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STABILIZED FINITE ELEMENT METHOD BASED ON
THE CRANK-NICOLSON EXTRAPOLATION SCHEME
FOR THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS

YINNIAN HE AND WEIWEI SUN

ABSTRACT. This paper provides an error analysis for the Crank—Nicolson ex-
trapolation scheme of time discretization applied to the spatially discrete sta-
bilized finite element approximation of the two-dimensional time-dependent
Navier—Stokes problem, where the finite element space pair (Xp, Mp,) for the
approximation (u},p}) of the velocity u and the pressure p is constructed by
the low-order finite element: the Q1 — Py quadrilateral element or the P; — Py
triangle element with mesh size h. Error estimates of the numerical solution
(upr,pp) to the exact solution (u(tn),p(tn)) with t,, € (0,T] are derived.

1. INTRODUCTION

In a primitive variable formulation for solving the Stokes equations and the
Navier—Stokes equations, the importance of ensuring the compatibility of discrete
velocity and pressure by satisfying the so-called inf-sup condition is widely un-
derstood. In particular, it is well known that the simplest conforming low-order
elements, such as the P, — Py (linear velocity, constant pressure) triangular ele-
ment and the @1 — Py (bilinear velocity, constant pressure) quadrilateral element
are not stable. During the last two decades there has been a rapid development
in practical stabilization techniques for the P, — Py element and the @ — Py el-
ement for solving the Stokes problem. For this purpose a local “macroelement
condition” and some energy methods have been used. The use of such a macroele-
ment condition as a mean of verifying the (Babuska—Brezzi) inf-sup condition is a
standard technique (see, for example, Girault and Raviart [18]); the basic idea was
first introduced by Boland and Nicolaides [8], and independently by Stenberg [43].
The stabilized mixed finite element approximation under consideration is based on
the combination of the standard variational formulation of the Stokes problem and
the bilinear form including a jump operator in pressure. The discrete velocity uy
and the pressure p, are chosen from finite element subspaces X; and Mj of the
Sobolev spaces X and M defined in Section 2, related to conforming low-order el-
ements like the P — Py triangular element, or the @)1 — Py quadrilateral element,
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which do not possess the properties required by the inf-sup condition. Recently,
Kechkar and Silvester [33] [42], Kay and Silvester [32], Norburn and Silvester [30]
and Silvester and Wathen [41] pursued some interesting work on both mathemati-
cal analysis and numerical tests of locally stabilized mixed finite element methods
for the Stokes problem. Their work has also been extended to the Navier—Stokes
problem and other related problems, (see, e.g., [26] and [2I]), and some numer-
ical analysis and tests of the stabilized finite element method for the stationary
Navier—Stokes equations were provided by He et al. in [24].

The viscous incompressible Navier—Stokes equations with zero boundary condi-
tions are one of the fundamental systems modelling fluid motion. The mathematical
theory of these equations and their numerical solution are an important field of re-
search. Here our aim is to solve the following time-dependent viscous incompressible
Navier—Stokes problem:

{ up — vAu+ (u- V)u+ Vp = f, divu =0, (z,t) € Q x (0,T];

(1.1)
u(z,0) = uo(x), v € Q; u(z,t)lr =0, t €[0,T],

in a bounded two-dimensional domain with some appropriate assumptions stated
in Section 2, where u = u(z,t) = (u1(z,t), uz(x,t)) represents the velocity vector of
a viscous incompressible fluid, p = p(x,t) the pressure, f = f(x,t) the prescribed
body force, ug(z) the initial velocity, v > 0 the viscosity and T > 0 a finite time.

For the usual spatial discretization, i.e., time-continuous approximations, the
finite element space pair (X, M},) needs to satisfy some appropriate approximate
properties and the compatibility properties required by the inf-sup condition (see
Heywood and Rannacher [27]), where 0 < h < 1 is the mesh size. This means that
the finite element space pair (X, My) needs to be established by a more complex
element than the P; — Py element or the Q)1 — Py element [3], [18], [27]. We assume
that the data (ug, f) satisfy the assumption:
(A1): uy € H*(Q)? N HY(Q)? with divug = 0 and f, fi, fu € L°°(0,T;L*(Q)?)
with

l[uoll2 + tes[%pT]{Hf(t)Ho + e @®)llo + [f2e@)llo} < oo

Then the spatial discrete solution (up(t),pr(t)) satisfies the error following esti-
mates [27]:

[u(t) —un(@®)llo + hllut) —un(®)lls + ka2 (E)|p(t) — pr(t)llo
(1.2) < kR, 0<t<T,

where o(t) = min{1,t} and x > 0 is a general constant depending on the data
(v, Q,up, f,T) which may have different values at its different occurrences. For
fully discrete approximations, the discrete solution (u},p}y) based on the Crank-
Nicolson scheme, in which the viscous term and the nonlinear term are discretized
implicitly, satisfies the error estimates [2§]

(13)  oltwm)llun(tn) —uillo < w7%  0®2(tw)llpa(tm) —pi'llo < w7,

for all ¢, = mr € (0,T], where 7 < K¢ is the time step size, and kg some fixed
value depending on the data (v, Q, ug, f,T).

It is noted that the factors o*(t,,) with s = %, 1, 2 that appeared in (L2)-(L3)
are due to the nonsmoothness of the time derivatives of the velocity u and pressure
patt=0.
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For the usual time discretization, i.e., spatial-continuous approximations, Shen
[40] proposed a second-order projection scheme, in which the viscous term and the
nonlinear term are treated implicitly and the pressure term explicitly. Guermond
and Shen [I9] studied a velocity-correction projection scheme for the linearized
Navier—Stokes equations. The semi-discrete solution (u™,p™) satisfies the error
estimates

m
(r Y Nulta) =) < w72 Jlu(tn) —u™ o < w72,
n=no

(1.4) [u(tm) —u™ v+ |[p(tm) = p™[lo < &7,

for all t,,, = m7 € (tn,, ] under the assumption (A1), where 0 < ¢,, < T is a fixed
time.

