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ON IRREGULAR PRIME POWER DIVISORS
OF THE BERNOULLI NUMBERS

BERND C. KELLNER

Abstract. Let Bn (n = 0, 1, 2, . . .) denote the usual nth Bernoulli number.
Let l be a positive even integer where l = 12 or l ≥ 16. It is well known that
the numerator of the reduced quotient |Bl/l| is a product of powers of irregular
primes. Let (p, l) be an irregular pair with Bl/l �≡ Bl+p−1/(l + p − 1)mod p2.
We show that for every r ≥ 1 the congruence Bmr /mr ≡ 0mod pr has a unique
solution mr where mr ≡ l mod p − 1 and l ≤ mr < (p− 1)pr−1. The sequence
(mr)r≥1 defines a p-adic integer χ(p, l) which is a zero of a certain p-adic zeta
function ζp, l originally defined by T. Kubota and H. W. Leopoldt. We show
some properties of these functions and give some applications. Subsequently
we give several computations of the (truncated) p-adic expansion of χ(p, l) for

irregular pairs (p, l) with p below 1000.

1. Introduction

The classical Bernoulli numbers Bn are defined by

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
, |z| < 2π.

These numbers are rational where Bn = 0 for odd n > 1 and (−1)
n
2 +1Bn > 0 for

even n > 0. The Bernoulli numbers are connected with the Riemann zeta function
ζ(s) on the positive real axis by Euler’s formula

(1.1) ζ(n) = −1
2

(2πi)n

n!
Bn, n ∈ N, 2 | n;

the functional equation of ζ(s) leads to

(1.2) ζ(1 − n) = −Bn

n
for n ∈ N, n ≥ 2.

Let, as usual, ϕ denote Euler’s totient function. The Kummer congruences state
for n, m, p, r ∈ N, n, m even, p prime with p − 1 � n that

(1.3) (1 − pn−1)
Bn

n
≡ (1 − pm−1)

Bm

m
(mod pr)

when n ≡ m (mod ϕ(pr)); see [9, Thm. 5, p. 239].
In 1850 E. E. Kummer [14] introduced two classes of odd primes, later called

regular and irregular. An odd prime p is called regular if p does not divide the
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class number of the cyclotomic field Q(µp) where µp is the set of pth roots of unity;
otherwise irregular. Kummer proved that Fermat’s last theorem (FLT) is true if
the exponent is a regular prime. Kummer also gave an equivalent definition of
irregularity concerning Bernoulli numbers. We recall the usual definition from [9,
pp. 233–234].

Definition 1.1. Let p be an odd prime. The pair (p, l) is called an irregular pair
if p divides the numerator of Bl where l is even and 2 ≤ l ≤ p − 3. The index of
irregularity of p is defined to be

i(p) := #{(p, l) is an irregular pair : l = 2, 4, . . . , p − 3}.
The prime p is called a regular prime if i(p) = 0; otherwise, an irregular prime.

We introduce the following notation for rational numbers. If q is rational, then
we use the representation q = N/D where (N, D) = 1 and D > 0. We define
denom(q) = D, resp. numer(q) = N , for the denominator, resp. the numerator of
q. The notation m | q where m is a positive integer means that m | numer(q); we
shall also write q ≡ 0 (mod m) in this case.

For now, let n be an even positive integer. An elementary property of the Ber-
noulli numbers, independently discovered by T. Clausen [6] and K. G. C. von Staudt
[20] in 1840, is the following. The structure of the denominator of Bn is given by

(1.4) Bn +
∑

p−1|n

1
p
∈ Z which implies denom(Bn) =

∏
p−1|n

p.

A further result, often associated with the name of J. C. Adams (see [9, Prop.
15.2.4, p. 238] and Section 8 below) is that Bn/n is a p-integer for all primes p with
p − 1 � n. Therefore

(1.5)
∏

p−1�n

pordp n

divides numer(Bn); since this factor is cancelled in the numerator of Bn/n, we
shall call it the trivial factor of Bn. By |Bn| > 2(n

/
2πe)n (see [9, Eq. (8), p. 232],

and Table A.1), one can easily show that the numerator of |Bn/n| equals 1 for
2 ≤ n ≤ 10 and n = 14. Otherwise this numerator is a product of powers of irregular
primes; this is a consequence of the Kummer congruences. The determination of
irregular primes, resp. irregular pairs, is still a difficult task; see [2]. One can easily
show that infinitely many irregular primes exist; for a short proof see Carlitz [4].
Unfortunately, the more difficult question of whether infinitely many regular primes
exist is still open. However, calculations in [2] show that about 60% of all primes
less than 12 million are regular, which agree with an expected distribution proposed
by Siegel [18].

The values of Bn and Bn/n for n ≤ 20 are given in Table A.1, irregular pairs
with p < 1000 in Table A.3. For brevity we write B̂(n) = Bn/n; these are called the
divided Bernoulli numbers. Throughout this paper all indices concerning Bernoulli
numbers are even and p denotes an odd prime.

2. Preliminaries

The definition of irregular pairs can be extended to irregular prime powers as
was first proposed by the author in [11, Section 2.5].
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Definition 2.1. Let p be an odd prime and n, l be positive integers. A pair (p, l)
is called an irregular pair of order n if pn | B̂(l) where l is even and 2 ≤ l < ϕ(pn).
Define

Ψirr
n := {(p, l) : pn | B̂(l), p is an odd prime, 2 ≤ l < ϕ(pn), 2 | l}

as the set of irregular pairs of order n. For a prime p the index of irregular pairs
of order n is defined by

in(p) := #{(p, l) : (p, l) ∈ Ψirr
n }.

Define the map

λn : Ψirr
n+1 → Ψirr

n , (p, l) �→ (p, l mod ϕ(pn)),

where x mod y gives the least nonnegative residue x′ with 0 ≤ x′ < y for positive
integers x and y. Let (p, ln) ∈ Ψirr

n and (p, lm) ∈ Ψirr
m be irregular pairs of order

n, resp. m, where n > m ≥ 1. We say that (p, ln) is related to (p, lm) if ln ≡
lm (mod ϕ(pm)) holds. Note that “related” is not a symmetric relation.

Remark 2.2. This definition includes the older Definition 1.1 in the case n = 1.
Therefore one has i1(p) = i(p). Let (p, l) ∈ Ψirr

n with n ≥ 1. The Kummer
congruences (1.3) imply that pn | B̂(l + νϕ(pn)) for all ν ∈ N0. Conversely, if
pn | B̂(m) for some even integer m, then there exists an irregular pair (p, l) ∈ Ψirr

n

where l ≡ m (mod ϕ(pn)) with l ≤ m holds.
The map λn is well defined by the properties mentioned above. Let (p, ln) ∈ Ψirr

n

and (p, lm) ∈ Ψirr
m where n > m ≥ 1 and (p, ln) is related to (p, lm). By applying the

maps λn−1, λn−2, . . . , λm one derives a chain of related irregular pairs of descending
order

(2.1) (p, ln) ∈ Ψirr
n , (p, ln−1) ∈ Ψirr

n−1, (p, ln−2) ∈ Ψirr
n−2, . . . , (p, lm) ∈ Ψirr

m ,

where
ln ≥ ln−1 ≥ ln−2 ≥ · · · ≥ lm.

Definition 2.3. For (p, l) ∈ Ψirr
n , n ≥ 1, define

∆(p, l) ≡ p−n
(
B̂(l + ϕ(pn)) − B̂(l)

)
(mod p)

with 0 ≤ ∆(p, l) < p. When ∆(p, l) = 0 we call ∆(p, l) singular. For an irregular
prime p set

∆(p) :=
{

1, ∆p �= 0,
0, ∆p = 0,

with

∆p =
i(p)∏
ν=1

∆(p,lν ), (p, lν) ∈ Ψirr
1 .

Then ∆(p) = 1 if and only if all ∆(p,lν) are nonsingular.

We need a generalized form of the Kummer congruences which allows us to obtain
most of the later results; see Carlitz [3, Thm. 3, p. 425] and especially Fresnel [7,
Cor. 6, p. 319].
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Theorem 2.4 (Carlitz). Let k, m, n, p, r, ω ∈ N, m even, p prime with p − 1 � m,
and ω = kϕ(pn). Then

(2.2)
r∑

ν=0

(
r

ν

)
(−1)ν(1 − pm+νω−1)B̂(m + νω) ≡ 0 (mod pnr).

Here we need a special version without Euler factors which p-adically shows the
periodic behavior of the divided Bernoulli numbers.

Corollary 2.5. Let (p, l) ∈ Ψirr
n , n ≥ 1. Let k, m, r, ω ∈ N, r > 1, and ω = kϕ(pn).

For m = l + jϕ(pn) with j ≥ 0 we have
r∑

ν=0

(
r

ν

)
(−1)ν p−nB̂(m + νω) ≡ 0 (mod (pm−1, pn(r−1))).

Proof. Since (p, l) ∈ Ψirr
n we know that pn | B̂(l + jϕ(pn)) for all j ≥ 0. Hence,

we can reduce congruence (2.2) to (mod pn(r−1)) when multiplying it by p−n. One
easily sees that all Euler factors in the sum of (2.2) vanish (mod pm−1). �

Proposition 2.7 below shows how to find irregular pairs of higher order. Begin-
ning from an irregular pair of order n, we can characterize related irregular pairs
of order n + 1 if they exist. First we need a lemma.

Lemma 2.6. Let n be a positive integer and p be an odd prime. Let (αν)ν≥0 be a
sequence of p-integers αν ∈ Q for all ν ∈ N0. If one has

(2.3) αν − 2αν+1 + αν+2 ≡ 0 (mod pn),

then the sequence is equidistant (mod pn). For α0 �≡ α1 (mod p) the elements α0

up to αpn−1 run through all residues (mod pn). Then exactly one element αs ≡
0 (mod pn) exists with 0 ≤ s < pn where s ≡ −α0(α1 − α0)−1 (mod pn).

Proof. We rewrite congruence (2.3) to

αν − αν+1 ≡ αν+1 − αν+2 (mod pn), ν ∈ N0.

One easily observes by induction on ν that all elements αν are equidistant (mod pn).
Let δ ≡ α1 − α0 (mod pn), then we obtain

αν ≡ α0 + δν (mod pn).

The case α0 �≡ α1 (mod p) provides that α0+δν, resp. αν , runs through all residues
(mod pn) for 0 ≤ ν < pn, since δ is invertible (mod pn). Then exactly one element
αs exists with 0 ≡ αs ≡ α0 + δs (mod pn) and 0 ≤ s < pn. This finally gives
s ≡ −α0 δ−1 ≡ −α0(α1 − α0)−1 (mod pn). �
Proposition 2.7. Let (p, l) ∈ Ψirr

n , n ≥ 1. Let the sequence (αj)j≥0 satisfy

αj ≡ p−nB̂(l + jϕ(pn)) (mod p).

For ∆(p, l) ≡ α1 − α0 (mod p) where 0 ≤ ∆(p, l) < p there exist three cases:
(1) If ∆(p, l) = 0 and α0 �≡ 0 (mod p), then there are no related irregular pairs

of order n + 1 and higher.
(2) If ∆(p, l) = 0 and α0 ≡ 0 (mod p), then all (p, l + νϕ(pn)) ∈ Ψirr

n+1 are
related irregular pairs of order n + 1 for ν = 0, . . . , p − 1.

(3) If ∆(p, l) �= 0, then exactly one related irregular pair of order n + 1 exists.
One has (p, l + sϕ(pn))∈Ψirr

n+1 with 0≤s<p where s≡−α0∆−1
(p, l) (mod p).
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Proof. Let j ≥ 0. Using Corollary 2.5 with r = 2, ω = ϕ(pn), and m = l+jϕ(pn) ≥
2, we get

2∑
ν=0

(
2
ν

)
(−1)ν p−nB̂(m + νω) ≡ 0 (mod p),

which is
αj − 2αj+1 + αj+2 ≡ 0 (mod p).

This satisfies the conditions of Lemma 2.6. We obtain three cases:
Case (1). We have α0 ≡ α1 (mod p) and α0 �≡ 0 (mod p). One observes that

αj �≡ 0 (mod p), resp. pn+1 � B̂(l + jϕ(pn)), for all j ≥ 0. Therefore, there cannot
exist related irregular pairs of order n+1. Also there cannot exist related irregular
pairs of order r > n + 1; otherwise, we would get a contradiction to (2.1).

