ =
{
z ∈ Z : z0 = z∗

}
. Note

that the sequence spaces Z and Zz∗ are complete metric spaces with the distance
induced by the maximum norm

‖z‖Xζ ,∞ = max
0≤nh≤T

‖zn‖Xζ
;

see also (2.10). Besides, for some σ > 0, we introduce the set

S =
{
s = (sn)h≤nh≤T : sn ∈ Bβ(0, σ) for n ≥ 1 and nh ≤ T

}
.
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For z ∈ Z, according to relation (4.1), we denote by Z1(z) =
(
Zn1(z)

)
n≥0

the
sequence defined through

(4.3a) Zn1(z) = eh/2 A(zn)zn, n ≥ 0.

Moreover, we introduce a family of linear operators L(z) =
(
Ln

m(z)
)
n≥m≥0

depend-
ing on the sequence Z1 and thus on z

(4.3b) Ln
m(z) =

n∏
i=m

ehA(Zi1(z)), 0 ≤ m ≤ n.

For the following, we fix z∗ ∈ Xβ ∩ V and s ∈ S and let

(4.3c)

N : Zz∗ −→ Zz∗ : z �−→ N (z) = N(z, s) =
(
Nn(z, s)

)
0≤nh≤T

,

N0(z, s) = z∗, Nn(z, s) = Ln−1
0 (z)z∗ + h

n−1∑
j=0

Ln−1
j+1 (z)sj+1, n ≥ 1.

Clearly, a sequence z ∈ Zz∗ that is a fixed point of the nonlinear operator N , i.e.,
z satisfies the relation z = N (z), also fulfills the recurrence formula

(4.4) zn+1 = ehA(Zn1)zn + hsn+1, Zn1 = eh/2 A(zn)zn, n ≥ 0,

with initial value z0 = z∗.
We next prove the unique solvability of the fixed-point equation z = N (z) and

the continuous dependence of the fixed point on the initial value and additional
perturbations. Several auxiliary results needed for the following considerations are
derived in the subsequent Subsection 4.2.

(i) Let v, w ∈ Zz∗ and s ∈ S. Estimating the difference Nn(v, s)−Nn(w, s) with
the help of Lemma 4.6 and using that ‖sj+1‖ ≤ σ for 0 ≤ j ≤ n − 1 gives∥∥Nn(v, s) − Nn(w, s)

∥∥
Xζ

≤
∥∥Ln−1

0 (v) − Ln−1
0 (w)

∥∥
Xζ←Xβ

‖z∗‖Xβ

+ h
n−1∑
j=0

∥∥Ln−1
j+1 (v) − Ln−1

j+1 (w)
∥∥

Xζ←Xβ
‖sj+1‖Xβ

≤ C
(
tβ−ζ
n−1‖z∗‖Xβ

+ σh

n−2∑
j=0

(tn−1 − tj+1)β−ζ
)
‖v − w‖Xζ ,∞

≤ Ctβ−ζ
n

(
‖z∗‖Xβ

+ σtn
)
‖v − w‖Xζ ,∞.

If β = 1, an additional logarithmic term (1 + |log h |) arises. Thus, for 0 < tn ≤ T
and h > 0 small enough the mapping N is contractive; that is, the estimate∥∥N (v) −N (w)

∥∥
Xζ ,∞ ≤ κ‖v − w‖Xζ ,∞, v, w ∈ Zz∗ ,

holds with constant κ < 1.
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(ii) For any z ∈ Zz∗ and s ∈ S Lemmas 4.4 and 4.5 imply∥∥Nn(z, s) − Nm(z, s)
∥∥

Xζ
≤

∥∥Ln−1
0 (z) − Lm−1

0 (z)
∥∥

Xζ←Xβ
‖z∗‖Xβ

+ h
m−1∑
j=0

∥∥Ln−1
j+1 (z) − Lm−1

j+1 (z)
∥∥

Xζ←Xβ
‖sj+1‖Xβ

+ h

n−1∑
j=m

∥∥Ln−1
j+1 (z)

∥∥
Xζ←Xβ

‖sj+1‖Xβ

≤ C̃
(
1 + Ctαn−1

)(
‖z∗‖Xβ

(tn − tm)β−ζ + σtm−1(tn − tm)β−ζ + σ(tn−1 − tm)
)

≤ C̃
(
1 + Ctαn

)
(tn − tm)β−ζ

with constant C̃ > 0 independent of the Hölder constant L̃. This relation shows
that the constant L̃ > 0 can be chosen such that sequence N (z) belongs to Z for
T > 0 sufficiently small. Again, if β = 1, an additional logarithmis factor appears
in the estimate.

As a consequence, N is a contraction on Zz∗ . Therefore, an application of the
Banach contraction principle shows that N possesses a unique fixed point z ∈ Zz∗ .
Consequently, for any z∗ ∈ Xβ ∩ V and s ∈ S the recursion (4.4) is solvable in the
sequence space Zz∗ .

As a further consequence, we obtain the stability estimate of the theorem. As-
sume that v, w ∈ Z and p, q ∈ S fulfill the identities

v = N(v, p), w = N(w, q).

The bound in (i) together with Lemma 4.4 shows

‖v − w‖Xζ ,∞ =
∥∥N(v, p) − N(w, q)‖Xζ ,∞

≤
∥∥N(v, p) − N(w, p)‖Xζ,∞ +

∥∥N(w, p) − N(w, q)‖Xζ ,∞

≤ κ‖v − w‖Xζ ,∞ + C
(
‖v0 − w0‖Xβ

+ ‖p − q‖Xβ ,∞
)
.

Therefore, as κ < 1 we get the relation

‖v − w‖Xζ ,∞ ≤ C
(
‖v0 − w0‖Xβ

+ ‖p − q‖Xβ ,∞
)
.

Applying the above arguments together with the previous estimate finally proves
the following bound in Xβ

‖v − w‖Xβ ,∞ ≤
∥∥N(v, p) − N(w, p)‖Xβ,∞ +

∥∥N(w, p) − N(w, q)‖Xβ ,∞

≤ C‖v − w‖Xζ ,∞ + C
(
‖v0 − w0‖Xβ

+ ‖p − q‖Xβ ,∞
)

≤ C
(
‖v0 − w0‖Xβ

+ ‖p − q‖Xβ ,∞
)
,

which is the desired result.
We finally remark that the rather strong restrictions concerning the size of the

end time T > 0 can be weakened by introducing exponential weights in the maxi-
mum norm. Alternatively, combining the stability and the convergence result given
in Section 5 shows the validity of Theorem 4.1 on the whole interval of existence of
the true solution u : [0, T ] → Xβ of (1.1). �

Remark 4.2. The analogue of Theorem 4.1 is valid for any Magnus-type integrator
of the form un+1 = ehUn1un provided that the internal stages Un1 satisfy an estimate
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of the form ∥∥Un1 − Um1

∥∥
Xγ

≤ C(tn − tm)α, 0 ≤ tm ≤ tn ≤ T ;

see also Lemma 4.3.