Moreover, a second-order time characteristics and a spatial discretization of the
Py, — Py finite element type for the Navier—-Stokes equations in the d-dimensional
domain was presented by Boukir, Maday, Métivet and Razafindrakoto [9], and the
H'-error estimate is given by

m
(15) (7> Ip(ta) = PRI + Jultm) —uitls < £(F> +BF 4 BFH),

n=1

for all t,, = m7 € (t,,,T] under some stronger regularity assumption of the exact
solution (u(t), p(t)) and the stability condition Th=%% < kg with d = 2, 3.

For simplicity of notation, we confine our attention to the Q1 — Py quadrilateral
element and the P, — P triangle element. Let 7, be a partition (triangles or
quadrilaterals) of 2 with mesh size h, assumed to be uniformly regular in the usual
sense. Here the finite element space pair (X}, M},) does not posses the compatibility
properties required by the inf-sup condition. An earlier paper [26] dealt mainly
with spatial discretization (time continuous approximations) and a later paper [21]
studied a fully discrete stabilized finite element approximation, in which time is
discretized by the backward Euler semi-implicit scheme with the time step 0 < 7 <
1.

Assume that the initial velocity ug € Hg(Q)? with divug = 0 and f, f; €
L>(0,T; L?(2)?), He et al. [25] have proved that the spatial discrete solution (uy, (t),
phr(t)) satisfies the error estimates [26]

o PW)u(t) —un®)llo + o' 2(@)ut) —un(t)lls + ho (t)|Ip(t) — pa(t)llo
(1.6) < KR, 0<t<T,

while the fully discrete solution (u}, pjt) based on the backward Euler semi-implicit
scheme satisfies the error estimates

12 (tm) |[ultm) — ufllo
(1L7) o2 (tm)ultim) — wi 1 + o (tm)llpn(tm) = pillo

(see He [21]) for all t,, = m7 € (0,T] and 7|log h|'/? < k.

This paper continues our analysis of the stabilized mixed finite element method
based on the @1 — Py quadrilateral element and the P, — Py triangle element [26,
21] for solving the two-dimensional time-dependent Navier—Stokes equations with
respect to the data (ug, f) satisfying the assumption (A1). We consider the second
order fully discrete scheme based on the Crank—Nicolson extrapolation scheme in

k(h? +7),

<
< k(h+7?),
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which we use an implicit scheme for the viscous and pressure terms and a semi-
implicit scheme for the nonlinear term. The discrete solution (u},p}) satisfies the
error estimates

(1.8)  Ju(tm) — up'llo K(h2 + 73/2),
(L9) Jultm) =l < (h+7Y), 02 (t)B(tm) — BYllo < k(b + 74,

for all t,, € (0,7, where I, = {t,,}}' is a given set in the interval [0, T] with a time
step size T = maxi<m<n (tm — tm—1), and

<
<

1

P = R+ 2, i) = g (p(tn) + pltm ).

The contents of this paper are divided into sections as follows. In Section 2, the
abstract functional setting of the Navier—Stokes problem is given with some basic
statements. Stabilized finite element approximations are recalled in Section 3. Some
key technical lemmas and known results are provided in Section 4. The fully discrete
stabilized finite element method with the Crank—Nicolson extrapolation scheme and
the corresponding fully discrete duality problem are considered in section Section
5. The L?- and H'-error estimates for the discrete velocity and L2-error estimate
for the discrete pressure are derived in Section 6.

2. FUNCTIONAL SETTING OF THE NAVIER—STOKES PROBLEM

For the mathematical setting of problem (1)), first we introduce the Hilbert
spaces

X = H}(Q)?, Y =L*Q)? M:Lg(Q):{qeLQ(Q);/qux:o}.

The spaces L?(Q)™,m = 1,2,4, are endowed with the L?-scalar product and L2-
norm denoted by (+,) and |- ||o. The space X is equipped with its equivalent scalar
product (Vu, Vv) and norm |u|; = ||Vullp. Next, let the closed subset V' of X be
given by
V ={v e X;divv =0},
and denote by H the closed subset of Y7 i.e.,
H={veY;divv=0,v-n|sq = 0}.

We refer the readers to [1l 2] [6] [7, 18 27 [45] for more detail on these spaces.
We also denote the Laplace operator by A = —A and denote the Stokes operator
by A = —PA, where P is the L?-orthogonal projection of Y onto H.

As mentioned above, we need a further assumption on 2:

(A2) Assume that Q is smooth so that the unique solution (v,q) € (X, M) of the
steady Stokes problem

—Av+Vg=g,divo =0 in Q, v|pg =0,
for prescribed g € Y exists and satisfies

[oll2 + llglls < ellgllo,

where ¢ > 0 is a generic constant depending on 2 and v which may stand for a
different value at its different occurrences, and || - ||; denotes the usual norm of
Sobolev spaces H*(2)™; i =0,1,2, m=1,2,4.
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We remark that the validity of assumption (A2) is known (see [I8, 27, BT 30} [45])
if 9Q is of C2, or if Q is a two-dimensional convex polygon. From assumption (A2),
it is known [I], 27, [34] that
(2.1) (|40 < 3 < el Avflg, v e HX(Q) NV,

22)  folls < olel ve X, foh < vollolls < cllAvlo, v € HAQ)? X,
where 7 is positive constant depending only on €.

We define the continuous bilinear forms a(-,-) and d(-,-) on X x X and X x M,
respectively, by

a(u,v) = v(Vu, Vo), u,v € X,
d(v,q) = —(v,Vq) = (q,divv), v € X,q € M,
and a trilinear form on X x X x X by

blu,v,w) = ((u-V)v,w)+ %((divu)v,w)
1 1
= 5((U'V)U,w)—§((u-V)w,v), Yu,v,w € X.

With the above notations, the variational formulation of problem (LI]) reads as
follows. Find (u,p) € (X, M), t € (0,T] such that for all (v,q) € (X, M),

(23) (Ut, v) + a(ua v) - d(vap) + d(uv Q) + b(ua U, ’U) - (fa U)v
(2.4) u(0) = wuo.

A simple modification to the regularity argument given in [29, 27] allows us to
obtain the following regularity results.