Case (2). We have α0 ≡ α1 (mod p) and α0 ≡ 0 (mod p). This yields αj ≡
0 (mod p), resp. pn+1 | B̂(l+ jϕ(pn)), for all j ≥ 0. Hence, p related irregular pairs
of order n + 1 exist where (p, l + νϕ(pn)) ∈ Ψirr

n+1 for ν = 0, . . . , p − 1.
Case (3). We have α0 �≡ α1 (mod p). Lemma 2.6 provides exactly one element

αs ≡ 0 (mod p) with the desired properties. Hence, (p, l + sϕ(pn)) is the only
related irregular pair of order n + 1. �

Remark 2.8. Vandiver [19] describes the result of the previous proposition for the
case n = 1 and only for the first irregular primes 37, 59, and 67. For these primes
Pollaczek [16] has calculated the indices s of the now-called irregular pair of order
two, but case p = 67 with s = 2 is incorrect; see column s2 of Table A.3. This error
was already noticed by Johnson [10] who had also determined all irregular pairs
(p, l′) of order two with p below 8000. Wagstaff [21] has extended calculations of
irregular pairs, indices s, and associated cyclotomic invariants up to p < 125 000. He
also checked that FLT is true for all such exponents p in that range. Finally, Buhler,
Crandall, Ernvall, Metsänkylä, and Shokrollahi [2] have extended calculations of
irregular pairs and associated cyclotomic invariants up to p < 12 000 000. For all
these irregular pairs (p, l) in that range, ∆(p, l) �= 0 is always valid which ensures
that each time there is only one related irregular pair (p, l′) of order two. Hence
i2(p) = i(p) for these irregular primes p. One has to notice that always (p, l) �=
(p, l′). So far, no irregular pair (p, l) has been found with p2 | B̂(l).

Using Proposition 2.7 one can successively find irregular pairs of higher order.
We can easily extend the result starting from an irregular pair (p, l) ∈ Ψirr

n and
require that l > n to obtain a related irregular pair (p, l′) ∈ Ψirr

2n.

Proposition 2.9. Let (p, l) ∈ Ψirr
n , n ≥ 1. Suppose that l > n. Let the sequence

(αj)j≥0 satisfy
αj ≡ p−nB̂(l + jϕ(pn)) (mod pn).

If ∆(p, l) �= 0, then there is exactly one related irregular pair of order 2n

(p, l + sϕ(pn)) ∈ Ψirr
2n

with 0 ≤ s < pn where s ≡ −α0(α1 − α0)−1 (mod pn). Correspondingly, there also
exists exactly one related irregular pair of order n + ν

(p, l + sνϕ(pn)) ∈ Ψirr
n+ν

for each ν = 1, . . . , n − 1 with 0 ≤ sν < pν where sν ≡ s (mod pν).
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Proof. Let j ≥ 0. Using Corollary 2.5 again with r = 2, ω = ϕ(pn), and m =
l + jϕ(pn) > n yields

αj − 2αj+1 + αj+2 ≡ 0 (mod pn).

If ∆(p, l) �= 0, then Lemma 2.6 provides exactly one element αs ≡ 0 (mod pn) with
0 ≤ s < pn where s ≡ −α0(α1 − α0)−1 (mod pn). Therefore, (p, l + sϕ(pn)) is the
only related irregular pair of order 2n. Similarly, regarding the congruences above
(mod pν) instead of (mod pn) for ν = 1, . . . , n−1 yields the proposed properties. �

Finally, we start from an irregular pair (p, l) ∈ Ψirr
n where we have to suppose

that l > (r − 1)n with r ≥ 2 to obtain a related irregular pair (p, l′) ∈ Ψirr
rn.

Proposition 2.10. Let (p, l) ∈ Ψirr
n , n ≥ 1. Let r > 1 be an integer and suppose

that l > (r − 1)n. Let the sequence (αj)j≥0 satisfy

αj ≡ p−nB̂(l + jϕ(pn)) (mod p(r−1)n).

Then this sequence satisfies
r∑

ν=0

(
r

ν

)
(−1)ναν+j ≡ 0 (mod p(r−1)n)

for all j ≥ 0. The elements α0 up to αr−1 induce the entire sequence (αj)j≥0.
Elements with αs ≡ 0 (mod p(r−1)n) where 0 ≤ s < p(r−1)n provide related irregular
pairs of order rn with (p, l + sϕ(pn)) ∈ Ψirr

rn. If ∆(p, l) �= 0 and the elements α0 up
to αr−1 are equidistant (mod p(r−1)n), then there is exactly one related irregular
pair of order rn

(p, l + sϕ(pn)) ∈ Ψirr
rn

with 0 ≤ s < p(r−1)n where s ≡ −α0(α1 − α0)−1 (mod p(r−1)n). Correspondingly,
there exists exactly one related irregular pair of order n + k

(p, l + skϕ(pn)) ∈ Ψirr
n+k

for each k = 1, . . . , (r − 1)n − 1 with 0 ≤ sk < pk where sk ≡ s (mod pk).

Proof. Let j ≥ 0. Clearly, by Corollary 2.5 with r > 1, ω = ϕ(pn), and m =
l + jϕ(pn) > (r − 1)n, we have

r∑
ν=0

(
r

ν

)
(−1)ναν+j ≡ 0 (mod p(r−1)n).

This induces the whole sequence (αj)j≥0 by

(2.4) αr+j ≡ (−1)r+1
r−1∑
ν=0

(
r

ν

)
(−1)ναν+j (mod p(r−1)n).

Among all elements αs with 0 ≤ s < p(r−1)n, an element αs ≡ 0 (mod p(r−1)n)
provides a related irregular pair (p, l + sϕ(pn)) ∈ Ψirr

rn of order rn.
Now we assume that ∆(p, l) �= 0 and the first elements α0 up to αr−1 are equidis-

tant (mod p(r−1)n). We show that this property transfers to the entire sequence.
Let γ, δ be integers. It is easily seen for r > 1 that

(2.5)
r∑

ν=0

(
r

ν

)
(−1)ν(γ + δν) = 0.
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Consider γ ≡ α0 (mod p(r−1)n) and δ ≡ α1 − α0 (mod p(r−1)n) where p � δ by
assumption. Combining (2.4) and (2.5) yields

(2.6) (−1)r+1
r−1∑
ν=0

(
r

ν

)
(−1)ν (α0 + δν) ≡ α0 + δr ≡ αr (mod p(r−1)n),

which shows inductively that all successive elements αj with j ≥ r are equidistant
(mod p(r−1)n). Since δ is invertible (mod p(r−1)n), exactly one solution exists with
0 ≡ αs ≡ α0 + δs (mod p(r−1)n) where s ≡ −α0(α1 − α0)−1 (mod p(r−1)n). Using
similar arguments, Congruences (2.4) and (2.6) are also valid (mod pk) for k =
1, . . . , (r− 1)n− 1 which provides for each k a unique solution sk with 0 ≤ sk < pk

where sk ≡ s (mod pk) holds. �

In [11, pp. 125–130] several examples and calculations are given which use the
previous propositions. These results are reprinted in Table A.4 and below. It will
turn out later that calculations can be further simplified. Because of the rapid
growth of indices, it is useful to write indices of irregular pairs of higher order
p-adically.

Definition 2.11. Let (p, l) ∈ Ψirr
n , n ≥ 1. We write

(p, s1, s2, . . . , sn) ∈ Ψ̂irr
n where l =

n∑
ν=1

sν ϕ(pν−1)

for the p-adic notation of (p, l) with 0 ≤ sν < p for ν = 1, . . . , n and 2 ≤ s1 ≤ p−3,
2 | s1. The corresponding set is denoted as Ψ̂irr

n , the map corresponding to λn is
given by

λ̂n : Ψ̂irr
n+1 → Ψ̂irr

n , (p, s1, s2, . . . , sn, sn+1) �→ (p, s1, s2, . . . , sn).

The pair (p, l) and the element (p, s1, s2, . . . , sn) are called associated.

Remark 2.12. The definition of Ψ̂irr
n means that we have Ψirr

1 = Ψ̂irr
1 for n = 1. For

n ≥ 2 we can define a map Ψirr
n → Ψ̂irr

n , (p, l) �→ (p, s1, . . . , sn) where the sk are
uniquely determined by the p-adic representation

l = s1 + (p − 1)ŝ, ŝ =
n−2∑
ν=0

sν+2 pν , 0 ≤ sν+2 < p

and by s1 ≡ l (mod p − 1) with 2 ≤ s1 ≤ p − 3. If sk = 0 with k ≥ 2, then there is
an irregular pair (p, lk) of order k with

(p, lk) ∈ Ψirr
k and (p, lk) ∈ Ψirr

k−1.

Note that (p, s1, s2, . . . , sn) is also called an irregular pair with (s1, s2, . . . , sn) as
the second parameter given p-adically.

3. Main results

Theorem 3.1. Let (p, l1) ∈ Ψirr
1 . If ∆(p,l1) �= 0, then for each n > 1 there exists

exactly one related irregular pair of order n. There is a unique sequence (ln)n≥1,
resp. (sn)n≥1, with

(p, ln) ∈ Ψirr
n , resp. (p, s1, . . . , sn) ∈ Ψ̂irr

n ,
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and
l1 ≤ l2 ≤ l3 ≤ · · · , lim

n→∞
ln = ∞.

Moreover one has
∆(p,l1) = ∆(p,l2) = ∆(p,l3) = · · · .

If ∆(p) = 1, then
i(p) = i2(p) = i3(p) = · · · .

Theorem 3.2. Let (p, ln) ∈ Ψirr
n , n ≥ 1 with ∆(p,ln) = 0. Then there are two cases:

(1) (p, ln) /∈ Ψirr
n+1: There are no related irregular pairs of order n + 1 and

higher.
(2) (p, ln) ∈ Ψirr

n+1: There exist p related irregular pairs of order n + 1 where
(p, ln+1,j) ∈ Ψirr

n+1 with ∆(p, ln+1,j) = 0 and ln+1,j = ln + jϕ(pn) for j =
0, . . . , p − 1.

The property of ∆(p, l), whether ∆(p, l) vanishes or not, is passed on to all related
irregular pairs of higher order. The case of a singular ∆(p, l) would possibly imply a
strange behavior without any regularity. By calculation in [2] up to p < 12 000 000,
no such ∆(p, l) was found. The following diagram illustrates both cases.

Diagram 3.3.

∆(p, l1) = 0
Ψirr

1

Ψirr
2

Ψirr
3

Ψirr
4

l1 l2 l3

�
��

�����

�

� � �

�
��

�
�

���� �

�
��

�
��

�
��

�
��� � � � � �

∆(p, l1) �= 0
Ψirr

1

Ψirr
2

Ψirr
3

Ψirr
4

l1 l2, l3 l4

�
��

�

�

�

�
���

Here a vertical line indicates that (p, ln) ∈ Ψirr
n ∩Ψirr

n+1 happens. On the left-hand
side we then have p related irregular pairs of order n + 1 which are represented by
branches. In this case the corresponding Bernoulli number B̂(ln) decides whether
there exist further branches or they stop. Instead of n the order of the p-power must
be at least n+1. This also means that an associated irregular pair (p, s1, . . . , sn+1) ∈
Ψ̂irr

n+1 must have a zero sn+1 = 0 each time. In contrast the right-hand side shows
that in the case of ∆(p,l1) �= 0 there is only one related irregular pair of each
higher order. If ∆(p) = 1, then higher powers pν are equally distributed among the
numerators of B̂(n). For each irregular pair considered, there exists exactly one
index nk,ν with nk,ν = n0,ν + kϕ(pν), k ∈ N0 in the disjoint intervals

(k ϕ(pν), (k + 1) ϕ(pν))

for which pν | B̂(nk,ν) is valid.
In [11, pp. 128–130] irregular pairs of order 10 were calculated for all irregular

primes p < 1000. These results are reprinted in Table A.3. In this table only one
irregular pair has a zero in its p-adic notation:

(157, 62, 40, 145, 67, 29, 69, 0, 87, 89, 21) ∈ Ψ̂irr
10 .
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Hence, one has with a relatively small index that

(157, 6 557 686 520 486) ∈ Ψirr
6 ∩ Ψirr

7 .

It seems that these zeros can be viewed as exceptional; see also Table A.2. It
would be of interest to investigate in which regions such indices may occur. This
could explain why no irregular pair (p, l) ∈ Ψirr

1 ∩ Ψirr
2 has yet been found, because

these regions are beyond present calculations. Here we have index 12 000 000 in
[2] against index 6 557 686 520 486. Because of the rare occurrence of zeros one can
expect that (p, l) ∈ Ψirr

1 ∩ Ψirr
2 , resp. p2 | B̂(l), will not happen often.