4.2. Auxiliary estimates. In the rest of this paper, we employ the assumptions
and abbrevitations introduced in Subsection 4.1. In particular, as in the proof
of Theorem 4.1, we choose γ < ζ < β and 0 < α < β − ζ. In this subsection,
we denote by C̃ > 0 a constant that only depends on the constants that appear
in Hypothesis 2.1, but not on the Hölder constant L̃; see (4.2). Especially, the
constants C̃ > 0 and C > 0 are independent of n and h.

At first, we show that for any sequence z ∈ Z the associated sequence Z1(z)
reflects the Hölder continuity of z; see also (4.2) and (4.3a). For the moment, as
we consider a fixed sequence z ∈ Z, we omit the dependence of Z1 on z.

Lemma 4.3. Assume that Hypothesis 2.1 holds with ϑ ≥ 0. Then, for any z ∈ Z
the associated sequence Z1 =

(
Zn1

)
n≥0

defined by (4.3a) satisfies the estimate∥∥Zn1 − Zm1

∥∥
Xγ

≤ C(tn − tm)α, 0 ≤ tm ≤ tn ≤ T,

with constant C > 0.

Proof. In order to estimate the difference Zn1 − Zm1, we make use of the identity

Zn1 − Zm1 = eh/2 A(zn)(zn − zm) +
(
eh/2 A(zn) − eh/2 A(zm)

)
zm.

Due to the fact that z lies in Z, together with (2.6) it follows for 0 ≤ tm ≤ tn ≤ T∥∥eh/2 A(zn)(zn − zm)
∥∥

Xγ
≤

∥∥eh/2 A(zn)
∥∥

Xγ←Xζ
‖zn − zm‖Xζ

≤ C(tn − tm)α.

On the other hand, let Γ be a path that surrounds the spectrum of the sectorial
operators A(zn) and A(zm). Then, by means of the integral formula of Cauchy, we
have the representation(

eh/2 A(zn) − eh/2 A(zm)
)
zm =

h

πi

∫
Γ

eλ
(
λI − h/2 A(zn)

)−1

×
(
A(zn) − A(zm)

)(
λI − h/2 A(zm)

)−1
zm dλ;

see also (2.5). We estimate this expression with the help of relation (2.3) and the
resolvent bound (2.4). Note further that ‖zn − zm‖Xγ

≤ K‖zn − zm‖Xζ
with some

K > 0. As a consequence, we get the estimate∥∥∥(
eh/2 A(zn) − eh/2 A(zm)

)
zm

∥∥∥
Xγ

≤ h

π

∫
Γ

∣∣eλ
∣∣∥∥∥(

λI − h/2 A(zn)
)−1

∥∥∥
Xγ←X

×
∥∥A(zn) − A(zm)

∥∥
X←D

∥∥∥(
λI − h/2 A(zm)

)−1
∥∥∥

D←Xζ

‖zm‖Xζ
|dλ|

≤ C‖zn − zm‖Xγ
‖zm‖Xζ

≤ C(tn − tm)α.

Altogether, this yields the desired result. �
As a direct consequence of (2.6) we obtain the following bound for the analytic

semigroup generated by the sectorial operator A(Zm1):

(4.5)
∥∥e(tn+1−tm)A(Zm1)

∥∥
Xν←Xµ

≤ M(tn+1 − tm)−ν+µ, 0 ≤ tm ≤ tn ≤ T,

whenever 0 ≤ µ ≤ ν ≤ 1. Lemma 4.4 below shows that the corresponding estimate
remains valid for L = L(z); see (4.3b).
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Lemma 4.4. Suppose that Hypothesis 2.1 holds with ϑ > 0. Then, for any z ∈ Z
the associated linear operator family L =

(
Ln

m

)
n≥m≥0

defined by (4.3b) fulfills∥∥Ln
m

∥∥
Xν←Xµ

≤ C̃
(
1 + C(tn+1 − tm)α

)
(tn+1 − tm)−ν+µ, 0 ≤ tm ≤ tn ≤ T,

for all 0 ≤ µ ≤ ν ≤ 1 provided that ϑ < µ + α.

Proof. Our techniques for proving Lemma 4.4 are close to that applied in [11, 26].
The basic idea is to compare Ln

m with the frozen operator
n∏

i=m

ehA(Zm1) = e(tn+1−tm)A(Zm1),

where the bound (4.5) is available. Thus, it remains to estimate the difference

(4.6a) ∆n
m = Ln

m − e(tn+1−tm)A(Zm1), 0 ≤ m < n.

From a telescopic identity, we obtain the equality

(4.6b) ∆n
m =

n−1∑
j=m+1

∆n
j+1Ξjm +

n∑
j=m+1

e(tn+1−tj+1)A(Zm1) Ξjm,

which involves the linear operator

Ξjm =
(
ehA(Zj1) − ehA(Zm1)

)
e(tj−tm)A(Zm1), j > m.

The integral formula of Cauchy yields the following representation, where the path Γ
is chosen in such a way that it surrounds the spectrum of the sectorial opera-
tors A(Zj1) and A(Zm1) (see also (2.5) and the proof of Lemma 4.3)

e(tn+1−tj+1)A(Zm1) Ξjm =
h

2πi

∫
Γ

eλ e(tn+1−tj+1)A(Zm1)
(
λI − hA(Zj1)

)−1

×
(
A(Zj1)−A(Zm1)

)(
λI−hA(Zm1)

)−1e(tj−tm)A(Zm1) dλ.

We estimate this expression by applying the resolvent bound (2.4) and further (2.6).
Due to relation (2.3) and Lemma 4.3, for m < j < n we finally get∥∥e(tn+1−tj+1)A(Zm1) Ξjm

∥∥
Xν←Xµ

≤ Ch(tn+1 − tj+1)−ν+ϑ(tj − tm)−1−ϑ+µ

×
∥∥Zj1 − Zm1

∥∥
Xγ

≤ Ch(tn+1 − tj+1)−ν+ϑ(tj − tm)−1−ϑ+µ+α, m < j < n.

Moreover, it follows that∥∥Ξnm

∥∥
Xν←Xµ

≤ Ch1−ν+ϑ(tn − tm)−1−ϑ+µ+α.