Theorem 2.1. Assume that assumptions (A1) and (A2) are valid. Then the
problem 23)—-24) admits a unique solution (u,p) satisfying the regularity results

(2.5) lu()II3 + @) + lue (@)1 +/ luelids < &,
0
(2.6) o (t)ue ()3 +/ o (8) (lueell§ + lluell3 + llpelIF)ds < s,
0
27) PO Uue®I3 + IpeONF + luee ()11 +/O o (s)[luee|7ds < ,

t
(2.8) o () [uee (8)13 +/ 7 (s) (luseell5 + ueell3 + [[pee[)ds <,
0
for allt €10,T].
3. STABILIZED FINITE ELEMENT APPROXIMATION

Let h > 0 be a real positive parameter. The finite element subspace (X, Mp,)
of (X, M) is characterized by 7, = 75,(£2), a partitioning of Q into triangles K or
quadrilaterals K, assumed to be uniformly regular as h — 0. For further details, the
reader can refer to Ciarlet [13] and Girault and Raviart [I§]. The mesh parameter
h is given by h = max {hk}, and the set of all interelement boundaries will be
denoted by T'y.

Finite element subspaces of interest in this paper are defined by setting

{ Py (K) if K is triangular,

(3.1) Ri(K) = . . .
Q1 (K) if K is quadrilateral,
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giving the continuous piecewise (bi)linear velocity subspace
X, ={velC’(D)’NX; vlxk € Ri(K), i=1,2, K €},
and the piecewise constant pressure subspace
My ={q€ M; qlx € Po(K), K € 7}

Note that neither of these methods are stable in the standard Babuska—Brezzi
sense; the P — Py triangle “locks” on regular grids (since there are more discrete
incompressibility constraints than velocity degrees of freedom), and the Q1 — Py
quadrilateral is one example of unstable mixed methods, as elucidated by Sani et
al. in [38].

In order to define a locally stabilized formulation of the time-dependent Navier—
Stokes problem, we introduce a macroelement partitioning A, as follows. Given
any subdivision 73, a macroelement partitioning Aj;, may be defined such that each
macroelement I is a connected set of adjoining elements from 7;,. Every element
K must lie in exactly one macroelement, which implies that macroelements do not
overlap. For each /C, the set of interelement edges which are strictly in the interior
of I will be denoted by I'ic. The length of edge e € ' is denoted by h,.

With these additional definitions a locally stabilized discrete formulation of the
problem ([Z3)—(24]) can be stated as follows.

Definition 3.1. Locally Stabilized Formulation. Find (up,pn) € (Xp, Mpy)
such that for all ¢ € (0,T] and (vp, gp) € (Xn, My),

(3.2) (unt, vn) + Br((un: pr); (vns an)) + b(un, un,vn) = (f, ),

(3.3) uh(O) = UQh,

where ugp, € X}, is an approximation of ug and

B ((un; pn); (v, qn)) = B((un, pn); (Vn, an)) + BCh(pn, an),
for all (up, pn), (vn,qn) € (Xn, Mp), here

B((U,p); (an)) = a(ua ’U) - d(’l),p) + d(ua Q) V(U,p), (va Q) € (Xa M),

Cp.a) = > 3 e [Iolelalds

KeAy, eel'c o

for all p, ¢ in the algebraic sum H'(Q)+ My, []. is the jump operator across e € I'c
and (> 0 is the local stabilization parameter.

A general framework for analyzing the locally stabilized formulation (2)—(33)
can be developed using the notion of an equivalent class of macroelements. As in
Stenberg [43], each equivalence class, denoted by £, contains macroelements which
are topologically equivalent to a reference macroelement K. To illustrate the idea,
two practical examples of locally stabilized mixed approximations are given below.

Example 3.1. The first example is the standard @)1 — Py approximation pair. A
locally stabilized formulation B2)—-@3) can be constructed in this case, if 73, is
such that the elements K can be grouped into 2 x 2 macroelements

K:{Kla KQ; K37 K4}a
with the reference macroelement
K ={K,, K, K3, K4}
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An obvious way of constructing such a partitioning in practice is to form the grid
7, by uniformly refining a coarse grid Ay, such as by joining the midedge points.

Example 3.2. The triangular P; — Py approximation pair can be stabilized sim-
ilarly if the partitioning 75, is constructed such that the elements can be grouped
into disjoint macroelements, all consisting of four elements.

The following properties are classical (see [7, [13] [47, [4]]):

(34) |’Uh|1 < Ch71|‘vh||0, vp € Xp.

The following stability results of this mixed method for the macroelement partitions
defined above were formally established by Kay and Silvester [32] and Kechkar and
Silvester [33].

Theorem 3.2. Given a stabilization parameter 8 > By > 0, suppose that every
macroelement K € Ay belongs to one of the equivalence classes E., and that the
following macroelement connectivity condition is valid: for any two neighboring
macroelements K1 and ICo with meKz ds # 0 there exists v € X}, such that

(3.5) supp v C K1 UKe  and / v-nds # 0.
KinKo
Then,
(3.6) [Ch(p,q)l <c Y (/ (Ilpll3 + h2|\VPH(2J)d$)1/2(/K(||Q||3 + 12| Vql[5)d) /2,
Kery

for all p, g € HY(Q) + My, and

37 alusls + lpalo) s swp  Delmpn)i(nan)
(vh,qn)E(Xn,Mp) HUhH + |Qh|

for all (up,pr) € (Xn, My), and
(3.8) Cr(psan) = 0, Culpn,q) =0, Cu(p,q) =0, Vp, ¢ € H'(Q), pn, qn € M,

where a > 0 is a constant independent of h and 3, and [y is some fized positive
constant and n is the unit outward normal vector.

4. TECHNICAL PRELIMINARIES

This section considers preliminary estimates which will be very useful in error
estimates of the finite element solution (up, pp).