Another phenomenon is the occurrence of huge irregular prime factors. Wagstaff
[22] has completely factored the numerators of the Bernoulli numbers Bn with index
up to n = 152. Most of these irregular prime factors are large numbers, the greatest
factors have 30 up to 100 digits.

Finally, summarizing all facts together, the property ∆(p) = 1 can be viewed
as a structural property of the Bernoulli numbers. This leads us to the following
conjecture named by the author ∆-Conjecture.

Conjecture 3.4 (∆-Conjecture). For all irregular primes p the following proper-
ties, which are equivalent, hold:

(1) ∆(p, l) is nonsingular for all irregular pairs (p, l) ∈ Ψirr
1 ,

(2) ∆(p) = 1,
(3) i(p) = i2(p) = i3(p) = · · · .

Assuming the ∆-Conjecture one can also prove the existence of infinitely many
irregular primes using only information about the numerators of divided Bernoulli
numbers; see [11, Satz 2.8.2, p. 87]. Now we give the proofs of the theorems above.

Proposition 3.5. Let (p, ln) ∈ Ψirr
n , n ≥ 1 with ∆(p,ln) �= 0. Then there is exactly

one related irregular pair (p, ln+1) ∈ Ψirr
n+1 with ∆(p,ln) = ∆(p,ln+1).

Proof. We write ∆n = ∆(p,ln). Note that ln > 2 and p > 3. Define the sequence
(αj)j≥0 by

αj ≡ p−nB̂(ln + jϕ(pn)) (mod p2).
Using Corollary 2.5 with r = 3, ω = ϕ(pn), and m = ln + jϕ(pn) > 2, we have for
n(r − 1) ≥ 2 that

αj − 3αj+1 + 3αj+2 − αj+3 ≡ 0 (mod p2).

Taking differences with βj = αj+1 − αj yields

βj − 2βj+1 + βj+2 ≡ 0 (mod p2).

By Lemma 2.6 the sequence (βj)j≥0 is equidistant (mod p2). Proposition 2.7 shows
that the sequence (αj)j≥0 is equidistant (mod p). By definition we have βj ≡
∆n (mod p). Therefore, we can choose suitable γ, δ ∈ Z so that

αj+1 − αj ≡ βj ≡ ∆n + p (γ + jδ) (mod p2).

This yields

αj ≡ α0 +
j−1∑
ν=0

(∆n + p (γ + νδ))

≡ α0 + j∆n + jpγ +
(

j

2

)
pδ (mod p2).(3.1)
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From Proposition 2.7 we have

(3.2) s ≡ −α0 ∆−1
n (mod p), 0 ≤ s < p.

With ln+1 = ln+sϕ(pn) we obtain the unique related irregular pair (p, ln+1) ∈ Ψirr
n+1

of order n + 1. As a consequence of Lemma 2.6, we observe that

αs+jp ≡ 0 (mod p).

Thus we obtain a sequence (α′
j)j≥0 defined by

α′
j ≡ αs+jp/p ≡ p−(n+1)B̂(ln+1 + jϕ(pn+1)) (mod p)

which we can use to determine related irregular pairs of order n+2 using Proposition
2.7. By definition we have

∆n+1 ≡ α′
1 − α′

0 (mod p).

It follows from (3.1) that

p ∆n+1 ≡ p (α′
1 − α′

0) ≡ αs+p − αs

≡ p ∆n + p2 γ + p δ

((
s + p

2

)
−

(
s

2

))
≡ p ∆n (mod p2),

since (
s + p

2

)
−

(
s

2

)
=

1
2

p (p + 2s − 1).

Finally, we obtain the proposed equation ∆n+1 = ∆n. �

Proof of Theorem 3.1. Using Proposition 3.5 with induction on n provides

∆(p,l1) = ∆(p,l2) = ∆(p,l3) = · · ·

with exactly one related irregular pair of order n

(p, ln) ∈ Ψirr
n , resp. (p, s1, . . . , sn) ∈ Ψ̂irr

n .

The latter pair is given by Definition 2.11. Proposition 2.7 shows for each step n
that

(3.3) ln+1 = ln + sn ϕ(pn), 0 ≤ sn < p,

with a suitable integer sn. This ensures that l1 ≤ l2 ≤ l3 ≤ · · · as an increas-
ing sequence (lj)j≥1. Clearly, this sequence is not eventually constant, because
pn | B̂(ln) with 0 < |B̂(ln)| < ∞. Therefore limn→∞ ln = ∞.

Starting with (p, l1) ∈ Ψirr
1 this provides a unique sequence (lj)j≥1. If we have

another irregular pair (p, l′1) ∈ Ψirr
1 with ∆(p,l′1) �= 0 and (p, l1) �= (p, l′1), then

l′j �= lk for all j, k ∈ N,

because l′1 �≡ l1 (mod ϕ(p)) and l′1 ≡ l′j (mod ϕ(p)), resp. l1 ≡ lk (mod ϕ(p)), by
(3.3).

If ∆(p) = 1, then for each of the i(p) irregular pairs (p, l1,ν), ν = 1, . . . , i(p)
there exists exactly one related irregular pair of higher order. Finally, it follows
that i(p) = i2(p) = i3(p) = · · · and so on. �
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Proof of Theorem 3.2. Clearly, the (non) existence of related irregular pairs in case
(1), resp. (2), is given by Proposition 2.7 case (1), resp. (2). Hence, we only have to
show the remaining part of case (2). In this case we have p related irregular pairs
(p, ln+1,ν) = (p, ln +νϕ(pn)) ∈ Ψirr

n+1 of order n+1 with ν = 0, . . . , p−1. Although
∆(p,ln) = 0 we can use Proposition 3.5 by modifying essential steps. We then have

αj ≡ βj ≡ 0 (mod p).

Congruence (3.2) must be replaced by

(3.2′) s = 0, . . . , p − 1

since ∆(p,ln) = 0 yields p values of s. It follows that

∆(p,ln) = ∆(p,ln+1,ν ) = 0 for ν = 0, . . . , p − 1. �

4. A p-adic view

Let Zp be the ring of p-adic integers and Qp be the field of p-adic numbers. The
ultrametric absolute value | |p is defined by |x|p = p− ordp x on Qp. Define | |∞ as
the standard norm on Q. For n ≥ 1 we define ψn : Zp → Z giving the projection
of Zp onto the set [0, pn) ∩ Z so that for x ∈ Zp we have x − ψn(x) ∈ pnZp where
0 ≤ ψn(x) < pn. We denote P as the set of the rational primes. Now, we shall use
(1.2) to reformulate our results. Let (p, l) ∈ Ψirr

1 then

∆(p, l) ≡ ζ(1 − l) − ζ(1 − (l + p − 1))
p

(mod p)

with 0 ≤ ∆(p, l) < p.

Theorem 4.1. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. We define the sequence (ln)n≥1

recursively by l1 = l and, for n ≥ 1, by

ln+1 = ln + ϕ(p) ψn

(
ζ(1 − ln)
p ∆(p, l)

)
= ln + ϕ(pn) ψ1

(
ζ(1 − ln)
pn ∆(p, l)

)
.

Then we have ζ(1 − ln) ∈ pnZp and consequently

lim
n→∞

|ζ(1 − ln)|p = 0 with ln → ∞.

Proof. We rewrite our results using ζ(1− ln) = −B̂(ln). Theorem 3.1 provides one
and only one sequence (ln)n≥1 with l1 = l and (p, ln) ∈ Ψirr

n with ln → ∞. This
implies the p-adic convergence ζ(1 − ln) → 0. Additionally, from Proposition 2.7
we have

ln+1 = ln + s ϕ(pn)
for each step where

s ≡ −p−nB̂(ln) ∆−1
(p, l) (mod p), 0 ≤ s < p.

Rewriting the last congruence yields

s = ψ1

(
ζ(1 − ln)
pn ∆(p, l)

)
.

The rest follows by ψn(a pn−1) = pn−1 ψ1(a) for a ∈ Zp. �

These results can be also applied to the so-called p-adic zeta functions which were
originally defined by T. Kubota and H. W. Leopoldt [13] in 1964; for a detailed
theory see Koblitz [12, Chapter II]. We introduce some definitions.
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Definition 4.2. Let p be a prime. For n ≥ 1 define

ζp(1 − n) := (1 − pn−1) ζ(1 − n) = −(1 − pn−1) B̂(n).

Define the p-adic zeta function for p ≥ 5 and a fixed s1 ∈ {2, 4, . . . , p − 3} by

ζp, s1 : Zp → Zp, ζp, s1(s) := lim
tν→s

ζp

(
1 − (s1 + (p − 1)tν)

)
,

resp. for p ≥ 2 and s1 = 0 by

ζp, 0 : Zp \ {0} → Qp, ζp, 0(s) := lim
tν→s

ζp

(
1 − (p − 1)tν

)
,

for p-adic integers s by taking any sequence (tν)ν≥1 of nonnegative integers, resp.
positive integers in the case s1 = 0, which p-adically converges to s.

Remark 4.3. Let p ≥ 2 and s1 ≥ 0. The p-adic zeta function ζp, s1(s) interpolates
the zeta function ζp(1 − n) at nonnegative integer values s by

ζp, s1(s) = ζp(1 − n),

where n ≡ s1 (mod p − 1) and n = s1 + (p − 1)s.
Let p ≥ 5 and s1 �= 0. The Kummer congruences (1.3) state for r ≥ 1 that

ζp, s1(s) ≡ ζp, s1(s
′) (mod pr)

when s ≡ s′ (mod pr−1) for nonnegative integers s and s′. Since Z is dense in
Zp, the p-adic zeta function ζp, s1 extends uniquely, by means of the interpolation
property and the Kummer congruences, to a continuous function on Zp; see [12,
Thm. 8, p. 46].

Definition 4.4. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. Define a characteristic p-adic

integer which contains all information about irregular pairs of higher order by

χ(p, l) =
∑
ν≥0

sν+2 pν ∈ Zp,

where (sν)ν≥1 is the sequence defined by Theorem 3.1 and l = s1.

Lemma 4.5. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. Let r = ordp B̂(l) and (p, s1, . . . ,

sr+1) ∈ Ψ̂irr
r+1 be the related irregular pair of order r + 1. Then

sr+1 ∆(p, l) ≡ −p−r B̂(l) (mod p)

with s1 = l, sν = 0 for ν = 2, . . . , r, sr+1 �= 0. If r = 1, then χ(p, l) ∈ Z∗
p; otherwise,

χ(p, l) ∈ pr−1Zp for r ≥ 2.

Proof. Since r = ordp B̂(l) ≥ 1, we have (p, l) ∈ Ψirr
ν for all ν = 1, . . . , r. Then

Proposition 2.7 and Theorem 3.1 provide

s ≡ −p−rB̂(l) ∆−1
(p, l) (mod p), (p, l + s ϕ(pr)) ∈ Ψirr

r+1

with 0 ≤ s < p. We have s �= 0 since ordp (p−rB̂(l)) = 0. Let (p, s1, . . . , sr+1) ∈
Ψ̂irr

r+1 be the related irregular pair of order r + 1. Then we see that s1 = l, sr+1 =
s �= 0, and sν = 0 for ν = 2, . . . , r. By Definition 4.4 we have

χ(p, l) = s2 + s3 p + · · · + sr+1 pr−1 + · · · .

Case r = 1 yields s2 �= 0 and χ(p, l) ∈ Z∗
p; otherwise, case r ≥ 2 implies that

ordp χ(p, l) = r − 1 and χ(p, l) ∈ pr−1Zp. �
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Theorem 4.6. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. The p-adic zeta function ζp, l(s)

has a unique zero at s = χ(p, l).

Proof. From Theorem 3.1 we have a sequence (ln)n≥1 with l = l1. In view of
Definition 4.2, Theorem 4.1 also states that

lim
n→∞

|ζp(1 − ln)|p = 0 with ln → ∞.

We can transfer this result to the p-adic zeta function ζp, l by the interpolation
property. We see that p-adically

lim
n→∞

ln = l + (p − 1)χ(p, l).

Since the function ζp, l is continuous, the p-adic integer χ(p, l) is a zero of ζp, l. We
shall show that this zero is unique. Assume that ζp, l(ξ) = 0 with some ξ ∈ Zp.
We can use the arguments given above in the opposite direction. Since ζp, l is
continuous, there exists a sequence (l′n)n≥1 of positive integers with

lim
n→∞

l′n = l + (p − 1)ξ and lim
n→∞

|ζp(1 − l′n)|p = 0.