Thus, by interpreting the last sum in (4.6b) as a Riemann sum and estimating it
by the associated integral, we have

n−1∑
j=m+1

∥∥e(tn+1−tj+1)A(Zm1)Ξjm

∥∥
Xν←Xµ

≤ C(tn+1 − tm)−ν+µ+α,

provided that ϑ < µ + α. Furthermore, we make use of the relation∥∥Ξjm

∥∥
Xµ←Xµ

≤ Ch1−µ+ϑ(tj − tm)−1−ϑ+µ+α, j > m.
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First, we estimate ∆n
m as operator from Xϑ to Xν . With the help of the above

relations, due to the fact that for j > m and n > m it holds that∥∥Ξjm

∥∥
Xϑ←Xϑ

≤ Ch(tj − tm)−1+α,
∥∥Ξnm

∥∥
Xν←Xϑ

≤ Ch1−ν+ϑ(tn − tm)−1+α,

n−1∑
j=m+1

∥∥e(tn+1−tj+1)A(Zm1)Ξjm

∥∥
Xν←Xϑ

≤ C(tn+1 − tm)−ν+ϑ+α,

then we obtain the following bound:

∥∥∆n
m

∥∥
Xν←Xϑ

≤
n−1∑

j=m+1

∥∥∆n
j+1

∥∥
Xν←Xϑ

∥∥Ξjm

∥∥
Xϑ←Xϑ

+
∥∥Ξnm

∥∥
Xν←Xϑ

+
n−1∑

j=m+1

∥∥e(tn+1−tj+1)A(Zm1)Ξjm

∥∥
Xν←Xϑ

≤ Ch

n−1∑
j=m+1

∥∥∆n
j+1

∥∥
Xν←Xϑ

(tj − tm)−1+α + C(tn+1 − tm)−ν+ϑ+α.

Thus, from a Gronwall-type inequality with a weakly singular kernel (see, e.g.,
[8, 24]), it follows that∥∥∆n

m

∥∥
Xν←Xϑ

≤ Ch(tn+1 − tm)−ν+ϑ+α

with constant C > 0 possibly depending on T . Now, it is straightforward to
estimate ∆n

m as operator from Xµ to Xν∥∥∆n
m

∥∥
Xν←Xµ

≤
n−1∑

j=m+1

∥∥∆n
j+1

∥∥
Xν←Xϑ

∥∥Ξjm

∥∥
Xϑ←Xµ

+
∥∥Ξnm

∥∥
Xν←Xµ

+
n−1∑

j=m+1

∥∥e(tn+1−tj+1)A(Zm1)Ξjm

∥∥
Xν←Xµ

≤ Ch

n−1∑
j=m+1

(tn+1 − tj)−ν+ϑ+α(tj − tm)−1−ϑ+µ+α + C(tn+1 − tm)−ν+µ+α,

wherefore we finally have

(4.7)
∥∥∆n

m

∥∥
Xν←Xµ

≤ C(tn+1 − tm)−ν+µ+α.

Together with (4.5) this yields the desired result. �

Now, with the help of Lemma 4.4 we are in the position to show that L is Hölder
continuous.

Lemma 4.5. In the situation of Lemma 4.4, for z ∈ Z the associated operator
family L =

(
Ln

m

)
n≥m≥0

satisfies the estimates∥∥Ln
j (z) − Lm

j

(
z)‖Xν←Xµ

≤ C̃
(
1 + Ctαn

)
(tn − tm)−ν+µ, ν = 1,∥∥Ln

j (z) − Lm
j

(
z)‖D←Xµ

≤ C̃
(
1 + Ctαn

)(
1 + |log h |

)
(tn − tm)−1+µ,

where 0 ≤ µ, ν ≤ 1 and 0 ≤ tj ≤ tm < tn ≤ T .
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Proof. From a telescopic identity, for j ≤ m < n, we obtain

Ln
j − Lm

j =
(
Ln

m+1 − I
)
Lm

j =
n∑

i=m+1

Ln
i+1

(
ehA(Zi1) − I

)
Lm

j , j ≤ m < n.

We note that the relations in (2.8) imply∥∥ehA(Zi1) − I
∥∥

X←D
=

∥∥hA(Zi1)ϕ
(
hA(Zi1)

)∥∥
X←D

≤ Mh, 0 ≤ ti ≤ T,

see also [25], for example. Further, it holds∥∥ehA(Zi1) − I
∥∥

Xν←D
≤ Mh1−ν , 0 ≤ ti ≤ T.

Thus, by applying the bound from Lemma 4.4, for any 0 ≤ µ, ν ≤ 1, we get∥∥Ln
j − Lm

j

∥∥
Xν←Xµ

≤
n−1∑

i=m+1

∥∥Ln
i+1

∥∥
Xν←X

∥∥ehA(Zi1) − I
∥∥

X←D

∥∥Lm
j

∥∥
D←Xµ

+
∥∥ehA(Zi1) − I

∥∥
Xν←D

∥∥Lm
j

∥∥
D←Xµ

≤ C̃
(
1 + Ctαn

)
h

n−1∑
i=m+1

(tn+1 − ti+1)−ν(tm+1 − tj)−1+µ.

Therefore, interpreting the sum as a Riemann sum and estimating it by the asso-
ciated integral yields for ν = 1∥∥Ln

j − Lm
j

∥∥
Xν←Xµ

≤ C̃
(
1 + Ctαn

)
(tn+1 − tm+1)1−ν(tm+1 − tj)−1+µ

≤ C̃
(
1 + Ctαn

)
(tn − tm)−ν+µ

( n − m

m + 1 − j

)1−µ

≤ C̃
(
1 + Ctαn

)
(tn − tm)−ν+µ,

which proves the desired result. If ν = 1, the additional term
(
1 + |log h |

)
arises in

the estimate. �

In Lemma 4.6 we study the dependence of the operators Ln
m(z) on z. For that

purpose, for v = (vn)n≥0 and w = (wn)n≥0 in Z we denote by ‖v − w‖Xζ ,∞ the
maximum value of ‖vn − wn‖Xζ

for 0 ≤ nh ≤ T ; see also (2.10).

Lemma 4.6. Suppose that Hypothesis 2.1 is satisfied with ϑ > 0. Then, for se-
quences v = (vn)n≥0 ∈ Z and w = (wn)n≥0 ∈ Z the following estimates are valid
for arbitrary 0 ≤ µ ≤ ν ≤ 1 and 0 ≤ tm < tn ≤ T . If ν = 1 and µ = 0, it follows
that ∥∥Ln

m(v) − Ln
m(w)

∥∥
Xν←Xµ

≤ C(tn − tm)−ν+µ‖v − w‖Xζ ,∞,

else if ν = 1 or µ = 0, the bound∥∥Ln
m(v) − Ln

m(w)
∥∥

Xν←Xµ
≤ C(tn − tm)−ν+µ

(
1 + |log h |

)
‖v − w‖Xζ ,∞

holds.