With the statements in Section 3, a discrete analogue A, = —Aj, of the Laplacian
operator A = —A is defined through the condition that (—Apup,vn) = ((up,vp)) for
all up,vn, € Xp. The operator Ay, @ X;— X, is invertible, with its inverse denoted
A,:l. Since A;l is self-adjoint and positive definite, we may define “discrete”
Sobolev norms on X}, of any order r € R, by setting

r/2

|vn|r = HAh vpllo, Vo € Xp.

These norms will be assumed to have various properties similar to their continuous
counterparts, an assumption that implicitly imposes conditions on the structure of
the spaces Xj and Mp. In particular, it holds that

lvrlo = llvnllo, lol1 = || Vorllo, lunl2 = || Anvrllo, Yun € Xi.
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By the way, we derive from (2.2) that
(4.1) lvallo < 0llVonllo,  [IVunllo < yollAnvnllo, Von € Vi,

where vy > 0 is a constant depending only on €.
Moreover, we define the discrete gradient operator Vy, for g, € M}, as

(Vn, Vagn) = —d(vn, qn), Yon € Xp.

Now, by using a slightly modified argument on the estimates of the trilinear form
b provided in [2T], 22] 23] 27, 28, [29], we can obtain the following results on b.

Lemma 4.1. The trilinear form b satisfies the estimates

(42) b(uh,vh,wh) = —b(uh,vh,wh),

(4.3) b(un, v, wn)| + [b(VR, wn, wi)| A+ [b(wh, Un, vy

Co 1/2 1/2 1/2 1/2
< 5 lunllo” unly on 1 lfwnllg* wn s’

Co 1/2 1/2 1/2 1/2
5wl fenlly* ony wn g feon ]y,

(4.4) |b(un, v, wr)| + |0(vh, up, wp)| + |0(wh, un, vp)]
Co 1/2 1/2 1/2 1/2
< Sl Awenlly*llon I3 g a1y leon o

Co 1/2 1/2
+ 5 IAnonllo” lonllg* lunllseon o,

for all up, vy, wy € Xy, where ¢y > 0 is a constant depending only on 2.

In order to derive the error estimates of the finite element solution (up,pr), we
also define the Galerkin projection (R, Qp) : (X,Y)— (X, My) by requiring

Bh((Ru(u,p), Qu(u, p)); (vn, qn)) = B((u, p); (vn, qn)),
(4.5) V(u,p) € (X, M), (vn,qn) € (Xn, Mp).

Note that, due to Theorem B2, (R}, Q) is well defined and satisfies the approxi-
mate properties [24]

(4.6) || Rn(u,p) — ullo + h(|Rn(u, p) — uly + |Qn(u, p) — pllo) < ch?([lullz + [Ipll1),

for all (u,p) € (H*(Q)>N X, HY(Q) N M).
Moreover, we need to introduce the following LZ-orthogonal projection Py :
L?(0)? - X, defined by

(Pyv,vp) = (v,vp), v € L*(Q)?, v, € Xp.

Using some slight modifications of the literature [26] 27], we can obtain the
following error estimates.

Theorem 4.2. Assume the assumptions of Theorems 21l and are valid and set
(won, pon) = (Bn(uo0,po), Qn(uo,po)). Then (un,pn) satisfies

(4.7) u(t) = un(®)llo + h(|lu(t) — un(®)l1 + 2 @) p(t) = pa(t)]0) < Kb,
(4.8) (/0 o (8)|us — une|2ds)*/?

for all t € (0,T), where py = limy o p(t) € H(Q) N M.

N

IN

kh,
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Since our error analysis for the time discretization depends heavily on some reg-
ularity estimates of the semi-discrete solution (uy, pp,), we will provide the following
regularity results.

Theorem 4.3. Under the assumptions of Theorems 2], the finite element solution
(un,pn) satisfies the regularities

(4.9) /Ot(IIAﬁl(uhtt + PuNnpno) 1§ + llunells + [ Anunl§)ds
+vlun(t)[f + BCh(pa(t)a, pa(t)) < &,
(4.10) /Ot(|A}:1/2(Uhtt + PuVipn) 15 + viundi + BCh(phe: pre))ds
+ (lune(WII5 + IVRpa (0I5 + [ Anun(®)3) < &,
(4.11) /Ot o (s)([uneell§ + 1PhVnpnells + | Anund|3)ds < &,
(4.12) /Oto(s)HAhl(uhttt + Py Vipnet) |5 ds

+ o () (v|unt(0)[F + BCh(pne (8), pre (1)) < &,
(4.13) /ot () (1145, (unsee + PuVpnee) I3 + vluneel? + BCh(Pher, pase))ds
+ 02 (1) [une (D)l < &,
(4.14) /Ot a3(8) (luneee||Z + | PaV apneel|d + [ Anune|3)ds < k,

for allt €10,T7.

Proof. The proof is by a fairly standard energy argument. Hereafter, we will make
frequent use of (LI)—(Z4) without explicit mention.
First, differentiating ([B.2)) with respect to ¢ results in the equations

(4.15) (untt + PoVapne, vn) + a(unt, vn) + d(une, qn) + BCh(Pht, an)
+ bt(Uh, Up, Uh) = (ft7 Uh)a
(4.16) (htet + PoVaDnees vn) + a(unee, vn) + d(Unee, qn) + BCh(Phee, qn)

+ byt (un, un,vn) = (fee, vn)-

If we take g = 0 in (LI0)-(@I0), a simple calculation yields

(4.17) / 1AL "2 (unes + PV apne)|3ds < C/ 1AL unells (1 + lunl?) + [1f2l|3)ds,
0 0

t

t . . . .
(4.18) / O'S_Z(S)HA;Z/Q(uhttt + Pthphtt)H(Q)dS < c/ 03_1(3)\|Ai_2/2umH§|uhtﬁds
0 0

t . .
+ 6/ (@ ()AL Punsell5 (1 + [unlD) + 1 frel5)ds,
0

for i = 2,1,0.
Next, using ([3.4]), we obtain

Apup,v
(419)  [[Apunllo = sup (A, 01)]

< (ch™Mu = unly + || Aullo),
v EXp HUhHO
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for all u, € X, and u € X. Hence, we derive from Theorems [2Z.1] and that

(420) [ Apun@®)llf < e(h™?lu(t) —un ()| + [[Au(®)]5) < K, YOSt <T.