We can choose a subsequence (l′′n)n≥1 of (l′n)n≥1 such that ζp(1 − l′′n) ∈ pnZp. By
use of the Kummer congruences, we construct the sequence (l̃n)n≥1 where l̃n ≡
l′′n (mod ϕ(pn)) with l ≤ l̃n < ϕ(pn). Now we have (p, l̃n) ∈ Ψirr

n for all n ≥ 1.
Since l = l1 = l̃1, Theorem 3.1 shows that (ln)n≥1 = (l̃n)n≥1. This implies that
ξ = χ(p, l). �

Remark 4.7. Let (p, l)∈Ψirr
1 with ∆(p, l) �=0. The related irregular pair (p, s1, . . . , sr)

∈ Ψ̂irr
r is a p-adic approximation of the zero χ(p, l) of the p-adic zeta function ζp, l.

For the first irregular primes 37, 59, and 67 elements of Ψ̂irr
100 were calculated in

[11, pp. 127–128]. These results are reprinted in Table A.2. By Lemma 4.5 the
statement p2 � Bl is equivalent to the fact that χ(p, l) is a unit in Zp.

From now on, we shall assume the ∆-Conjecture. We shall see that the zeros
χ(p, l) play an important role in the representation of the Riemann zeta function at
odd negative integer arguments.

Theorem 4.8. Let n be an even positive integer. Under the assumption of the
∆-Conjecture we have

ζ(1 − n) = (−1)
n
2

∏
p−1|n

|n|p
p

∏
(p,l)∈Ψirr

1
l≡n (mod p−1)

p

|χ(p, l) − n−l
p−1 |p

.

Proof. Since both products above have only positive terms, the sign follows by (1.2).
The first product describes the denominator of ζ(1 − n) which is a consequence of
(1.4) and (1.5). We have to show that the second product describes the unsigned
numerator of ζ(1 − n) which only consists of powers of irregular primes. Let p be
an irregular prime divisor of ζ(1 − n). From Remark 2.2 we have

ordp B̂(n) = r =⇒ n ≡ lr (mod ϕ(pr)) with (p, lr) ∈ Ψirr
r .

The irregular pair (p, lr) of order r is related to some irregular pair (p, l) ∈ Ψirr
1

with ∆(p, l) �= 0, where l ≡ lr ≡ n (mod ϕ(p)). We also have by Definition 4.4 that

n ≡ lr ≡ l + (p − 1) χ(p, l) (mod (p − 1)pr−1Zp)
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and equally by reduction that

n − l

p − 1
≡ χ(p, l) (mod pr−1Zp).

The last congruence is not valid (mod prZp) by construction. Therefore∣∣∣∣χ(p, l) −
n − l

p − 1

∣∣∣∣
p

= p−(r−1)

which provides, with an additional factor p, the desired p-power in the second
product. Considering all irregular primes p which can appear, the second product
equals the numerator of ζ(1 − n) without sign. �

With some technical definitions we can combine both products of the theorem
above. This yields a more accessible representation of the Riemann zeta function
by means of p-adic analysis.

Theorem 4.9. Define Ψ0 = Ψirr
1 ∪ (P × {0}) and set χ(p, 0) = 0 for all p ∈ P.

Define ρ(l) = 1−2 sign(l) = ±1 for l ≥ 0. Let n be an even positive integer. Under
the assumption of the ∆-Conjecture we have

ζ(1 − n) = (−1)
n
2

∏
(p,l)∈Ψ0

l≡n (mod p−1)

(
|χ(p, l) − n−l

p−1 |p
p

)ρ(l)

.

Proof. We only have to consider case l = 0. Then we have p − 1 | n, ρ(0) = 1, and
|χ(p, 0) − n

p−1 |p = |n|p. The other case l > 0 is already covered by Theorem 4.8. �

We shall give an interpretation of this formula above in Remark 4.17 by means
of p-adic zeta functions. This generalization shows the significance of proving the
∆-Conjecture at all.

Theorem 4.10. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. Let s, t ∈ Zp. Then a strong

version of the Kummer congruences holds that

|ζp, l(s) − ζp, l(t)|p = |p (s − t)|p.
Moreover

ζp, l(s) − ζp, l(t)
p (s − t)

≡ −∆(p, l) (mod pZp) for s �= t

and
ζ ′p, l(s) ≡ −p ∆(p, l) (mod p2Zp).

Thus, ∆(p, l) is closely associated with the p-adic zeta function ζp, l in the non-
singular case ∆(p, l) �= 0. We will prove this theorem later.

Corollary 4.11. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. The p-adic zeta function ζp, l(s)

has a simple zero at s = χ(p, l). Moreover, for s ∈ Zp,

ζp, l(s) = p (s − χ(p, l)) ζ�
p, l(s)

where ζ�
p, l(s) is a continuous function on Zp with ζ�

p, l(s) ≡ −∆(p, l) (mod pZp).
Consequently,

|ζp, l(s)|p = |p (s − χ(p, l))|p.
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Proof. Theorem 4.6 shows that ζp, l(s) has a unique zero at s = χ(p, l). We can use
Theorem 4.10 to define

ζ�
p, l(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζp, l(s)

p(s − χ(p, l))
, s �= χ(p, l),

ζ ′p, l(s)
p

, s = χ(p, l).

Theorem 4.10 implies that ζ�
p, l(s) ≡ −∆(p, l) (mod pZp) for all s ∈ Zp. Hence

ζ�
p, l(s) has no zeros and consequently ζp, l(s) has a simple zero at s = χ(p, l). Since

ζp, l(s) is continuous on Zp and ζ ′p, l(s) exists at s = χ(p, l), the function ζ�
p, l(s)

is also continuous on Zp. Finally we obtain ζp, l(s) = p (s − χ(p, l)) ζ�
p, l(s) and

|ζp, l(s)|p = |p (s − χ(p, l))|p |ζ�
p, l(s)|p = |p (s − χ(p, l))|p. �

Definition 4.12. Let p be a prime. Define

ζ�
p, 0 : Zp → Zp, ζ�

p, 0(s) := − lim
tν→s

(1 − ptν(p−1)−1)
pBtν(p−1)

p − 1
for p-adic integers s by taking any sequence (tν)ν≥1 of nonnegative integers which
p-adically converges to s.

Proposition 4.13. Let p be a prime. The function ζ�
p, 0(s) is continuous on Zp\{0}

and satisfies the properties

ζ�
p, 0(0) = −1, ζ�

p, 0(s) = ps ζp, 0(s), s ∈ Zp \ {0}
and

lim
s→0

|ps ζp, 0(s) − ζ�
p, 0(0)|p < 1.

Moreover ζ�
p, 0(s) ≡ −1 (mod pZp) for s ∈ Zp in case p > 2 and s ∈ pZp in case

p = 2. Additionally, if p = 2, then ζ�
p, 0(s) = 0 for s ≡ 1 (mod pZp).

Proof. From Definition 4.2 and Definition 4.12 we have for s ∈ Zp \ {0} and any
sequence (tν)ν≥1 of positive integers which p-adically converges to s that

ps ζp, 0(s) = − lim
tν→s

(1 − ptν(p−1)−1)ps
Btν(p−1)

tν(p − 1)

= − lim
tν→s

(1 − ptν(p−1)−1)
pBtν(p−1)

p − 1
= ζ�

p, 0(s).

Moreover we have

ζ�
p, 0(0) = −(1 − p−1) pB0/(p − 1) = −1.

By Clausen–von Staudt (1.4) we obtain ζ�
p, 0(s) ≡ −1 (mod pZp) for s ∈ Zp in case

p > 2 and s ∈ pZp in case p = 2. Additionally we have ζ�
2, 0(s) = 0 for s ∈ 1 + 2Z2,

since ζ�
2, 0(1) = −(1 − 20) 2B1 = 0 and Bn = 0 for all odd integers n > 1. We use

the fact that ζp, 0 : Zp → Qp is a continuous function on Zp \ {0}; see [12, Thm. 8,
p. 46]. Hence ζ�

p, 0(s) = ps ζp, 0(s) is also continuous on Zp \{0}. It remains to show
that

lim
s→0

|ps ζp, 0(s) − ζ�
p, 0(0)|p < 1.

We can choose a zero sequence (sν)ν≥1 where its elements are arbitrarily close to
0, say 0 < |sν |p < p−r with some positive integer r. Then we deduce that

psν ζp, 0(sν) − ζ�
p, 0(0) ≡ ζ�

p, 0(sν) + 1 ≡ 0 (mod pZp)
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for all ν ≥ 1. This implies, together with the continuity of ps ζp, 0(s), the estimate
above. �

Corollary 4.14. Let p be a prime. The p-adic zeta function ζp, 0(s) has a simple
pole at s = 0. Moreover, for s ∈ Zp \ {0},

ζp, 0(s) = ζ�
p, 0(s)/(ps).

Consequently,
|ζp, 0(s)|p = |ps|−1

p

for s ∈ Zp \ {0} in case p > 2 and s ∈ pZp \ {0} in case p = 2.

Proof. By Proposition 4.13 we can write ζp, 0(s) = ζ�
p, 0(s)/(ps) for s ∈ Zp \ {0}.

Moreover lims→0 ps ζp, 0(s) = ξ with |ξ − ζ�
p, 0(0)|p < 1. This implies that the limit

lims→0 ζp, 0(s) does not exist and that ζp, 0(s) has a simple pole at s = 0. We have
|ζ�

p, 0(s)|p = 1 for s ∈ Zp \ {0} in case p > 2 and s ∈ pZp \ {0} in case p = 2. In
these cases we then obtain |ζp, 0(s)|p = |ps|−1

p . �

Remark 4.15. One can show even further that ζ�
p, 0(s) is continuous on Zp where

lims→0 ζ�
p, 0(s) = ζ�

p, 0(0); moreover ζ�
p, 0(s) satisfies the Kummer congruences. This

can be derived, e.g., by means of p-adic integration (see Koblitz [12, pp. 42–46]) or
by using certain congruences of Carlitz [5].

Theorem 4.16. Define Ψ0 = Ψirr
1 ∪ (P × {0}) and set χ(p, 0) = 0 for all p ∈ P.

Define sp, l(n) = (n − l)/(p − 1). Let n be an even positive integer. Then

|ζ(1 − n)|∞ =
∏
p∈P

l≡n (mod p−1)

|ζp, l(sp, l(n))|−1
p =

∏
(p,l)∈Ψ0

l≡n (mod p−1)

|ζp, l(sp, l(n))|−1
p .

Under the assumption of the ∆-Conjecture we have

|ζ(1 − n)|∞ =
∏

(p,l)∈Ψirr
1

l≡n (mod p−1)

|p(sp, l(n) − χ(p, l))|−1
p

/ ∏
p−1|n

|p(sp, 0(n) − χ(p, 0))|−1
p .

Proof. Since n is an even positive integer, the product formula states that∏
p∈ P∪{∞}

|ζ(1 − n)|p = 1.

By Definition 4.2 we have |ζ(1 − n)|p = |ζp, l(s)|p where l ≡ n (mod p − 1) with
0 ≤ l < p − 1 and s = sp, l(n) = (n − l)/(p − 1). Thus

|ζ(1 − n)|−1
∞ =

∏
p∈ P

|ζ(1 − n)|p =
∏
p∈P

l≡n (mod p−1)

|ζp, l(sp, l(n))|p .

We have |ζp, l(s)|p = 1 for s ∈ Zp if (p, l) /∈ Ψirr
1 and l �= 0. Hence∏

p∈P

l≡n (mod p−1)

|ζp, l(sp, l(n))|p =
∏

(p,l)∈Ψ0
l≡n (mod p−1)

|ζp, l(sp, l(n))|p .

Next we assume the ∆-Conjecture. By Corollary 4.11 we then have for (p, l) ∈ Ψirr
1

that |ζp, l(s)|p = |p (s − χ(p, l))|p for s ∈ Zp. Without any assumption, Corollary
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4.14 shows that |ζp, 0(s)|p = |ps|−1
p = |p(s−χ(p, 0))|−1

p for s ∈ Zp \ {0} in case p > 2
and s ∈ pZp \ {0} in case p = 2. Since n is even and s2, 0(n) = n, we finally obtain∏

(p,l)∈Ψ0
l≡n (mod p−1)

|ζp, l(sp, l(n))|p =
∏

(p,l)∈Ψirr
1

l≡n (mod p−1)

|p(sp, l(n) − χ(p, l))|p
∏

p−1|n
|p(sp, 0(n) − χ(p, 0))|−1

p .