Proof. For v = (vn)n≥0 ∈ Z and w = (wn)n≥0 ∈ Z we define the associated
sequences V1 =

(
Vn1

)
n≥0

and W1 =
(
Wn1

)
n≥0

according to (4.3a). An application
of the telescopic identity yields

Ln
m(v) − Ln

m(w) =
n∑

j=m

Ln
j+1(v)

(
ehA(Vj1) − ehA(Wj1)

)
Lj−1

m (w);
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see also the proof of the previous Lemma 4.5. We estimate Ln
m(v) − Ln

m(w) as
operator from Xµ to Xν∥∥Ln

m(v) − Ln
m(w)

∥∥
Xν←Xµ

≤
∥∥Ln

m+1(v)
∥∥

Xν←X

∥∥ehA(Vm1) − ehA(Wm1)
∥∥

X←Xµ

+
n−1∑

j=m+1

∥∥Ln
j+1(v)

∥∥
Xν←X

∥∥ehA(Vj1) − ehA(Wj1)
∥∥

X←D

∥∥Lj−1
m (w)

∥∥
D←Xµ

+
∥∥ehA(Vn1) − ehA(Wn1)

∥∥
Xν←D

∥∥Ln−1
m (w)

∥∥
D←Xµ

.

By the integral formula of Cauchy, we have the representation

ehA(Vj1) − ehA(Wj1) =
h

πi

∫
Γ

eλ
(
λI − hA(Vj1)

)−1

×
(
A(Vj1) − A(Wj1)

)(
λI − h A(Wj1)

)−1 dλ;

see also (2.5). Consequently, with the help of (2.4) and (2.6) we have∥∥ehA(Vj1) − ehA(Wj1)
∥∥

X←Xµ
≤ Chµ

∥∥A(Vj1) − A(Wj1)
∥∥

X←D
, 0 ≤ µ ≤ 1,∥∥ehA(Vj1) − ehA(Wj1)

∥∥
Xν←D

≤ Ch1−ν
∥∥A(Vj1) − A(Wj1)

∥∥
X←D

, 0 ≤ ν ≤ 1.

Hypothesis 2.1 and similar considerations as in the proof of Lemma 4.3 yield the
bound∥∥A(Vn1) − A(Wn1)

∥∥
X←D

≤ L
∥∥Vn1 − Wn1

∥∥
Xγ

= L
∥∥eh/2 A(vn)vn − eh/2 A(wn)wn

∥∥
Xγ

≤ C‖vn − wn‖Xζ
.

As a consequence, by means of Lemma 4.4 we finally have∥∥Ln
m(v) − Ln

m(w)
∥∥

Xν←Xµ
≤ C(tn − tm)−ν+µ‖v − w‖Xζ ,∞.

Here, an additional logarithmic factor arises if ν = 1 or µ = 0. This proves the
desired result. �

5. Convergence

In this section, we state a convergence result for the Magnus-type integrator (3.1)
applied to the quasi-linear problem (1.1). Our proof relies on a favourable relation
for the global error that we derive first.

5.1. Relation for error. For subsequent consideration, we employ the abbrevia-
tions introduced before in Sections 2 and 3. In particular, for a constant stepsize
h > 0, we let tn = nh and tn1 = tn+h/2, and we set An = A(un) and An1 = A

(
Un1

)
for n ≥ 0. Furthermore, we define

ϕn1 = ϕ
(
hAn1

)
, ψn1 = ψ

(
hAn1

)
, χn1 = χ

(
hAn1

)
, ψn =

(
h/2 An

)
;

see also (2.8a). Besides, it is convenient to denote the exact solution values by

ûn+1 = u(tn+1), Ûn1 = u(tn1), Ân = A
(
ûn

)
, Ân1 = A

(
Ûn1

)
.

Then, the global error of the numerical approximation and the internal stage, re-
spectively, equals

en+1 = un+1 − ûn+1, En1 = Un1 − Ûn1, n ≥ 0.
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Moreover, the discrete evolution operator is given by

(5.1) En
m =

n∏
i=m

ehAi1 , 0 ≤ m ≤ n.

In addition, we set En
m = I if n < m.

In order to represent the global error en+1 in a suitable way, we consider the
differential equation (1.1) on the subinterval [tn, tn+1], and we rewrite the right-
hand side by adding and substracting An1

u′(t) = An1u(t) + gn(t), gn(t) =
(
A

(
u(t)

)
− An1

)
u(t).

Thus, with the help of the variation-of-constants formula, a relation similar to the
second formula in (3.1), involving further the defect of the method, follows:

(5.2) ûn+1 = ehAn1 ûn + dn+1, dn+1 =
∫ h

0

e(h−τ)An1gn(tn + τ ) dτ.

By taking the difference of (3.1) and (5.2) and resolving the resulting recursion
for en+1, we finally obtain

(5.3) en+1 = En
0 e0 −

n∑
j=0

En
j+1dj+1.

For deriving a useful relation for the defects, we decompose gn as

(5.4) gn(t) = fn(t) +
(
Ân1 − An1

)
u(t), fn(t) =

(
A

(
u(t)

)
− Ân1

)
u(t).

Provided that the map A and the exact solution u satisfy suitable regularity as-
sumptions, a Taylor series expansion of fn : [tn, tn+1] → X yields

fn(tn + τ ) =
(
τ − h/2

)
f ′

n

(
tn1

)
+

(
τ − h/2

)2
∫ 1

0

(1 − σ) f ′′
n

(
tn1 + σ

(
τ − h/2

))
dσ,

and, moreover, the identity

An1 − Ân1 = An1En1, An1 =
∫ 1

0

A′(σ Un1 + (1 − σ)Ûn1

)
dσ

is valid with A′(v) : V → L(D, X) denoting the Fréchet derivative of A at v ∈ V .
Consequently, by integrating according to (5.2) and applying (2.8a), the defects
split up into dn+1 = δn+1 + θn+1 = δ

(0)
n+1 + δ

(1)
n+1 + θn+1 where

δ
(0)
n+1 = h2

(
ψn1 − 1/2 ϕn1

)
f ′

n

(
tn1

)
= h3An1χn1f

′
n

(
tn1

)
,(5.5a)

δ
(1)
n+1 =

∫ h

0

e(h−τ)An1
(
τ − h/2

)2
∫ 1

0

(1 − σ) f ′′
n

(
tn1 + σ

(
τ − h/2

))
dσ dτ,(5.5b)

θn+1 = −
∫ h

0

e(h−τ)An1An1En1u(tn + τ )dτ.(5.5c)

As the term θn+1 involves the error of the internal stage, we next derive a suitable
relation for En1. Rewriting again the right-hand side of (1.1)

u′(t) = Anu(t) + Gn(t), Gn(t) =
(
A

(
u(t)

)
− An

)
u(t),

by the variation-of-constants formula, we obtain the representation

(5.6) Ûn1 = eh/2 An ûn + Dn1, Dn1 =
∫ h/2

0

e(h/2−τ)AnGn(tn + τ ) dτ,
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and, together with the first formula in (3.1) this implies

(5.7) En1 = eh/2 Anen − Dn1.