Now, by recalling [26] 21], we have
t
(4.21)  v|up(t)|3 4 BCh(pn(t), pr(t)) +/ |une||2ds < w, YO <t <T.
0

Taking (vn, qn) = (upt, pre) in (E15) and using (2.3) and (@I)-([E3), we obtain

1d
(4.22) = —untl|§ + vlune| + BCh(put, Prt) + (e, wn, une) = (fr, une),
2dt
14
(4.23) b(unes wn, une)| < clluntllolunt |1l Anunllo < Z\“htﬁ + cl| Anun |3l unelI3,
14
(4.24) (fesunt) < Z|“ht|? + |l f2I5-

From the definition of (up(0), pn(0)) = (Rp(uo, po), Qr(uo, po)), it holds that
(4.25)  (unt(0),vn) — v(Aug, v) + (v, Vpo) + b(un(0), un(0),vn) = (f(0), vn),
which with (@) and [@2]) yield

(4.26)  [lune(0)lo =< clluollz + llpollx + [ Anun(0)lo[un(0) |1 + [1£(0)[lo-

Now we integrate ([{.22]) and use ([@23)-@24), [E20) and [E20)—-.21) to obtain

t
420 Jlum®2 + / (Wlunil? + BCh(pres pie))ds < 7, 0 <t < T.
0

Combining (£I7) with (£20)-21)) and @27) and using (B2)) yields (L9)—-@I0).
Furthermore, we derive from (£19), [@38)), (£2) and (26) that

t t
(4.98) / o ()| Apune|2ds < c/ o () (h=2[u — une2 + | Augl|2)ds < 5,
0 0
for all 0 <t < T, which (£9) and (£I1) with ¢ = 0 yield
t
(4.29) / o (8)||unst + Vapnellads <k, YO <t <T.
0

Moreover, we derive from ([{I5]) that

(Unetsvn)  +  alune, vn) — d(vn, pre) + d(unee, qn) + BCh(Phtt, an)

(430) + b(uht,uh,vh) + b(uh,uhhvh) = (ft7'Uh)~
By taking (vn, qn) = o (t)(unet, prt) in [@30), we obtain
1d

o () [ unells 5 g OVl + o () 5Ch(pne, ue))

+
+ o (t)b(une, un, unee) + o (E)b(un, Unt, Unte)

1d

E%U(t)(V‘Uhtﬁ + BCL(DPre> Pre)) + () (fr, Unet)-

(4.31)
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Using ([EI)-(E3]), we have

o (O)]b(unt, un, unee)|  + o (t)[b(un, unt, unte)|

co (t)|unel1 | Anunllo [ unelI3

IN

1
10 Ollunsll§ + co ()l T Anunll3,

1
a(t)|[(fe,unee)| < Za(t)||uhtt||%+c||ft“(2)~

IN

Combining these inequalities with ([{3T]) yields

oOlmald + 5 (o Ovlundl? + o) B )

(4.32) < v|upel? + BCh(Phes Pre) + ca(t)luhtlf\lAhuhH% + ||ft||(2)'

In view of ([@I0), there exists a sequence €,—0 such that

o (en)v|une(€n)|i + o(€n) BCH (DRt (€n), Pre(€n))—0.

Therefore, integrating ([@32)) from €, to ¢t and letting €,—0, one finds
t
/ o (8)|luneell§ds + o () unel T + o () BCn (pne(t), phe(t))
0
t
(433) < [ @lunlt + 5C s )
0
t t
+ o [ ol Avunlids + ¢ [ 17lds
0 0
Applying the Gronwall lemma to (£33) and using ([@I0), we obtain
t
(4.34) / o (8)|[unse||2ds + o () vun: ()3 + () BCH (PRt (1), pre(t) < k, 0 <t < T.
0
Combining ([£34) with (£28)-(Z29) and using (@I]) with i=2 yields (@II)-@I2).
Similarly, we can prove ([@I3)—(@I4) by using B2)), (4)), (TI)-E4) and (@9)-
@12). O

Also, we will introduce some discrete versions of the Gronwall lemma by a slightly
improved argument used in [16] [39].

Lemma 4.4. Let C, 7 and ay, by, d,,, for integers n > ny, be nonnegative numbers
such that

m m—1
(4.35) U +7 Y by T Y andy +C, ¥m > ny.
n=ni n=ni
Then,
m m—1
(4.36) Qm + T Z b, < exp(r Z d,)C, Ym > n;.

n=ni n=ni
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5. FULLY DISCRETE STABILIZED FINITE ELEMENT METHOD

In this section we consider the time discretization of the stabilized finite element
approximation. Let t, = nr, where 7 = % and N is an integer. The Crank-—
Nicolson extrapolation scheme applied to the stabilized finite element approxima-
tion is to determine the series {u? }_, C Xj,, {p?}_; C Mj, as the solution of the
recursive linear equation

(5‘1) (dtuzv Uh) + Bh((a27ﬁ2)’ (Ufh Qh)) + b((b(uZ)» ﬂ'?fza vh) = (]?(tn)v Uh)7
for all (v, qn) € (Xp, Mp,) for the initial value (u)), p9) = (uon, por). Here and after,
we define a small time step size 7o = T~ '73/2 on time interval (0,7'/?] and a large
time step size T = % on [7'1/2, T for some fixed integer ng, where
T-7Y2 2r
T 4L 771/2’

Ton0:T1/2, N=ny+ — =
T T

1
dtuZ:E(uﬁ—uzfl),k:maslgngno, k=71asng+1<n<N,

3., 1.,
6(uh) = dluh) = uf, o(up) = Jur™ = Sup~% 2<n N,

1 _ B 1
ap = §(u2 + up 1), ap(tn) = E(uh(tn) + up(tn-1))-

From the definition of ¢, we find that the Crank—Nicolson extrapolation scheme is
an implicit scheme for the viscous and pressure terms and a semi-implicit scheme
for the nonlinear term.
In order to analyze the discretization errors (e}, &™) = (un(tn) —uly, Pr(tn) —DF)
with (e, u9) = (0,0), we deduce from (B.2)) that
1 1 [t
7 (un(tn) = un(tn-1),on) + & Br((un(t), pr(t)); (vn, qn))dt