�

Remark 4.17. Assuming the ∆-Conjecture, the numerator of |ζ(1−n)|∞ with even
n > 0 is essentially described by simple zeros χ(p, l) of p-adic zeta functions ζp, l(s)
where l ≡ n (mod p− 1) and (p, l) ∈ Ψirr

1 . More precisely, by the variable substitu-
tion s = (n − l)/(p − 1), the term

|p(s − χ(p, l))|−1
p

is equal to pr for some suitable r > 0 which is the p power factor in the numerator
of |ζ(1 − n)|∞. The term above is induced by

|ζp, l(s)|p = |p(s − χ(p, l))|p = p−1|(s − χ(p, l))|p .

Since χ(p, l) is a simple zero of ζp, l(s), |ζp, l(s)|p is determined mainly by a linear
factor that one can also interpret as a distance between s and χ(p, l).

Similar arguments can be applied to the denominator of |ζ(1 − n)|∞. Without
any assumption, the denominator of |ζ(1 − n)|∞ is essentially described by simple
poles χ(p, 0) of p-adic zeta functions ζp, 0(s) where p − 1 | n. Again, the term

|p(s − χ(p, 0))|−1
p

is equal to pr for some suitable r > 0 which is the p power factor in the denominator
of |ζ(1 − n)|∞. This term is induced by

|ζp, 0(s)|p = |p(s − χ(p, 0))|−1
p = p |(s − χ(p, 0))|−1

p ,

where ζp, 0(s) has a simple pole at s = χ(p, 0).

Now we shall make some preparations to give later a proof of Theorem 4.10.

Definition 4.18. Define the linear finite-difference operator D and its powers by

Drf(s) =
r∑

ν=0

(
r

ν

)
(−1)νf(s + ν)

for r ≥ 0 and any function f : Zp → Zp. The series

f(s) =
∑
ν≥0

aν

(
s

ν

)
with coefficients aν ∈ Zp where |aν |p → 0 is called a Mahler series which defines a
continuous function f : Zp → Zp.

The following theorem of Mahler shows that the converse also holds; see [17,
Thm. 1, p. 173]. Note that the sign (−1)ν depends on the definition of D.

Theorem 4.19 (Mahler). Let f : Zp → Zp be a continuous function. Then f has
a Mahler series

f(s) =
∑
ν≥0

aν

(
s

ν

)
,

where the coefficients aν are given by aν = (−1)ν Dνf(0) and |aν |p → 0 holds.
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Definition 4.20. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. For n ≥ 1 define the p-adic

zeta function of order n by

ζp, l, n(s) = p−n ζp, l

(
ψn−1(χ(p, l)) + pn−1s

)
, s ∈ Zp,

which for s = 0 corresponds to the related irregular pair of order n.

Proposition 4.21. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. For positive integers n, r we

have

(4.1) Dr+1ζp, l, n(s) ≡ 0 (mod pnrZp), s ∈ Zp,

and

(4.2) ζp, l, n(s) ≡ ζp, l, n(t) (mod prZp), s, t ∈ Zp,

when s ≡ t (mod prZp).

Proof. First assume that s ∈ N0. In analogy to Corollary 2.5, we have to modify
Theorem 2.4 in a similar way, since ζp, l, n(0) corresponds to the related irregular pair
of order n. Rewriting (2.2) in the case k = 1 gives (4.1). Since Z is dense in Zp, we
can extend (4.1) to values s ∈ Zp by means of the interpolation property of ζp, l, resp.
ζp, l, n. By the same arguments, the Kummer congruences, given in Remark 4.3, can
be extended to values in Zp. Let s ≡ t (mod prZp) and write s′ = ψn−1(χ(p, l)) +
pn−1s and t′ = ψn−1(χ(p, l)) + pn−1t. Then s′ ≡ t′ (mod pr+n−1Zp) and therefore
ζp, l(s′) ≡ ζp, l(t′) (mod pr+nZp). By Definition 4.20 this gives (4.2). �

Proposition 4.22. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. For n ≥ 1 we have

ζp, l, n(s) ≡ ∆(p, l) (sn+1 − s) (mod pZp), s ∈ Zp,

where sn+1 is defined by χ(p, l) = s2 +s3 p+ · · · . There exists the Mahler expansion

ζp, l, n(s) = ζp, l, n(0) +
∑
ν≥1

pn(ν−1)zν

(
s

ν

)
, s ∈ Zp,

with zν ∈ Zp where zν = (−1)νp−n(ν−1) Dνζp, l, n(0) and z1 ≡ −∆(p, l) (mod pZp).

Proof. Proposition 2.7 also works with αj ≡ ζp, l, n(j) (mod pZp) for j ∈ N0. Since
ζp, l, n(0) corresponds to the related irregular pair of order n, we then have

ζp, l, n(0) ≡ ∆(p, l) sn+1 (mod pZp),

where sn+1 is given by Definition 4.4. A further consequence of Proposition 2.7,
extended to s ∈ Zp, is that

(4.3) D ζp, l, n(s) ≡ ∆(p, l) (mod pZp)

and furthermore

ζp, l, n(s) ≡ ∆(p, l) (sn+1 − s) (mod pZp).

By construction ζp, l, n is continuous; this is also a consequence of (4.2). Theorem
4.19 shows that ζp, l, n has a Mahler series with the coefficients aν =(−1)νDνζp, l, n(0)
for ν ≥ 0. Using (4.1) we see that aν ∈ pn(ν−1)Zp for ν ≥ 1. Thus, we can set
zν = p−n(ν−1)aν for ν ≥ 1 to obtain the proposed series expansion above. From
(4.3) we deduce that z1 ≡ −∆(p, l) (mod pZp). �
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Corollary 4.23. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. Let

ζp, l, 1(s) = ζp, l, 1(0) +
∑
ν≥1

pν−1zν

(
s

ν

)
, s ∈ Zp,

be the Mahler expansion of ζp, l, 1 given by Proposition 4.22. We have for r ≥ 1 that

ζp, l(s) ≡ ζp, l(0) +
r−1∑
ν=1

pνzν

(
s

ν

)
(mod prZp), s ∈ Zp.

Special cases are given by

ζp, l(0) = −
∑
ν≥1

pνzν

(
χ(p, l)

ν

)
and for r ≥ 1 :

ζp, l(0) ≡ −
r−1∑
ν=1

pνzν

(
χ(p, l)

ν

)
(mod prZp).

Proof. We rewrite the Mahler expansion above using ζp, l, 1(s) = p−1ζp, l(s), which
yields

ζp, l(s) = ζp, l(0) +
∑
ν≥1

pνzν

(
s

ν

)
, s ∈ Zp.

By the assumption ∆(p, l) �= 0 we have the zero χ(p, l) of ζp, l. The finite sums follow
easily (mod prZp), since the coefficients pνzν vanish for ν ≥ r. �

Hence, we can use Corollary 4.23 to verify calculations of the coefficients zν and
of the zero χ(p, l). Now, we are almost ready to prove Theorem 4.10; we first recall
the following lemma from [17, p. 227].

Lemma 4.24. For k ≥ 1 and pj ≤ k < pj+1, we have∣∣∣∣(s

k

)
−

(
t

k

)∣∣∣∣
p

≤ pj |s − t|p, s, t ∈ Zp.

Proof of Theorem 4.10. Let s, t ∈ Zp with s �= t and set r = ordp(s− t) ≥ 0. Then
we have by the Kummer congruences that

(4.4) s ≡ t (mod prZp) =⇒ ζp, l(s) ≡ ζp, l(t) (mod pr+1Zp).

We show that

(4.5)
ζp, l(s) − ζp, l(t)

p (s − t)
≡ −∆(p, l) (mod pZp) for s �= t

which also implies the converse to (4.4). Set n = min {ordp ζp, l(s), ordp ζp, l(t)}
where n ≥ 1. By Definition 4.20 we rewrite s = ψn−1(χ(p, l)) + pn−1 s′ and t =
ψn−1(χ(p, l)) + pn−1 t′ with some s′, t′ ∈ Zp. Set u = r + 1 − n ≥ 0. Note that
ordp(s′ − t′) = u. By the implication in (4.4) we then have

p−n(ζp, l(s) − ζp, l(t)) ≡ ζp, l, n(s′) − ζp, l, n(t′) ≡ puc (mod pu+1Zp)



424 BERND C. KELLNER

with some integer c. On the other side, we can use the Mahler expansion of ζp, l, n

given by Proposition 4.22. We obtain

ζp, l, n(s′) − ζp, l, n(t′) ≡ z1 (s′ − t′) + pn z2

[(
s′

2

)
−

(
t′

2

)]
+ p2n z3

[(
s′

3

)
−

(
t′

3

)]
+ · · · (mod pu+1Zp).

Since ordp(s′ − t′) = u, Lemma 4.24 shows that

ordp

[(
s′

k

)
−

(
t′

k

)]
≥ u − �logp k,

where logp is the real-valued logarithm with base p. Since we have p ≥ 5 we obtain
the estimate

ordp

(
pn(k−1)zk

[(
s′

k

)
−

(
t′

k

)])
≥ u + n(k − 1) − �logp k ≥ u + 1

for all k ≥ 2. Hence, all terms vanish (mod pu+1) except for k = 1:

ζp, l, n(s′) − ζp, l, n(t′) ≡ z1 (s′ − t′) (mod pu+1Zp).

By Proposition 4.22 and ordp(s′ − t′) = u we finally get

z1 (s′ − t′) ≡ −∆(p, l)(s′ − t′) ≡ puc (mod pu+1Zp)

which shows that c �≡ 0 (mod p). Since p−n+1 (s − t) = s′ − t′, this deduces (4.5).
Now, we have to determine the derivative of ζp, l. Taking any sequence (tν)ν≥1

with tν �= s for all ν ≥ 1 and limν→∞ tν = s, (4.5) yields the derivative with

ζ ′p, l(s) ≡ −p ∆(p, l) (mod p2Zp). �

Remark 4.25. In general the converse of the Kummer congruences does not hold.
The first nontrivial counterexample is given by p = 13 and B16/16 − B4/4 =
−7 · 132/2720. The only case where the divided Bernoulli numbers are equal is
B14/14 − B2/2 = 0.

At the end of this section we revisit the p-adic zeta functions ζp, s1 in the case
s1 �= 0 as introduced by Definition 4.2. We can transfer some results to these
functions. Moreover, we can state a formula equivalent to the Kummer congruences,
but it involves values of p-adic zeta functions at the smallest possible argument
values.

Proposition 4.26. Let p be a prime with p ≥ 5 and s1 ∈ {2, 4, . . . , p− 3} be fixed.
Then

(4.6) Drζp, s1(s) ≡ 0 (mod prZp), s ∈ Zp.

There exists the Mahler expansion

(4.7) ζp, s1(s) = ζp, s1(0) +
∑
ν≥1

pνzν

(
s

ν

)
, s ∈ Zp,

with zν ∈ Zp where zν = (−1)νp−ν Dνζp, s1(0).

Proof. In analogy to Propositions 4.21 and 4.22 in the case n = 1, congruence (4.6)
is a consequence of Theorem 2.4. Since ζp, s1 is a continuous function on Zp, we
obtain a Mahler expansion where the proposed coefficients follow by (4.6). �
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Theorem 4.27. Let p be a prime with p ≥ 5 and s1 ∈ {2, 4, . . . , p − 3} be fixed.
For r ≥ 0 we have

ζp, s1(s) ≡
r∑

k=0

ζp, s1(k) Tr,k(s) (mod pr+1Zp), s ∈ Zp,

where the polynomials Tr,k : Zp → Zp with Tr,k ∈ Q[x] and deg Tr,k = r are given
by

Tr,k(x) =
r∑

j=k

(−1)j+k

(
j

k

)(
x

j

)
.

Proof. We rewrite the Mahler expansion of ζp, s1 given in (4.7). Let s ∈ Zp. For
r ≥ 0 we obtain the finite expansion

ζp, s1(s) ≡ ζp, s1(0) +
r∑

ν=1

pνzν

(
s

ν

)
≡

r∑
j=0

(−1)j Djζp, s1(0)
(

s

j

)
(mod pr+1Zp).

By Definition 4.18 we have

Djζp, s1(0) =
j∑

k=0

(
j

k

)
(−1)kζp, s1(k) =

r∑
k=0

(
j

k

)
(−1)kζp, s1(k).