Similarly to before, we employ a decomposition of Gn

(5.8) Gn(t) = Fn(t) +
(
Ân − An

)
u(t), Fn(t) =

(
A

(
u(t)

)
− Ân

)
u(t),

and thus obtain from a Taylor series expansion the identity

Fn(tn + τ ) = τF ′
n(tn) + τ2

∫ 1

0

(1 − σ) F ′′
n (tn + στ ) dσ,

and, on the other hand, the relation

An − Ân = Anen, An =
∫ 1

0

A′(σ un + (1 − σ)ûn

)
dσ,

follows. Consequently, determining the integral in (5.6) with the help of (2.8a),
yields the splitting Dn1 = ∆n1 + Θn1 = ∆(0)

n1 + ∆(1)
n1 + Θn1 for the defect of the

internal stage where

∆(0)
n1 = h2/4 ψnF ′

n(tn),(5.9a)

∆(1)
n1 =

∫ h/2

0

e(h/2−τ̃)An τ̃2

∫ 1

0

(1 − σ) F ′′
n

(
tn + στ̃

)
dσ dτ̃ ,(5.9b)

Θn1 = −
∫ h/2

0

e(h/2−τ̃)AnAnenu
(
tn + τ̃

)
dτ̃ .(5.9c)

Finally, we expand relation (5.3) by successively inserting formula (5.5c) for the
defect dn+1 = δn+1 + θn+1, formula (5.7), and further (5.9c) for Dn1 = ∆n1 + Θn1.
Altogether, we have the following representation for the global error

en = En−1
0 e0 +

n−1∑
j=0

En−1
j+1

∫ h

0

e(h−τ)Aj1Aj1

×
∫ h/2

0

e(h/2−τ̃)AjAj ej u
(
tj + τ̃

)
dτ̃ u

(
tj + τ̃

)
dτ̃ u(tj + τ ) dτ

+
n−1∑
j=0

En−1
j+1

∫ h

0

e(h−τ)Aj1Aj1eh/2 Aj ej u(tj + τ ) dτ

−
n−1∑
j=0

En−1
j+1 δj+1 −

n−1∑
j=0

En−1
j+1

∫ h

0

e(h−τ)Aj1Aj1∆j1u(tj + τ ) dτ,

(5.10)

where the defects δj+1 = δ
(0)
j+1 + δ

(1)
j+1 and ∆j1 = ∆(0)

j1 + ∆(1)
j1 are defined through

the formulas (5.5a)–(5.5b) and (5.9a)–(5.9b).

5.2. Error estimate. We next analyse the error behaviour of the Magnus-type
integrator (3.1) for the quasi-linear parabolic problem (1.1) and state a convergence
estimate with respect to the norm of the intermediate space Xβ where γ < β < 1.

For the derivation of Theorem 5.1, our main tools are the global representa-
tion (5.10) as well as the stability estimate of Theorem 4.1. In order to obtain
the optimal convergence order, we further make use of a refined stability bound
specified in Lemma 5.2 at the end of this subsection. Regarding the error esti-
mate it is notable that the differentiability of the functions fn and Fn introduced
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in (5.4) and (5.8) is governed by the smoothness of the exact solution u and the
operator family A (that is, the requirement that the first derivatives of fn and Fn

are bounded in Xϑ for a certain ϑ > 0) is satisfied in various applications; see also
Subsection 6.2. We finally note that the restriction β < 1 makes sense in view of
Remark 3.1; however, the statement of Theorem 5.1 remains valid for the limiting
case β = 1.

In the rest of this paper, for maps g : [0, T ] → X and Gj : [tj , tj+1] → X defined
for integers j ≥ 0, we employ the abbreviations∥∥g

∥∥
X,∞ = max

0≤t≤tn

∥∥g(t)
∥∥

X
,

∥∥G
∥∥

X,∞ = max
0≤j≤n−1

∥∥Gj

∥∥
X,∞,

where
∥∥Gj

∥∥
X,∞ = max

{∥∥Gj(t)
∥∥

X
: tj ≤ t ≤ tj+1

}
; see also (2.10).

Theorem 5.1 (Convergence). Suppose that Hypothesis 2.1 is fulfilled for constants
0 < ϑ ≤ γ < 1 and choose γ < β < 1. Assume further that the exact solution
of (1.1) is bounded in X1+ϑ and that A′(v) : V → L(X1+ϑ, Xϑ) is bounded for
every v ∈ V . Besides, we require u : [0, T ] → Xβ to be Lipschitz continuous with
respect to t. Then, for h > 0 chosen sufficiently small, the numerical method (3.1)
applied to the abstract initial value problem (1.1) satisfies the convergence estimate

∥∥un − u(tn)
∥∥

Xβ
≤ C‖u0 − u(0)‖Xβ

,

+ Ch2−β+ϑ
((

1 + |log h |
)∥∥f ′∥∥

Xϑ,∞ +
∥∥F ′∥∥

Xϑ,∞

)
+ Ch2

(∥∥f ′′∥∥
X,∞ + h1−β

∥∥F ′′∥∥
X,∞

)
, 0 ≤ tn ≤ T,

provided that the quantities on the right-hand side are well defined. The constant
C > 0 is independent of n and h.

Proof. We note that the existence of the numerical solution in Xβ is ensured by
Theorem 4.1. Thus, it remains to derive the desired convergence bound. For this
purpose, we consider relation (5.10) for the global error en and estimate it in Xβ. On
the one hand, for the error terms involving the initial values and ej , 0 ≤ j ≤ n− 1,
we thus obtain the bound∥∥e(0)

n

∥∥
Xβ

≤
∥∥En−1

0

∥∥
Xβ←Xβ

‖e0‖Xβ

+
n−1∑
j=0

∫ h

0

∫ h/2

0

∥∥En−1
j+1 e(h−τ)Aj1

∥∥
Xβ←Xϑ

∥∥Aj1

∥∥
L
(
X1+ϑ,Xϑ

)
←Xγ

×
∥∥e(h/2−τ̃)Aj

∥∥
Xγ←Xϑ

∥∥Aj

∥∥
L
(
X1+ϑ,Xϑ

)
←Xγ

∥∥ej

∥∥
Xβ

×
∥∥u

(
tj + τ̃

)∥∥
X1+ϑ

∥∥u(tj + τ )
∥∥

X1+ϑ
dτ̃ dτ

+
n−1∑
j=0

∫ h

0

∥∥En−1
j+1 e(h−τ)Aj1

∥∥
Xβ←Xϑ

∥∥Aj1

∥∥
L
(
X1+ϑ,Xϑ

)
←Xγ

×
∥∥eh/2 Aj

∥∥
Xγ←Xβ

∥∥ej

∥∥
Xβ

∥∥u(tj + τ )
∥∥

X1+ϑ
dτ.
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On the other hand, inserting the representation (5.5a) for the defects δ
(0)
n+1 yields

the following estimate for the remaining terms

∥∥e(1)
n

∥∥
Xβ

≤ h3
n−2∑
j=0

∥∥En−1
j+1 Aj1χj1

∥∥
Xβ←Xϑ

∥∥f ′
j

(
tj1

)∥∥
Xϑ

+ h2
(∥∥ψn−1,1

∥∥
Xβ←Xϑ

+ 1/2
∥∥ϕn−1,1

∥∥
Xβ←Xϑ

)∥∥f ′
n−1

(
tn−1,1

)∥∥
Xϑ

+
n−2∑
j=0

∥∥En−1
j+1

∥∥
Xβ←X

∥∥δ
(1)
j+1

∥∥
X

+
∥∥δ(1)

n

∥∥
Xβ

+
n−1∑
j=0

∫ h

0

∥∥En−1
j+1 e(h−τ)Aj1

∥∥
Xβ←Xϑ

×
∥∥Aj1

∥∥
L
(
X1+ϑ,Xϑ

)
←Xγ

∥∥∆j1

∥∥
Xβ

∥∥u(tj + τ )
∥∥

X1+ϑ
dτ.