(52) 1 [t o 1 [t
+ k\/t”1 b(uh(t)vuh(t)vvh)dt: k\/tnl(f(t),’l)h)dt

for all (vp,qn) € (Xp, Mp). Subtracting (5I)) from (G.2)) and using the following
formulas

d(an(tn), qn) + BCh(Pn(tn), qn) = 0,

% /tnn1 (d(Uh(t), Qh> + ﬁch(ph(ﬁ)7 Qh))dt -0,
_ 1 tn 1 -
Htn) — & \ o(t)dt = ﬁ/t (tn — t)(t — tn_1)br(t)dt,

for all ¢ € H?(t,—1,t,; F) for some Hilbert space F, then using (3.2), results in
(diegy, vn) + Bu((eF, ith); (vn, qn)) + b(¢(e), tn(tn), vn) + B(d(u), €, vn)
(53) _ ﬂ tn
= (En,’l)h) ~ 57
Qk tn—1
for all (vn, qn) € (X3, Mp,), and

(deey, vn) + Br((er, i1y ); (v, qn)) + b(¢(€h), tn(tn), vn) + b(d(up), €, vn)
= (Enavh)a

(tn — t)(t = tn—1)Ch(Dhts, qn)dt,

(5.4)
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for all (vn, qn) € (Xp, Mp,), where i) = %ft" 1ph(t)dt — py and

tn—
~ 1 M
(5.5)  (Er,vp) = ok (t1 — t)(t — to)(unttt + PoVpDnee, vp)dt
to
1. ("
- 5b(/ gt (1), ),
to
_ 1 tn
(5.6) (En,vn) = ok (tn — t)(t — tn—1)(Wntet + PV nDaer, vp)dt
tn—1
1

tn tn—1
— *b(/ (tn — t)’LLhttdt — / (t — tn_Q)’LLhttdt, ’l._Lh(tn), ’l)h)

2 tn—1 tn—2

1 2% tn
— —b(/ Uhtdt, / uhtdt7vh)a
4 t t

n—1 n—1

for all 2 <n < N, and

6.0 (Broon) = =g [ (0 =00 = ) (wne0)

1 t1
— Ly / wndt, un(t1), on),

2 Sy
1 t'fl,
(5.8)  (En,vn) = ~or (tn — t)(t — t—1)(Untee, v )dt
tn—l
1 tn t',171
_ 5b(‘/ (tn — t)uhttdt — / (t - tn72)uhttdt7 ﬂh(tn)7 vh)
tn—1 th_2
1 2% tn
— 7b(/ Uhtdt,/ uhtdt,vh)a
4 tn—1 tn—1

forall2<n<N.
In order to provide the bound of the error (e}, i), we need to provide the bound
of En and F,,.

Lemma 5.1. Under the assumptions of Theorem [£.2], it holds that

no
. 70y ol (ta)||A, CPE, | < ki, i=0,1,
(5.9) S ot tlA, P PE ] < kit i =0,1
n=1
N ~
(5.10) > AP <
n=nog+1
no ) )
(5.11) 70 Y o' (t)|PhBal§ < ket i=0,1,
n=1
N . .
(5.12) T Y O (t)IPE[§ < kTP i =0, 1.

n=no+1
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Proof. In this proof for brevity we will make frequent use of ([LI)-(4) and the
facts
o(tn) <o(tn-1) +10, 1<n<ny,

5.13
( ) U(tn_l) SQO—(tn_Q), TLO+1 SnﬁN,

without explicit mention in this section.
First, we derive from (5.6) and the Schwarz inequality that

— ~ E s Un
|4, 2 PuEyllo = sup %
vp €Xp ”Ah UhHO

I -
<o | =0~ AT wnss + PV
t

n—1

tn tn—l
+ H(/ (tn — t>|U,htt|1dt + / (t — tn,2)|’U/htt|1dt)
t

n—1 tn—2

(5.14) +,€(/n fune 1 t)?

tn—1
tn
< nk*W(/ (tn —t)%K?
tn—l

< (1A (st + PoVnpnee) |12 + |unee|3)dt)

t,,,71 tn
+ nk*lﬂ(/ (t — tn_2)?k?une|2dt) /% + nk/ |une|2dt,

t”72 t-,L71
with k = 79 for 1 <n < ng and k =7 for ng +1 < n < N. Similarly, we deduce
from (5.5 that

14,2 PuEr o < covoll Anun(t) o sup  [fune(t)llomo
to<t<ty
(5.15) e [0 s
rny 2 O ane + PuT ) [) .
to
Thus, by using (BI13)—(EI4) and Theorem (3] we obtain
(5.16) o' (ta)| A, P Eulf3mo
tn
< wrgtt / (@214, (untee + PoVipnee) 3 + lune|?)dt
tn—l
. tn
+ m&“/ o2 (t)|unse|3dt, 2 <n <ng, i =0,1,
tn72
(5.17) 1A, 2 E, |37
tn
< krto 2 (th 1) / Uz(t)(HA}:l/Q(Uhttt + P Vi) 1§
tnfl

t'll
- unel2)dt + w7t 2 (t1) / o (Olune 2,
tn—2
for all ng +1 < n < N. Summing (GI8) from n = 2 to n = ny and (EI7) from
n = ng+ 1 ton = N, respectively, using (5I5) and Theorem E3] and noting
0 2(th—1) < t,2 =7 " for all ng+1 <n < N, we have obtained (5.9) and (5.10).
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Furthermore, we derive from (B.7)-([G5.8)) that