Reordering the finite sums and terms yields the definition of Tr,k above. Since x �→(
x
j

)
, which is a polynomial of degree j, defines a function on Zp, the polynomials Tr,k

are functions on Zp. The coefficients of Tr,k are rational; e.g., rewrite Tr,r(x) =
(
x
r

)
as a polynomial in x. We deduce that deg Tr,k = r, because the term

(
x
r

)
which

occurs only once gives the maximal degree. �

Corollary 4.28. Let n be an even positive integer and p be a prime where p−1 � n.
Define the integer s1 by s1 ≡ n (mod p − 1) with 0 < s1 < p − 1. Set s =
(n − s1)/(p − 1). For r ≥ 1 we have

(1 − pn−1)B̂(n) ≡
r−1∑
k=0

(1 − ps1+k(p−1)−1)B̂(s1 + k(p − 1)) Tr−1,k(s) (mod prZp)

with Tr,k as defined above.

Proof. This is a reformulation of Theorem 4.27 using Definition 4.2 where
s1 + s(p − 1) = n. �

Remark 4.29. The case r = 1 of Corollary 4.28 reduces to a special case of the
Kummer congruences (1.3) for r = 1. We explicitly give the cases r = 2, 3, 4 of
Corollary 4.28. Note that s1 ≥ 2 and p ≥ 5. Case r = 2:

(1 − pn−1)B̂(n) ≡ −(s − 1) (1 − ps1−1)B̂(s1) + s B̂(s1 + p − 1) (mod p2Zp).

Case r = 3:

(1 − pn−1)B̂(n) ≡ +
1
2
(s2 − 3s + 2) (1 − ps1−1)B̂(s1)

− s(s − 2) B̂(s1 + p − 1)

+
1
2
s(s − 1) B̂(s1 + 2(p − 1)) (mod p3Zp).
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Case r = 4:

(1 − pn−1)B̂(n) ≡ −1
6
(s3 − 6s2 + 11s − 6) (1 − ps1−1)B̂(s1)

+
1
2
s(s2 − 5s + 6) B̂(s1 + p − 1)

− 1
2
s(s2 − 4s + 3) B̂(s1 + 2(p − 1))

+
1
6
s(s − 1)(s − 2) B̂(s1 + 3(p − 1)) (mod p4Zp).

5. Algorithms

Here we will give some algorithms for calculating irregular pairs of higher order
assuming we are in the nonsingular case ∆(p, l) �= 0. As a result of Theorems 3.1
and 4.1, one must first calculate ∆(p, l), then the irregular pair of order n, resp. the
corresponding divided Bernoulli number, provides the next related irregular pair
of order n + 1. This is not practicable for higher orders, say n > 3. Proposition
2.10 shows a more effective way of determining related irregular pairs of higher
order. Starting from an irregular pair (p, l) ∈ Ψirr

n with n ≥ 1 and requiring that
l > (r − 1)n with some r ≥ 2 we can obtain a related irregular pair (p, l′) ∈ Ψirr

rn.
If the corresponding sequence (αj)j≥0 is equidistant (mod p(r−1)n), then one can
easily apply this proposition. If not, one has to calculate successively all elements
αj in order to find αs ≡ 0 (mod p(r−1)n), where 0 ≤ s < p(r−1)n, which exists
uniquely by the assumption ∆(p, l) �= 0. To shorten these calculations, this search
can be accomplished step by step, moving each time from a sequence (αj,k)j≥0 to a
sequence (αj,k+1)j≥0 which are assigned to the irregular pair of order k, resp. k+1.

Proposition 5.1. Let (p, l) ∈ Ψirr
n , n ≥ 1, with ∆(p, l) �= 0. Let r, u be positive

integers with r > 1 and u = (r − 1)n. Assume that l > u. Let the elements

αj,0 ≡ p−nB̂(l + jϕ(pn)) (mod pu), j = 0, . . . , r − 1,

be given. For each step k = 0, . . . , u − 1 proceed as follows.
The elements αj,k with j = 0, . . . , rp − 1 have to be calculated successively by

αj+r,k ≡ (−1)r+1
r−1∑
ν=0

(
r

ν

)
(−1)ναj+ν,k (mod pu−k).

Set sk ≡ −α0,k ∆−1
(p, l) (mod p) with 0 ≤ sk < p. The elements αj,k, which are

divisible by p, are given by

αsk+µp,k ≡ 0 (mod p), µ = 0, . . . , r − 1.

For k < u − 1, set

αj,k+1 = αsk+jp,k/p, j = 0, . . . , r − 1,

and go to the next step k + 1; otherwise, stop. Let (p, t1, . . . , tn) ∈ Ψ̂irr
n be the

associated irregular pair with (p, l), then

(p, t1, . . . , tn, s0, . . . , su−1) ∈ Ψ̂irr
rn

is the only related irregular pair of order rn.
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Proof. Proposition 2.10 shows that

(5.1)
r∑

ν=0

(
r

ν

)
(−1)ναj+ν,0 ≡ 0 (mod pu).

All elements of the sequence (αj,0)j≥0 can be calculated successively; this sequence
is induced by the first elements αj,0 with j = 0, . . . , r− 1. Using Corollary 2.5 with
ω = pkϕ(pn), 0 ≤ k < u, (5.1) then becomes

(5.2)
r∑

ν=0

(
r

ν

)
(−1)ναj+νpk,0 ≡ 0 (mod pu),

whereby the sequence (αj+µpk,0)µ≥0 can also be calculated successively. Note that
now j is fixed and µ runs. The sequences (αj,k)j≥0, which we will consider, are
subsequences of (αj,0)j≥0 in a suitable manner. Essentially, these sequences are
given by (5.2). The existence of these sequences and that they correspond to the
related irregular pair of order n + k will be shown by induction on k for k =
0, . . . , u − 1. Set ln = l. By Proposition 2.7 and Theorem 3.1 there exist certain
integers sk and related irregular pairs of higher order for k = 0, . . . , u − 1 where

(p, ln+k+1) ∈ Ψirr
n+k+1, ln+k+1 = ln+k + sk ϕ(pn+k) with 0 ≤ sk < p.

Basis of induction k = 0: The sequence (αj,0)j≥0 is given by (5.1) and we have

αj,0 ≡ p−n B̂(ln + jϕ(pn)) (mod pu).

Inductive step k �→ k + 1: Assume this is true for k prove for k + 1. The elements
αj,k with j = 0, . . . , r − 1 are given and the following elements are calculated by

(5.3) αj+r,k ≡ (−1)r+1
r−1∑
ν=0

(
r

ν

)
(−1)ναj+ν,k (mod pu−k)

up to index j = rp − 1. Proposition 2.7 provides

(5.4) sk ≡ −α0,k∆−1
(p, l) (mod p) with 0 ≤ sk < p.

In the case k < u − 1, Lemma 2.6 additionally ensures that only αsk+jp,k ≡
0 (mod p) for all j. Thus, we can define a new sequence by

αj,k+1 ≡ αsk+jp,k/p

≡ p−(n+k+1) B̂(ln+k + (sk + jp)ϕ(pn+k))

≡ p−(n+k+1) B̂(ln+k+1 + jϕ(pn+k+1)) (mod pu−(k+1))(5.5)

for j = 0, . . . , r− 1. By definition (p αj,k+1)j=0,...,r−1 is a subsequence of (αj,k)j≥0.
Inductively (pk+1 αj,k+1)j=0,...,r−1 is a subsequence of (αj,0)j≥0 and satisfies (5.2)
in a suitable manner and therefore also (5.3) considering case k + 1. On the other
side, congruence (5.5) shows that the new sequence also corresponds to the related
irregular pair of order n + k + 1.

Let (p, t1, . . . , tn) ∈ Ψ̂irr
n be the associated irregular pair with (p, l). Congruence

(5.4) provides a unique integer sk for each step. Thus, (p, t1, . . . , tn, s0, . . . , su−1) ∈
Ψ̂irr

rn is the only related irregular pair of order rn. �

Remark 5.2. Unfortunately, Proposition 5.1 has the restriction that for an irregular
pair (p, l) ∈ Ψirr

n of order n and parameter r it must hold that

l > (r − 1)n.
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Consider (691, 12) ∈ Ψirr
1 . In this case one only could calculate related irregular

pairs up to order 12. However, this restriction can be removed by shifting the index
of the starting sequence (αj,0)j≥0. Then shifting j �→ j + t yields

l + t ϕ(pn) > (r − 1)n

enabling one to choose a greater value of r. In general, one has to proceed as follows.
Moving from a sequence (αj,k)j≥0 to (αj,k+1)j≥0, one has to determine elements
αj,k ≡ 0 (mod p). If one starts with a shifted sequence (α′

j,k)j≥0 = (αj,k)j≥t having
elements αj,k ≡ 0 (mod p) with 0 ≤ j < t, then the calculated sequence (α′

j,k+1)j≥0

is also shifted in the index compared to (αj,k+1)j≥0. This can be easily corrected by
comparing the sequences, resp. the resulting integers sk, with unshifted sequences
calculated with a lower r′ < r. In this case determining the integer sk is better
done by searching αj,k ≡ 0 (mod p) rather than calculating via (5.4).

The main result can be stated as follows. Irregular pairs of higher order can
be determined with little effort by calculating a small number of divided Bernoulli
numbers with small indices. We shall give another algorithm in terms of the p-adic
zeta function ζp, l which produces a truncated p-adic expansion of χ(p, l).

Proposition 5.3. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. Let n be a positive integer.

Initially calculate the values

ζp, l, 1(k) ≡ p−1ζp, l(k) (mod pnZp)

for k = 0, . . . , n and

∆(p, l) ≡ ζp, l, 1(0) − ζp, l, 1(1) (mod pZp)

where 0 < ∆(p, l) < p. Set t1 = 0. For each step r = 1, . . . , n proceed as follows.
Calculate

ξr ≡
r∑

k=0

ζp, l, 1(k) Tr,k(tr) (mod prZp)

with the polynomials Tr,k as defined in Theorem 4.27. Then ξr ∈ pr−1Zp. Set

sr+1 ≡ ∆−1
(p, l) p1−r ξr (mod pZp)

where 0 ≤ sr+1 < p. Set tr+1 = tr + sr+1 pr−1 and go to the next step while r < n.
Finally tn+1 ≡ χ(p, l) (mod pnZp).

Proof. By Definition 4.20 we have ζp, l, 1(k) = p−1ζp, l(k). The value ∆(p, l) is given
by its definition. Define t′r = ψr−1(χ(p, l)) for any r ≥ 1 where the expansion of the
zero of ζp, l is given by

χ(p, l) = s2 + s3 p + · · · + sr+1 pr−1 + · · · .

For now, let r ∈ {1, . . . , n} be fixed. Theorem 4.27 provides

ζp, l, 1(s) ≡
r∑

k=0

ζp, l, 1(k) Tr,k(s) (mod prZp)

for s ∈ Zp. From Definition 4.20 we have

ζp, l, r(0) = p−rζp, l(ψr−1(χ(p, l))) = p1−rζp, l, 1(t′r).

Proposition 4.22 shows that

ζp, l, r(0) ≡ ∆(p, l) sr+1 (mod pZp).
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By construction we have t′r+1 = t′r + sr+1 pr−1. Since t′1 = t1 = 0 we deduce by
induction on r that t′r = tr and ξr ≡ ζp, l, 1(t′r) (mod prZp) for 1 ≤ r ≤ n. This
produces tn+1 = ψn(χ(p, l)) which is equal to tn+1 ≡ χ(p, l) (mod pnZp). Since
1 ≤ r ≤ n, we need the values ζp, l, 1(k) (mod pnZp) for k = 0, . . . , n. �
Proposition 5.4. Let n be an even positive integer, then

Bn = (−1)
n
2 −1

∏
p−1�n

pτ(p,n)+ordp n
/ ∏

p−1|n
p

where

τ (p, n) :=
∞∑

ν=1

#( Ψirr
ν ∩ {(p, n mod ϕ(pν))} ).

Here, as in Definition 2.1, x mod y denotes the least nonnegative residue of x
modulo y.

Proof. The trivial parts of the products above are given by (1.4), (1.5), and the sign.
Thus, the product

∏
p−1�n pτ(p,n) remains. From Definition 2.1 and Remark 2.2, the

function τ (p, n) follows by applying the maps λν , resp. the Kummer congruences,
which results in a chain of related irregular pairs of descending order similar to
(2.1). �

Proposition 5.4 gives an unconditional representation of the Bernoulli numbers
by means of the sets Ψirr

ν . Theorem 4.8 also gives a representation by zeros χ(p, l)

assuming the ∆-Conjecture. Of course, the problem of determining the occurring
irregular prime factors remains open. On the other side, for instance, if one has
calculated the first irregular pairs of order 10 for the first irregular primes p1, . . . , pr,
as in Table A.3, then one can specify ad hoc all irregular prime powers peν

ν with
pν ≤ pr of Bn, resp. ζ(1 − n), up to index n = 4·1015. Note that the lower bound
is determined here by the first irregular prime 37 and order 10.