We next apply the bounds for the analytic semigroup and the related operators
(see (2.6) and (2.8b)), as well as the stability bounds of Lemma 5.2. Note further
that for any 0 ≤ µ ≤ 1 the relation

∥∥δ
(1)
n+1

∥∥
Xµ

≤
∫ h

0

∫ 1

0

∣∣τ − h/2
∣∣2∥∥e(h−τ)An1

∥∥
Xµ←X

×
∥∥f ′′

n

(
tn1 + σ

(
τ − h/2

))∥∥
X

dσ dτ ≤ Ch3−µ
∥∥f ′′∥∥

X,∞

holds, and moreover that we have∥∥∆n1

∥∥
Xβ

≤ h2
∥∥ψn

∥∥
Xβ←Xϑ

∥∥F ′
n(tn)

∥∥
Xϑ

+
∫ h/2

0

∫ 1

0

τ̃2
∥∥e(h/2−τ̃)An

∥∥
Xβ←X

∥∥F ′′
n

(
tn + στ̃

)∥∥
X,∞dσ dτ̃

≤ Ch2−β+ϑ
∥∥F ′∥∥

Xϑ,∞ + Ch3−β
∥∥F ′′∥∥

X,∞.

Therefore, under the assumptions of the theorem it follows that∥∥en

∥∥
Xβ

≤
∥∥e(0)

n

∥∥
Xβ

+
∥∥e(1)

n

∥∥
Xβ

≤ C‖e0‖Xβ
+ Ch

n−1∑
j=0

(tn − tj)−β+ϑ
∥∥ej

∥∥
Xβ

+ C
(
h1+α

(
1 + |log h |

)∥∥f ′∥∥
Xϑ,∞

+ h2−β+ϑ
∥∥F ′∥∥

Xϑ,∞ + h2
∥∥f ′′∥∥

X,∞ + h3−β
∥∥F ′′∥∥

X,∞

)
× h

n−2∑
j=0

(tn − tj+1)−β+ϑ

+ Ch2−β+ϑ h
n−2∑
j=0

(tn − tj+1)−1
∥∥f ′∥∥

Xϑ,∞.
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As a consequence, by interpreting the sums as Riemann sums and estimating them
by the corresponding integrals we get∥∥en

∥∥
Xβ

≤ C‖e0‖Xβ
+ Ch

n−1∑
j=0

(tn − tj)−β+ϑ
∥∥ej

∥∥
Xβ

+ C min
{
h1+α, h2−β+ϑ

}(
1 + |log h |

)∥∥f ′∥∥
Xϑ,∞

+ Ch2−β+ϑ
∥∥F ′∥∥

Xϑ,∞ + Ch2
∥∥f ′′∥∥

X,∞ + Ch3−β
∥∥F ′′∥∥

X,∞.

Finally, the application of a Gronwall lemma shows∥∥en

∥∥
Xβ

≤ C‖e0‖Xβ
+ C min

{
h1+α, h2−β+ϑ

}(
1 + |log h |

)∥∥f ′∥∥
Xϑ,∞

+ Ch2−β+ϑ
∥∥F ′∥∥

Xϑ,∞ + Ch2
∥∥f ′′∥∥

X,∞ + Ch3−β
∥∥F ′′∥∥

X,∞;
(5.11)

see also the proof of Lemma 4.4.
We note that the exponent α in the bound (5.11) as it is restricted by the

condition 0 < α < β − ζ with γ < ζ < β is possibly close to 0. However, regarding
the numerical experiments of Section 6 it is essential to raise the size of α. For that
purpose, let u denote the exact solution of (1.1) started at the numerical initial
value u0 ∈ Xβ and assume that it is Lipschitz continuous on Xβ; i.e.,∥∥u(tn) − u(tm)

∥∥
Xβ

≤ C(tn − tm).

In particular, this relation holds true if the first derivative u′ is bounded in Xβ.
Consequently, due to the convergence estimate (5.11) which implies that the order
of the numerical scheme in Xβ is at least one, we have∥∥un − um

∥∥
Xβ

≤
∥∥un − u(tn)

∥∥
Xβ

+
∥∥um − u(tm)

∥∥
Xβ

+
∥∥u(tn) − u(tm)

∥∥
Xβ

≤ Ch + C(tn − tm) ≤ C(tn − tm), 0 ≤ tm ≤ tn ≤ T.

Altogether, these considerations show that we may set α = 1 in (5.11) which proves
the desired result. �

For the proof of the above convergence estimate, the following stability result is
needed. Recall the abbreviation χm1 = χ

(
hAm1

)
.

Lemma 5.2. Assume that Hypothesis 2.1 is valid with ϑ > 0. Then, the discrete
evolution operator En

m defined in (5.1) fulfills the estimates∥∥En
m

∥∥
Xβ←Xβ

+
∥∥(tn+1 − tm)β−ϑEn

m

∥∥
Xβ←Xϑ

≤ C,∥∥En
mAm1χm1

∥∥
Xβ←Xϑ

≤ Ch−1+α
(
1 + |log h |

)
(tn+1 − tm)−β+ϑ

+ Ch−β+ϑ(tn+1 − tm)−1, 0 ≤ tm ≤ tn ≤ T,

with constant C > 0 not depending on n and h.

Proof. The first estimate of Lemma 5.2 is a direct consequence of Lemma 4.4.
For proving the second bound, we correlate the discrete evolution operator with
the analytic semigroup generated by Am1. That is, similarly as in the proof of
Lemma 4.4, we make use of the identity

En
mAm1χm1 = ∆n

mAm1 χm1 + Am1 e(tn+1−tm)Am1 χm1

=
n−1∑

j=m+1

∆n
j+1 Ξ̃jm +

n∑
j=m+1

e(tn+1−tj+1)Am1 Ξ̃jm + Am1 e(tn+1−tm)Am1 χm1,
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where ∆n
m = En

m − e(tn+1−tm)Am1 and

Ξ̃jm =
(
ehAj1 − ehAm1

)
Am1 e(tj−tm)Am1χm1, j > m.