E
(5.18)  ||PvE1flo = sup [(Er, vn)]
vpE€Xp thHO

t1
< comord?|| Anun(t1)]lof / Jupe () 2alt) /2
to

+2 sup |Junt(t)lo,
to<t<t,

Ey,
(519)  [PuBollo = sup LEmvnl
v, €Xp thHO

tn
SB[ (b= 02—t unelodt) ] v () o

tn—1

tn
+ ck’l/Q(/ (tn — )22 Jupe|2dt) /2

tn—1

th—1
+ckf1/2</ (— t2) K2 e 2002 | Anin () o

thn—2
tn tn
et/ / | Apune | 2dt) 2 ( / fupe 2t) /2,
tn—1 th—1

for all 2 < n < N. Hence, we derive from (G.19), (5.13]), and Theorem that
(5.20)

[2%
7 (tn) | PuBlfro < wri ™ [ (030 funsn [+ L

tn—1

t"l
+ KTéH/ () |unse|3dt, 2 <n < ny,
th—2

(5.21)

tn
o' (ta)I|Pn Enl57 < 5740_3“(%—1)/ (@ () [uneeell§ + lunel?)dt

tn—1

tn
+ Bt y) / o3 (Olunu2dt, no+1<n < N.

tn—2
Summing (5.20) from n = 2 to n = ng and (G2I) from n = ng+ 1 ton = N,
respectively, using Theorem I3 and (BI8) and noting o~ (¢,—1) < t;} < 771/2
for all ng +1 <n < N, we arrive at (511) and (E12). O

6. ERROR ANALYSIS

In this section we will analyze the error (e}, ). With the aid of Lemma [5.1]
we shall obtain the following lower-order error estimates.

Lemma 6.1. Under the assumptions of Theorem [£.2], it holds that

(6.1) lei I3 +70 > (Vlenl? + BCn(iiy. fip)) < krg, 1< m < no,
n=1
m
(6.2)  llellg +7 > _(vIenld + BCu(fiy, fip)) < k7 + k7%, mo+1<m < N.

n=1
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Proof. First, we take (vp,qn) = 2(e}, ap)k in (53) and use (LI)-(Z2) and @),
obtaining
e I3 — llen™" 115 + 2vlen [tk + 26Ck (A, i)k
= _Qb(¢(€z>7 ah(tn)v éﬁ)k + 2(E7H éZ)k

tn
— ﬂ/ (t = tn)(t — tn—1)Ch(Phtt, fip,)dt
tn—l

< vlep 2k + BCh (7, i)k + 4 || Ay P PLE, |2k
+ A 22 | Apin () |2l 6 (D) 12K

tn
+ / (t — tn)?(t — tn_1)Cr(phtt, Phet)dt,
t

n—1
foralll <n < Nwithk=mforl<n<ngand k=7forng+1<n<N.
Summing ([6.3) from n = 1 to n = m for m < ng and n = ng + 1 to n = m for
ng +1 < m < N, respectively, noting e% =0, 0’2(tn,1) < Tn’f =71 ng+1<
n < N and using Lemma [5.1] and Theorem £.3] we obtain

(6.4) le™ I + 70 Y (vlenl? + BCu (i, fif))

n=1
m—1
<wrg+mmo Y [lerlld, 1< m <no,

n=1

(6.5) le™ 15 + 7> (vlerl} + BCn(iin, iih))
n=1

m—1
<lepolZ + w7° + 57 > [lerld, no+1<m< N

n=1

Applying LemmalZlto ([6.4) and (G5, respectively, we arrive at (6.1)) and (6.2). O

Lemma 6.2. Under the assumptions of Theorem .2, the following estimates hold:

(6.6) vIer |t + BCh(ui' 1) + 70 Y Ideer|I§ < w70, 1 < m < no,
n=1
(6.7) vlep |t + BCh(upt sy +7 Y lldieqills < w70+ K77, mg+1<m <N,
n=no+1

n—1

where p° =0, p™ = 24" —
Proof. In view of the fact
d(eh, an) + BCh(hsan) =0, Yan € My,
we derive from (5.4)) that
(deer, vn) + a(€y, vn) — d(on, fip,) + d(deer,, qn) + BCh(depyy, an)
(6.8) + b(o(up), €r,vn) + b(o(er), un(tn), vn)
= (En,vn), Y(vn,qn) € (Xn, Mp).
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By setting (vy, gn) = 2(diely, @)k in ([G.8), we obtain

2| dueh |3k + v(eRE — e [F) + BCh R, 1) — Crli ™))
(6.9) +20(0(e}), Tn (tn), dref )k + 26(d(un(ty)), €F, el )k
— 2b(¢(e}), ep, diep)k = 2(En, def k.

Thus, it follows from (£I)—([£4), Theorem L3 and Lemma 6] that

2[b(p(en), un(tn), drey) |k + 2[b(d(un(tn)), €x, diey ) [k
< 20070(I|Ah¢(Uh( n)llolek e + [ Antn (tn)llolo(er) 1) lldre™ [lok

f||dte“||ok+n<\e” YRt e + ler Bk,
2| (En, deef) |k < fudte”n%k + 4| PLE, |3k,
20b(¢(ef), e, deei) [k < collo(ep) o *[e(er) * en alldeer 1o |deer |y 2k
+collo(em)lly*loem) 1 enlle®ler s * deer 1k
< sloe)y*(enliler — en > + leph%le — ep )k
<R(ER + e R+ lep )k

Combining these inequalities with (6.9) yields

(6.10) v(lenli — len M%) + B(Chlup, i) — Culuy ™" i ™)) + lideet 370
< sy I+ lep Mo + mllen ] + 1P Enllg) 7o,
(6.11) v(lenli = lep ™ 8 + B(Ch(uh, 1) — Culpy, ™" ui™")) + lldeepllgT

< wllep T+ ler T+ s(len ]} + 1PhEnlIF)T,

Summing (6I0) from n = 1 to n = m for 1 < m < ng and summing (GI1]) from
n=ng+1ton=mforng+1<m < N, respectively, then using Lemmas [5.1] and
and Theorem [£.3] we obtain

(6.12)  wle[F + BCh(ui, i) + 70 > lldeer I3

n=1
m—1
< wmo+ Km0 Y lepld, 1 <m < no,
n=1
m
(6.13)  vlep' [T + BCh(up' ui?) +70 ) lldeeh
n=1
m—1
< vlef° |3+ BCH (10, 10 )+ KT KT Z lel?, no+1<n<N.
n=ng+1