Define for positive integers n and m the summation function of consecutive
integer powers by Sn(m) =

∑m−1
ν=0 νn. Many congruences concerning the function

Sn are naturally related to the Bernoulli numbers.

Proposition 5.5. Let (p, l) ∈ Ψirr
1 . Assume that n ≡ l (mod p − 1) where n > 0,

then

(5.6)
Bn

n
≡ Sn(p)

n p
(mod p2).

Moreover

(5.7) ∆(p, l) ≡ p−2

(
Sl+p−1(p)

l − 1
− Sl(p)

l

)
(mod p)

with 0 ≤ ∆(p, l) < p.

Proof. Let n ≡ l (mod p − 1). The well-known formula of Sn (see [9, p. 234]) is
given by

(5.8)
Sn(p)
n p

=
Bn

n
+

(
n − 1

1

)
Bn−2

p2

2 · 3 +
n∑

k=3

(
n − 1
k − 1

)
Bn−k

pk

k(k + 1)
,

where the equation is divided by n and p. Note that p ≥ 37 and n ≥ l ≥ 12
(see Tables A.1 and A.3), because 37 is the first irregular prime and B12/12 is the
first divided Bernoulli number which has a numerator greater than one. Now, the
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properties of (1.4) and (1.5) provide that Bn/n and Bn−2 are p-integral. For the
other terms with Bn−k �= 0 it follows that pBn−k is p-integral and ordp (pk−1/(k(k+
1))) ≥ 2 by a standard counting argument. Therefore, equation (5.8) is p-integral
and holds (mod p2) whereas all terms of the right-hand side vanish except for Bn/n.
This gives congruence (5.6). From Definition 2.3 we have

p ∆(p, l) ≡ B̂(l + p − 1) − B̂(l) (mod p2).

We can apply (5.6) in the congruence above. Reducing a p-power and considering
that l + p − 1 ≡ l − 1 �≡ 0 (mod p) finally yields (5.7). �

Looking at each line of Table A.3, the product of the first three entries ∆(p, l),
s1, and s2 are connected with the function Sn. Thus, one can easily verify these
values.

Proposition 5.6. Let (p, l) ∈ Ψirr
1 with ∆(p, l) �= 0. Let (p, s1, s2) ∈ Ψ̂irr

2 be the
related irregular pair of order two with l = s1. Then

∆(p, l) s1 s2 ≡ −p−2 Sl(p) (mod p).

Proof. By Proposition 2.7 we have

s2 ≡ −p−1 Bl

l
∆−1

(p, l) (mod p).

We then obtain by Proposition 5.5 that

p s2 ∆(p, l) ≡ −Bl

l
≡ −Sl(p)

l p
(mod p2),

which deduces the result since s1 = l < p. �

Now, we shall give some reasons why a prediction or description of the occurrence
of irregular prime factors of Bernoulli numbers seems to be impossible in general.
For example, we have with an extremely small index n = 42 that

B42 =
1520097643918070802691

1806
,

observing that the numerator is a large irregular prime! As mentioned in Section
3, Bernoulli numbers Bn with an index up to n = 152 have large irregular prime
factors with 30 up to 100 digits. This is even now the greatest mystery of the
Bernoulli numbers!

The connection with the Riemann zeta function ζ(s) via (1.1) leads to methods
of calculating Bernoulli numbers directly in a fast and effective way (see [11, Section
2.7]), noting that the main part of the calculation can be done using integers only.
Let n be an even positive integer and |Bn| = Un/Vn with (Un, Vn) = 1. Then (1.1)
reads

Un = τn ζ(n), τn = 2Vn
n!

(2π)n
, Vn =

∏
p−1|n

p,

with Vn given by (1.4). Since ζ(n) → 1 for n → ∞, τn is a first approximation
of the numerator Un. Considering the decimal digit representation of Un and τn,
about n/3 digits of the most significant decimal digits of Un and τn are equal; see
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[11, Satz 2.7.9, p. 75] for a more precise statement and formula. Visiting B42 again,
we observe 12 identical digits:

U42 = 1 520 097 643 918 070 802 691,

τ42 = 2 · 1806 · 42!/(2π)42 ≈ 1 520 097 643 917 725 172 488.7773 .

How can we interpret this result? A part of the most significant digits of the
numerator of the Bernoulli number Bn is determined in a certain way by all primes
p ≤ n + 1 and the reciprocal n-th power of π. That the digits of π are involved in
the numerators of the Bernoulli numbers is quite remarkable.

6. Connections with Iwasawa theory

The ∆-Conjecture is directly connected with Iwasawa theory of cyclotomic fields
over Q. Let p be an odd prime and µpn be the set of pn-th roots of unity where n is
a positive integer. For the cyclotomic field Q(µpn) let Q(µpn)+ be its maximal real
subfield. The class number hp = h(Q(µp)) can be factored by hp = h−

p h+
p where

h+
p = h(Q(µp)+) and h−

p is the relative class number introduced by Kummer. Define

B1,ωm =
1
p

p−1∑
a=1

a ωm(a)

as the generalized Bernoulli number assigned to the Teichmüller character ω. This
character is defined by ω : Z∗

p → Z∗
p and ω(a) ≡ a (mod pZp) for a ∈ Z∗

p giving the
(p−1)-th roots of unity in Qp. We have for even m > 0 and p−1 � m the following
relation (see [23, Corollary 5.15, p. 61]):

B1,ωm−1 ≡ B̂(m) (mod pZp).

For the detailed theory, especially of Iwasawa invariants and cyclotomic Zp-
extensions, see Washington [23] and Greenberg [8]. The results of Iwasawa, Ferrero
and Washington, Vandiver and Kummer provide the following theorem; see [23,
Cor. 10.17, p. 202].

Theorem 6.1. Let p be an irregular prime. Assume the following conditions for
all irregular pairs (p, l):

(1) The conjecture of Kummer–Vandiver holds: p � h+
p .

(2) The Kummer congruence does not hold (mod p2):
B̂(l + p − 1) �≡ B̂(l) (mod p2).

(3) The generalized Bernoulli number is not divisible by p2:
B1,ωl−1 �≡ 0 (mod p2Zp).

If these are satisfied, then

ordp h(Q(µpn)) = i(p) n for all n ≥ 1.

All conditions of Theorem 6.1 hold for all irregular primes p < 12 000 000 as
verified in [2]. In the case of a regular prime p the formula of Theorem 6.1 is also
valid, because then we have i(p) = 0 and

p � hp = h(Q(µp)) ⇐⇒ p � h(Q(µpn)) for all n ≥ 1.

This follows, e.g., from Iwasawa theory. To get another point of view we can ex-
change two conditions of the previous theorem by our results. Conditions equivalent
to those of Theorem 6.1 are as follows.
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(2′) The ∆-Conjecture holds: ∆(p, l) �= 0.
(3′) A special irregular pair of order two does not exist: (p, l, l − 1) /∈ Ψ̂irr

2 .
Now, the ∆-Conjecture with its consequences gives a significant reason to believe

that condition (2), resp. (2′), may hold in general. We still have to show that
condition (3′) is equivalent to condition (3).

Proposition 6.2. Let (p, l) ∈ Ψirr
1 . Then

B1,ωl−1 ≡ Bl+(p−1)(l−1) (mod p2Zp)

and
B1,ωl−1 ≡ 0 (mod p2Zp) ⇐⇒ (p, l, l − 1) ∈ Ψ̂irr

2 .

To prove this result, we first need some properties of the Teichmüller character
ω. Since ω(a) is defined by ω(a) = limn→∞ apn

in Zp, the following lemma is easily
derived.

Lemma 6.3. Let a, p be integers with p an odd prime and 0 < a < p. Then

ω(a) ≡ ap (mod p2Zp) and ω(a) ≡ ap + p (ap − a) (mod p3Zp).

Proof of Proposition 6.2. Since ωl−1(a) = ω(al−1), we have

p B1,ωl−1 =
p−1∑
a=1

a ωl−1(a) =
p−1∑
a=1

a ω(al−1).

Using Lemma 6.3, we obtain

a ω(al−1) ≡ ap(l−1)+1 + p (ap(l−1)+1 − al) (mod p3Zp).

From the definition of Sn and Proposition 5.5 we have

pB1,ωl−1 ≡ Sp(l−1)+1(p) + pSp(l−1)+1(p) − pSl(p) ≡ pBl+(p−1)(l−1) (mod p3Zp).

Since p(l−1)+1 = l +(p−1)(l−1) ≡ l (mod p−1) and (p, l) ∈ Ψirr
1 , only the first

term Sp(l−1)+1(p) does not vanish. Note that p � p(l − 1) + 1. Therefore, we get

0 ≡ Bl+(p−1)(l−1) ≡ B̂(l + (p − 1)(l − 1)) (mod p2)

if and only if (p, l, l − 1) ∈ Ψ̂irr
2 . �

Remark 6.4. From Propositions 5.5 and 5.6, the conditions ∆(p, l) �= 0 and
(p, l, l − 1) /∈ Ψ̂irr

2 are equivalent to the system

l Sl+p−1(p) − (l − 1) Sl(p) �≡ 0 (mod p3),

l Sl+p−1(p) − (l − 2) Sl(p) �≡ 0 (mod p3).

7. The singular case

In Section 4 we derived most of the results assuming the ∆-Conjecture. Theorem
4.8 conjecturally describes a closed formula for ζ(1−n) by zeros χ(p, l). The following
theorem gives an equivalent formulation for the Bernoulli numbers.

Theorem 7.1. Let n be an even positive integer. Under the assumption of the
∆-Conjecture we have

Bn = (−1)
n
2 −1

∏
p−1�n

|n|−1
p

∏
(p,l)∈Ψirr

1
l≡n (mod p−1)

|p (χ(p, l) − n−l
p−1 )|−1

p

∏
p−1|n

p−1.
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Proof. We have to modify the formula of Theorem 4.8. The product formula gives

(7.1) 1 =
∏

p∈ P∪{∞}
|n|p = |n|∞

∏
p−1|n

|n|p
∏

p−1�n

|n|p .

Since −Bn/n = ζ(1 − n), the proposed formula follows easily. �
To get an unconditional formula for Bn, resp. ζ(1 − n), we have to include the

case of a singular ∆(p, l). However, no such singular ∆(p, l) has been found yet.
Theorem 3.2 describes the more complicated behavior of related irregular pairs of
higher order in the singular case which can be described by a rooted p-ary tree; see
Diagram 3.3.

Let (p, l) ∈ Ψirr
1 with a singular ∆(p, l). We construct the rooted p-ary tree of

related irregular pairs of higher order which is a consequence of Theorem 3.2. Each
node contains one related irregular pair of higher order. Note that these pairs are
not necessarily distinct. We denote this tree by T 0

(p, l) assigned to the root node
(p, l).

The tree T 0
(p, l) has the property that each node of height r lies in Ψirr

r+1. A tree
T 0

(p, l) = {(p, l)} is called a trivial tree having height 0. If the tree T 0
(p, l) is of height

≥ 1, then it contains the root node (p, l) and its p child nodes (p, l + jϕ(p)) ∈ Ψirr
2

for j = 0, . . . , p − 1.
In the nonsingular case, we have a zero of the p-adic zeta function. In contrast

the singular case does not guarantee that related irregular pairs of higher order
exist at all. The discovery of a singular ∆(p, l) is not incompatible with Theorem
7.1 but the formula becomes more complicated, because we then have to consider
the complete tree T 0

(p, l). By combining both cases we obtain an unconditional
formula which is given by the following theorem. Recall Definition 2.1.

Theorem 7.2. Let n be an even positive integer. Then

Bn = (−1)
n
2 −1

∏
p−1�n

|n|−1
p

∏
(p,l)∈Ψirr

1 , ∆(p, l) �=0

l≡n (mod p−1)

|p (χ(p, l) − n−l
p−1 )|−1

p

×
∏

(p,l)∈Ψirr
1 , ∆(p, l)=0

l≡n (mod p−1)

p1+h0
(p, l)(n)

∏
p−1|n

p−1

with the height h0
(p, l) of n defined by

h0
(p, l)(n) = max

{
height((p, l′)) : (p, l′) ∈ T 0

(p, l) ∩ {(p, n mod ϕ(pν))}ν≥1

}
.