By means of the integral formula of Cauchy, we obtain the relations∥∥Ξ̃jm

∥∥
Xϑ←Xϑ

≤ Ch(tj − tm)−2+α,
∥∥Ξ̃nm

∥∥
Xβ←Xϑ

≤ Ch1−β+ϑ(tn − tm)−2+α.

Consequently, with the help of the estimate∥∥Am1 e(tn+1−tm)Am1χm1

∥∥
Xβ←Xϑ

≤ M(tn+1 − tm)−1−β+ϑ

(see also (4.5) and (2.8b)) and (4.7), we obtain∥∥En
mAm1χm1

∥∥
Xβ←Xϑ

≤
n−1∑

j=m+1

∥∥∆n
j+1

∥∥
Xβ←Xϑ

∥∥Ξ̃jm

∥∥
Xϑ←Xϑ

+
n−1∑

j=m+1

∥∥e(tn+1−tj+1)Am1
∥∥

Xβ←Xϑ

∥∥Ξ̃jm

∥∥
Xϑ←Xϑ

+
∥∥Ξ̃nm

∥∥
Xβ←Xϑ

+
∥∥Am1 e(tn+1−tm)Am1 χm1

∥∥
Xβ←Xϑ

≤ Ch

n−1∑
j=m+1

(tn+1 − tj+1)−β+ϑ+α(tj − tm)−2+α + C(tn+1 − tm)−1−β+ϑ

≤ Ch−1+α
(
1 + |log h |

)
(tn+1 − tm)−β+ϑ + C(tn+1 − tm)−1−β+ϑ,

which yields the specified estimate. �

6. Extension and numerical example

In this section, we discuss a possible extension of the Magnus-type integra-
tor (3.1) to quasi-linear equations with an additional inhomogeneity and illustrate
the theoretical convergence result by a numerical example. Throughout, we employ
the hypotheses and notation introduced in Sections 2–5.

6.1. Extension to inhomogeneous quasi-linear problems. The convergence
analysis of Section 5 easily generalises to problems with an additional inhomoge-
neous part. In view of our numerical example, we consider an abstract initial value
problem of the form

(6.1) u′(t) = A
(
u(t)

)
u(t) + b(t), 0 < t ≤ T, u(0) given,

involving a time-dependent map b : [0, T ] → X. In this case, the numerical
method (3.1) for the quasi-linear parabolic equation (1.1) is modified as follows:

(6.2)
Un1 = eh/2 Anun + h/2 ϕ

(
h/2 An

)
bn, bn = b(tn),

un+1 = ehAn1un + hϕ
(
hAn1

)
bn1, bn1 = b(tn1), n ≥ 0

(see (2.8a)). Similar considerations as in Section 5 show that the following conver-
gence result is valid with maps f̃n and F̃n defined by

(6.3) f̃n(t) = fn(t) + b(t) − bn1, F̃n(t) = Fn(t) + b(t) − bn, n ≥ 0,

provided that first and second derivatives of b are bounded in certain intermediate
spaces; see also (5.4) and (5.8).
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Theorem 6.1 (Convergence). Assume that the requirements of Theorem 5.1 are
satisfied. Then, for h > 0 chosen sufficiently small, the numerical method (6.2)
applied to the abstract initial value problem (6.1) fulfills the convergence bound∥∥un − u(tn)

∥∥
Xβ

≤ C‖u0 − u(0)‖Xβ

+ Ch2−β+ϑ
((

1 + |log h |
)∥∥f̃ ′∥∥

Xϑ,∞ +
∥∥F̃ ′∥∥

Xϑ,∞

)
+ Ch2

(∥∥f̃ ′′∥∥
X,∞ + h1−β

∥∥F̃ ′′∥∥
X,∞

)
, 0 ≤ tn ≤ T,

with constant C > 0 not depending on n and h.

6.2. Numerical example. The following application illustrates the above conver-
gence result. In order to keep the realisation simple, we restrict ourselves to a
parabolic initial boundary value problem in one space dimension.

Example 6.2. We consider a one-dimensional initial boundary value problem for
a function U : [0, 1]2 → R : (x, t) → U(x, t) comprising a quasi-linear partial
differential equation with the additional inhogoneneous part

(6.4a) ∂tU(x, t) = A
(
U(x, t)

)
U(x, t) + B(x, t), 0 < x ≤ 1, 0 < t ≤ 1,

subject to a homogeneous Dirichlet boundary condition and an initial condition

(6.4b) U(0, t) = 0 = U(1, t), 0 ≤ t ≤ 1, U(x, 0) = U0(x), 0 ≤ x ≤ 1.

For functions v ∈ C1(0, 1) and w ∈ C2(0, 1) the differential operator A is given by

(6.4c) A
(
v(x)

)
w(x) = a

(
x, v(x), ∂xv(x)

)
∂2

xw(x), 0 < x ≤ 1,

with coefficient a : R3 → R satisfying suitable regularity and boundedness assump-
tions. Specifically, for the numerical example we set

(6.4d) a(x, p, q) = 1 + p2 + c q2, c = 0, 1,

and determine the function B and the initial condition U0 such that the exact solu-
tion of (6.4) is given by U(x, t) = e−tx(1−x). Note that U fulfills the homogeneous
Dirichlet boundary condition.

We let
(
u(t)

)
(x) = U(x, t),

(
A(v)w

)
(x) = A

(
v(x)

)
w(x), and

(
b(t)

)
(x) = B(x, t).

With this notation, the initial boundary value problem (6.4) takes the form of
an initial value problem (6.1) on the Banach space X = Lp(Ω) for 1 < p < ∞
with domain of A(v) given by the function space D = W 2,p(0, 1) ∩ W 1,p

0 (0, 1).
From Example 2.3 we thus conclude that the linear operator family A : Xγ →
L(X1+ϑ, Xϑ) satisfies Hypothesis 2.1 with ϑ = 0 and constant γ restricted by the
condition c/2 + (2p)−1 < γ < 1. Furthermore, due to the fact that the domain of
A(v)2 equals

D2 = D
(
A(v)2

)
=

{
w ∈ W 4,p(0, 1) ∩ W 1,p

0 (0, 1) : ∂2
xw(x)

∣∣
x=0,1

= 0
}

and therefore does not depend on v ∈ V , the same holds true for any intermediate
space D ⊂ X1+ϑ ⊂ D

(
A(v)2

)
. Besides, A : Xγ → L

(
D2, D

)
is Lipschitz continuous

with respect to v. As a consequence, Hypothesis 2.1 remains valid for every 0 ≤
ϑ ≤ 1.