Applying Lemma 4] to ([€12]) and [613)), respectively, we obtain ([G6)—@). O
Lemma 6.3. Under the assumptions of Theorem [£.2], we have

(6.14) o(tm)|ldief |2 < k1o, 1< n < no,

(6.15) o(tm)||deel |2 < Km0+ k732, no+1<n<N.
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Proof. From (B3]) we derive

(deey — deep ™" vn) + Br((deeyy, defif); (vn, qn))
+ b(p(dyup), ep, vp) + b(d(dyuy "), deeft, vn)
+ b(B(deept), un(tn), vn) + b(d(ep "), detin(tn), vn)

(6.16) s g o[
= (diEpn,vp) — 252

ol

(
)+

(tn —t)(t — tn_1)Ch(Phte, qn)dl

th—1

tn—1
_F / (bot = £)(t = t—2)Ch(phees an)dt,
tn 2

2k2
V(’Uhv Qh) S (Xha Mh)a

where we use the notation of t_5 = t_; = t.
By setting (vy, gn) = 2(diey, di i)k in (610) and using (£2]), we obtain

I deer g — lldeey 15 + 2(vIdien |3 + BCh(defiy, difin))k
+ —2b(¢(diey), €y, diey )k + 20(p(diey,), Un(tn), diey)
+2b(@p(diun(tn)), ey, diep )k + 2b(p(ey ), dyun(tn), diep)k
(6.17) B [t

= 2d,E,, de )k — o (tn — t)(t — tn_1)Ch(phee, defil)dt
tnfl

/8 tn—1

-2 (tn—1 — t)(t = tn—2)Ch(Pnet, defiy, )dt.
2k /.,

—2

Then, a simple calculation, using (@I)-(@4), Theorem [£3] and Lemmas and
[6.2] yields

2|b(p(dseq), ey, diey )|k < 2covolp(diey)|ilen |1]diey |1k

v _
< itk + T gaglelen — ey len Tk

2[b(p(ef "), ditin(tn), diep) |k < 2covolo(el ™)1l detin (tn)|1|dier 1k

tn
v — —
< ldecq [tk +4v 10373/ [une[Fdtl¢(er, ™)1,

tn—2

2|b(¢(drun(tn)), €, diep) [k < 2conol@(diun(tn))lrlen ] diey 1k

tn—1
14 _ _
< Slarithvtend [

tn—3

2(b(p(deer), un(tn), diey) |k < 2covolld(deer)llol|Antn(tn)loldier 1k
v, _ _ n _
< Zldtehlfk +4v g llo(diei) 51| Antin (tn) 15K,
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14 —
2/(dy B, dyef) e < 7 ldre Tk + 87|14, V2P, B, |12

+ 1A, PP B |3)E

|/ )(t = tn—1)Cr(Phie, difiy, )dt| < ﬂch(dtﬂh,dtﬂh)k
7L 1

8k2 / t*tn 1) Ch(phttaphtt)dt7

tn_1
sl [ty = 00—t Colee )] < ey dufi)
tn—2

n—

8k2 /n"; —1 = 0)2(t = tn—2)*Cr(Phits Phte)dt,
forall2<n < N.
Combining these inequalities with (617) and using (5.13) yields
o(tn)ldeeills — o (tn-1)lldeey, I3 < lldeel, ™" 13k
+ 80 (o (ta)l| 4y, PaB [ 4 20 (ta-) |4y, PaBa )5

t'll
A B2 g — e DRIk + dv B / fune Bl b(en )2

tn—2

tn—1
(6.18) 450~ 1‘3(2)73/ lune|Tdtler |3 + v~ g | d(deep) |G| Antin (tn) 15k
’!L 3
+ k/ (t = tn—1)0(t)Ch(Dhtts Dhee)dt

+ k/ Yo (t)Ch (Dhtts Dhee)dE.

Summing (GI8) from n=1ton =m for 1 <m < ny and [GI8) from n =ne +1
ton =m for ng +1 < m < N, then using Lemmas (.1], 6.1l and [6:2] and Theorem
and noting 0 (¢,_1) < t;1 =772 for all ng + 1 < n < N, we obtain (6.14)
and (G.I5)). O

Lemma 6.4. Under the assumptions of Theorem 2], the error i"™ = p(t,m,) — pp*
satisfies the bound

(6.19) o2 () B0 (tm) — B llo < w7p* + w74, 1 <m < N,

Proof. First, we derive from (54]) and Theorem [3.2] that

o Ptw)lElo < clep'ls + clldeeillo + clo(er i fun(tm) 1 + cld(un(tm))1]eR 1
T (eI s + o2 () Emllo, 1< m < N.

Then, by using Theorem and Lemmas [6.2] [6.3] and [5.1] in the above estimate,
we obtain

o Ptwm)lElo < wllEr+1g(e)l + o2 (tm)lldeei llo) + co'’ (tn) | Emllo
(6.20) nrg/2+/<573/4, 1<m<N,

which is ([G19]). O

IN
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Theorem 6.5. Under the assumptions of Theorem 2], the error (e™,p™) =
(u(tm) — up’, p(tm) — DY) satisfies the bound

(6.21)  [lu(tm) = uf'llo < w(h* +7%2),
(622)  lu(tm) = uf'llh < (h+7%%), "2 (tn)[p(tm) = By llo < K(h+ 7Y%,
for all t,, € (0,T].

Proof. By combining Lemmas [6.1] .2, and with Theorem and noting that
To = %73/2, completes the proof of Theorem O

Remark. We have presented the convergence analysis of a stabilized finite element
method with the Crank—Nicolson extrapolation scheme in time direction for the
two-dimensional time-dependent Navier—Stokes problem. We have proved that the
scheme is unconditionally stable. However, the error estimate obtained in this paper
is not optimal in time direction, which is mainly for lack of discrete Stokes operator
on the finite element space pair (X, M},) by the Q1 — Py quadrilateral element or
the P; — P, triangle element. In this case, the estimate

N
T lan(tn) = apll2, < wr
n=1
used in [28] is no longer available.
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