In the present situation, all requirements of Theorem 5.1 are fulfilled. Namely,
the exact solution U(x, t) and the data a(x, p, q) and B(x, t) are sufficiently regular.
Therefore, the maps f̃n and F̃n defined in (6.3) are twice differentiable in X, and,
besides, the Fréchet derivative A′(v) : Xγ → L(X1+ϑ, Xϑ) is bounded. A result
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Table 1. Numerically observed temporal convergence order in the
discrete Xβ-norm for c = 0, p = 2, β = (2p)−1 = 1/4 (left), β = 1
(right). Expected values κ1/4 ≈ 2, κ1 ≈ 1 + 1/4; see (6.5b).

h \M 50 100 150
2−2 1.8988 1.8987 1.8986
2−3 1.9021 1.9018 1.9017
2−4 1.8965 1.8959 1.8957
2−5 1.9078 1.9067 1.9064
2−6 1.9184 1.9163 1.9159
2−7 1.9291 1.9252 1.9244
2−8 1.9409 1.9333 1.9319
2−9 1.9553 1.9415 1.9388
2−10 1.9728 1.9508 1.9457

h \M 50 100 150
2−2 1.3462 1.3335 1.3293
2−3 1.2770 1.2621 1.2572
2−4 1.2987 1.2760 1.2686
2−5 1.3185 1.2847 1.2738
2−6 1.3480 1.2977 1.2817
2−7 1.3947 1.3181 1.2946
2−8 1.4679 1.3495 1.3141
2−9 1.5817 1.3977 1.3437
2−10 1.7389 1.4730 1.3889

in Grisvard [14] that characterises the intermediate spaces X ⊂ Xϑ ⊂ D implies
that any function which is spatially smooth but does not satisfy further boundary
conditions belongs to Xϑ as long as ϑ < (2p)−1; see also the discussion in [11]. That
is, the first derivatives of f̃n and F̃n are bounded in Xϑ for ϑ < (2p)−1. Moreover,
the exact solution of (6.4) lies in the intermediate space X1+ϑ if ϑ < (2p)−1 and
its first time derivative ∂tU(x, t) = −U(x, t) remains bounded in Xβ for arbitrary
0 ≤ β ≤ 1. As a consequence, according to Theorem 5.1, the expected convergence
order with respect to the norm of the Sobolev space Xβ is

(6.5a) κβ = 2 − β + ϑ, c/2 + (2p)−1 < γ < 1, ϑ < (2p)−1,

where γ < β < 1.
For the numerical example, the partial differential equation is discretised in space

by symmetric finite differences of grid length ∆x = (M + 2)−1, and, for the time
integration, we apply the numerical method (6.2) with stepsize h > 0. The numeri-
cal temporal order of convergence measured in the discrete Xβ-norm is determined

Table 2. Numerically observed temporal convergence order in the
discrete Xβ-norm for c = 0, p = 100, β = (2p)−1 = 1/200 (left),
β = 1 (right). Expected values κ1/200 ≈ 2, κ1 ≈ 1 + 1/200;
see (6.5b).

h \M 50 100 150
2−2 2.0180 2.0180 2.0180
2−3 2.0465 2.0464 2.0463
2−4 1.9818 1.9813 1.9812
2−5 1.9827 1.9819 1.9817
2−6 1.9859 1.9843 1.9840
2−7 1.9910 1.9880 1.9874
2−8 1.9968 1.9920 1.9909
2−9 2.0001 1.9965 1.9943
2−10 2.0137 2.0012 1.9978

h \M 50 100 150
2−2 1.0854 1.0661 1.0601
2−3 1.0752 1.0492 1.0408
2−4 1.0895 1.0504 1.0375
2−5 1.1184 1.0616 1.0429
2−6 1.1662 1.0831 1.0560
2−7 1.2396 1.1169 1.0775
2−8 1.3500 1.1678 1.1101
2−9 1.5106 1.2439 1.1584
2−10 1.7118 1.3572 1.2302
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Table 3. Numerically observed temporal convergence order in the
discrete Xβ-norm for c = 1, p = 2, β = 1/2 + (2p)−1 = 3/4 (left),
β = 1 (right). Expected values κ3/4 ≈ 1 + 1/2, κ1 ≈ 1 + 1/4;
see (6.5c).

h \M 50 100 150
2−2 1.5985 1.5955 1.5948
2−3 1.4579 1.4533 1.4523
2−4 1.4644 1.4568 1.4550
2−5 1.4922 1.4788 1.4756
2−6 1.5154 1.4920 1.4863
2−7 1.5474 1.5067 1.4968
2−8 1.5963 1.5263 1.5090
2−9 1.6737 1.5560 1.5261
2−10 1.7854 1.6040 1.5528

h \M 50 100 150
2−2 1.2614 1.2482 1.2438
2−3 1.2056 1.1915 1.1868
2−4 1.2529 1.2315 1.2244
2−5 1.2864 1.2546 1.2443
2−6 1.3222 1.2748 1.2599
2−7 1.3712 1.2995 1.2775
2−8 1.4432 1.3326 1.2997
2−9 1.5524 1.3802 1.3301
2−10 1.7069 1.4520 1.3741

from the numerical and exact solution values. In particular, if the differential opera-
tor involves no first derivative (i.e., c = 0 in (6.4d)) for the limiting cases β = (2p)−1

and β = 1, we expect a numerical convergence order of approximately

(6.5b) κ(2p)−1 = 2 − (2p)−1 + ϑ ≈ 2, κ1 = 1 + ϑ ≈ 1 + (2p)−1;

see (6.5a). On the other hand, for the case where c = 1, we have

(6.5c) κ1/2+(2p)−1 = 1 + 1/2− (2p)−1 + ϑ ≈ 1 + 1/2, κ1 = 1 + ϑ ≈ 1 + (2p)−1.

The results of the numerical experiment for p = 2 and p = 100 are displayed in
Tables 1–4. The numbers observed are in good agreement with the expected values.
We remark that for the chosen values of M and h the problem becomes nonstiff as
the temporal stepsize h tends to 2−10. Thus, the numerical order approaches the
classical convergence order 2.

Table 4. Numerically observed temporal convergence order in the
discrete Xβ-norm for c = 1, p = 100, β = 1/2 + (2p)−1 = 1/2 +
1/200 (left), β = 1 (right). Expected values κ1/2+1/200 ≈ 1 + 1/2,
κ1 ≈ 1 + 1/200; see (6.5c).

h \M 50 100 150
2−2 1.6447 1.6441 1.6440
2−3 1.4681 1.4669 1.4667
2−4 1.4697 1.4677 1.4673
2−5 1.4835 1.4791 1.4784
2−6 1.4858 1.4865 1.4849
2−7 1.5559 1.4946 1.4904
2−8 1.4690 1.4935 1.4951
2−9 1.5942 1.5602 1.4983
2−10 1.7540 1.4754 1.5582

h \M 50 100 150
2−2 0.9801 0.9598 0.9535
2−3 1.0091 0.9838 0.9757
2−4 1.0474 1.0102 0.9979
2−5 1.0875 1.0338 1.0161
2−6 1.1397 1.0613 1.0358
2−7 1.2132 1.0979 1.0609
2−8 1.3199 1.1488 1.0947
2−9 1.4742 1.2222 1.1423
2−10 1.6743 1.3298 1.2109
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