Moreover, h0
(p, l)(n) = 0 ⇐⇒ the tree T 0

(p, l) is trivial.

Proof. The case ∆(p, l) �= 0 is already covered by Theorem 7.1. Next we assume
that ∆(p, l) = 0 with a given tree T 0

(p, l) where n ≡ l (mod p− 1). As a consequence
of the construction of T 0

(p, l) and Remark 2.2, we have to determine the maximal
height of a node (p, lν,j) ∈ T 0

(p, l) ∩Ψirr
ν where (p, lν,j) = (p, n mod ϕ(pν)). The root

node (p, l) has height 0, so the exponent equals 1 + h0
(p, l)(n).

If the tree T 0
(p, l) has the height ≥ 1, then (p, n mod ϕ(p2)) ∈ T 0

(p, l); this implies
that h0

(p, l)(n) ≥ 1. A trivial tree T 0
(p, l) implies that h0

(p, l)(n) = 0. Conversely, if
h0

(p, l)(n) = 0, then the height of the tree T 0
(p, l) must be zero, otherwise we would

get a contradiction. �
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Corollary 7.3. Let n be an even positive integer, then

ζ(1 − n) = (−1)
n
2

∏
(p,l)∈Ψirr

1 , ∆(p, l) �=0

l≡n (mod p−1)

|p (χ(p, l) − n−l
p−1 )|−1

p

∏
(p,l)∈Ψirr

1 , ∆(p, l)=0

l≡n (mod p−1)

p1+h0
(p, l)(n)

∏
p−1|n

|n|p
p

with h0
(p, l) as defined above.

Proof. This is a reformulation of Theorem 7.2 by ζ(1−n) = −Bn/n and (7.1). �

8. An extension of Adams’ theorem

Let n be an even positive integer. The trivial factor of Bn, given by (1.5), is a
consequence of the implication, known as Adams’ theorem, that

pr | n with p − 1 � n =⇒ pr | Bn,

where p is a prime and r is some positive integer. It was, however, never proved
by Adams. In 1878 he computed a table of Bernoulli numbers B∗

n = |B2n| for
1 ≤ n ≤ 62. On the basis of this table he conjectured1 that p | n implies p | B∗

n for
primes with p − 1 � n; see [1]. Note that the property that Bn/n is a p-integer for
p − 1 � n is needed to formulate the Kummer congruences (1.3). The case r = 1 of
these congruences was proved by Kummer [15] earlier in 1851.

By Theorem 7.2 and the definitions of h0
(p, l) and χ(p, l), we can state an extended

version of Adams’ theorem. We introduce the following notation. We write pr || n
when pr | n but pr+1 � n; i.e., r = ordp n.

Theorem 8.1. Let n be an even positive integer. Let p be a prime with pr || n,
r ≥ 1, and p − 1 � n. Let l ≡ n (mod p − 1) with 0 < l < p − 1. Then pr+δ || Bn

with the following cases.
(1) If p is regular, then δ = 0.
(2) If p is irregular with (p, l) /∈ Ψirr

1 , then δ = 0.
(3) If p is irregular with (p, l) ∈ Ψirr

1 , ∆(p, l) �= 0, then δ = 1+ordp (χ(p, l)− n−l
p−1 ).

(4) If p is irregular with (p, l) ∈ Ψirr
1 , ∆(p, l) = 0, then δ = 1 + h0

(p, l)(n).

Additionally, in case (3), resp. (4), if (p, l, l) /∈ Ψ̂irr
2 , then δ = 1; otherwise δ ≥ 2.

Proof. We have to consider the formula of Theorem 7.2. The first product yields
pr | Bn. Only the second, resp. third, product can give additional p-factors. There-
fore cases (1) and (2) are given by definition. We can now assume that (p, l) ∈ Ψirr

1 .
Case (3). A nonsingular ∆(p, l) provides

δ = ordp |p (χ(p, l) − n−l
p−1 )|−1

p = 1 + ordp (χ(p, l) − n−l
p−1 ).

By assumption n = prn′ with some integer n′. We have to evaluate

d = ordp (χ(p, l) − n−l
p−1 ) = ordp (p χ(p, l) − χ(p, l) + l − prn′).

Since r ≥ 1, we p-adically obtain

(p, l, l) ∈ Ψ̂irr
2 ⇐⇒ χ(p, l) = l + s3 p + · · · ⇐⇒ d ≥ 1.

Conversely, (p, l, l) /∈ Ψ̂irr
2 yields d = 0.

1 “. . . I have also observed that if p be a prime factor of n which is not likewise a factor of the
denominator of the nth number of Bernoulli, then the numerator of that number will be divisible
by p. I have not succeeded, however, in obtaining a general proof of this proposition, though I
have no doubt of its truth.”
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Case (4). A singular ∆(p, l) provides δ = 1 + h0
(p, l)(n). The definition of T 0

(p, l)

and Theorem 7.2 show that

(p, l, l) /∈ Ψ̂irr
2 ⇐⇒ the tree T 0

(p, l) is trivial ⇐⇒ h0
(p, l)(n) = 0.

Conversely, (p, l, l) ∈ Ψ̂irr
2 yields h0

(p, l)(n) ≥ 1. �

So far, no (p, l, l) ∈ Ψ̂irr
2 has been found. The following corollary theoretically

shows examples where δ is arbitrarily large.

Corollary 8.2. Assume that (p, l, . . . , l) ∈ Ψ̂irr
r+1 exists with some r ≥ 1. Set

n = lpr. Then we have pr || n and p2r+1 | Bn; i.e., δ ≥ r + 1.

Proof. By Definition 2.11 (p, n) ∈ Ψirr
r+1 is associated with (p, l, . . . , l) ∈ Ψ̂irr

r+1, since
n = lpr =

∑r+1
ν=1 lϕ(pν−1). Thus, pr+1 | Bn/n and finally p2r+1 | Bn. �

Remark 8.3. As mentioned above, Johnson [10] calculated the now-called irregular
pairs (p, s1, s2) ∈ Ψ̂irr

2 of order two for p < 8000. He also proved that (p, l, l) /∈ Ψ̂irr
2 ,

resp. s1 �= s2, in that range. In a similar manner, the nonexistence of irregular
pairs (p, l, l − 1) of order two plays an important role in Iwasawa theory as seen
in Section 6. One may conjecture that no such special irregular pairs (p, l, l) and
(p, l, l − 1) of order two exist. But there is still a long way to prove such results,
even to understand properly which role the zeros χ(p, l) play. Now, we have the
relation

(p, l, l) /∈ Ψ̂irr
2 ⇐⇒ p2 � B̂(lp) ⇐⇒ p3 � Blp.

Yamaguchi [24] also verified by calculation that p3 � Blp for all irregular pairs (p, l)
with p < 5500, noting that this was conjectured earlier by Morishima in general.
The condition p3 � Blp is related to the second case of FLT; see [23, Thm. 9.4, p. 174]
and also [23, Cor. 8.23, p. 162] for a different context. Under the assumption of
the conjecture of Kummer–Vandiver and that no (p, l, l) ∈ Ψ̂irr

2 exists, the second
case of FLT is true for the exponent p. For details we refer to the references cited
above.

The converse of Adams’ theorem does not hold, but one can state a somewhat
different result which deals with the common prime factors of numerators and
denominators of Bernoulli numbers with indices close to each other.

Proposition 8.4. Let S = {2, 4, 6, 8, 10, 14} be the set of all even indices m where
the numerator of |Bm/m| equals 1. Write Bn = Λn/Vn with (Λn, Vn) = 1. Let k, n
be even positive integers with k ∈ S and n − k ≥ 2. Then

D = (Λn, Vn−k) implies D | n.

Moreover, if D > 1, then D = p1 · · · pr with some r ≥ 1. The primes p1, . . . , pr are
pairwise different and pν � Vk, pν � Bn/n for ν = 1, . . . , r.
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Proof. Assume that D > 1. We then have D = p1 · · · pr with some r ≥ 1, since
Vn−k is squarefree by (1.4). Let ν ∈ {1, . . . , r}. Since pν | Λn and pν | Vn−k, we
have pν − 1 � n and pν − 1 | n − k. From this we can deduce that pν − 1 � k and
consequently that pν � Vk. Next we assume that pν � n or pν | Bn/n. Note that
pν | Λn and pν � n imply that pν | Bn/n, but not the converse. We can use the
Kummer congruences (1.3) to obtain that

0 ≡ Bn

n
≡ Bk

k
(mod pν),

since n ≡ k (mod pν − 1). By the definition of the set S we have

(8.1)
Bk

k
�≡ 0 (mod pν),

which yields a contradiction. This shows that pν | n and pν � Bn/n. Finally it
follows that D | n. �

Now, the set S cannot be enlarged, because (8.1) does not hold in general for
numerators having prime factors. For example, let p = 691 and n = 12 + (p− 1) =
702. Then we have p | B12/12 and D = (Λn, Vn−12) = pc � n with some c ≥ 1. On
the other hand, one trivially obtains for k ∈ S, p prime with p − 1 � k, and n = kp
infinitely many examples of D > 1. In the following proposition, Proposition 8.4
plays a crucial role. Recall the definition of Sn(m).

Proposition 8.5. Let n, m be positive integers with even n. For r = 1, 2 we have

mr+1 | Sn(m) ⇐⇒ mr | Bn.

Proof. We can assume that m > 1, since m = 1 is trivial. The case n = 2 follows
by B2 = 1

6 and that m2 � 1
6m(m − 1)(2m − 1) = S2(m) for m > 1. For now we

assume that n ≥ 4. We have (see (5.8)) that

(8.2) Sn(m) = Bn m +
(

n

2

)
Bn−2

m3

3
+

n∑
k=3

(
n

k

)
Bn−k

mk+1

k + 1
.

By (1.4) and the cases B0 = 1 and B1 = −1
2 , the denominator of all nonzero

Bernoulli numbers is squarefree. For each prime power factor ps || m and k where
Bn−k �= 0 (2 ≤ k ≤ n), we have

(8.3) ordp

((
n

k

)
Bn−k

mk+1

k + 1

)
≥ s(k + 1) − 1 − ordp(k + 1) ≥ λ s

with the following cases:
(1) λ = 1 for k ≥ 2, p ≥ 2;
(2) λ = 2 for k ≥ 2, p ≥ 5;
(3) λ = 3 for k ≥ 4, p ≥ 5.

The critical cases to consider are p = 2, 3, 5 and s = 1. Now, we are ready to
evaluate (8.2) (mod mr) for r = 1, 2. Write Bn = Λn/Vn with (Λn, Vn) = 1.



ON IRREGULAR PRIME POWER DIVISORS OF THE BERNOULLI NUMBERS 437

Case r = 1: Assume that (m, Vn) > 1. By (8.3) (case k ≥ 2, p ≥ 2) we obtain

Sn(m) ≡ Bn m ≡ Λn

Vn
m �≡ 0 (mod m).

Therefore, (m, Vn) = 1 must hold which implies 2 � m, 3 � m, and p ≥ 5. Hence, by
(8.3) (case k ≥ 2, p ≥ 5), we can write Sn(m) ≡ Bn m (mod m2). This yields

(8.4) m2 | Sn(m) ⇐⇒ m | Bn.

Case r = 2: We have m | Bn and (m, 6) = 1, because either m2 | Bn or
m3 | Sn(m) is assumed. The latter case implies m2 | Sn(m) and therefore m | Bn

by (8.4). Since |Λ4| = 1, we can assume that n ≥ 6. We then have Bn−3 = 0 and
we can apply (8.3) (case k ≥ 4, p ≥ 5) to obtain

(8.5) Sn(m) ≡ Bn m +
n(n − 1)Λn−2

6Vn−2
m3 (mod m3).

Our goal is to show that the second term of the right side of (8.5) vanishes, but
the denominator Vn−2 could possibly remove prime factors from m. Proposition
8.4 asserts that (Λn, Vn−2) | n. We also have (m, Vn−2) | n since m | Bn. This
means that the factor n contains those primes that Vn−2 possibly removes from
m. Therefore the second term of (8.5) vanishes (mod m3). The rest follows by
Sn(m) ≡ Bn m ≡ 0 (mod m3). �

One cannot improve the value r in general. Choose p = 37 and l = 37580. Since
(p, l) ∈ Ψirr

3 we have p3 | Bl, but p4 � Sl(p) which was checked with Mathematica.

Example 8.6.

(1) We have B42 = 1520097643918070802691/1806. Since the numerator Λ42

is a large irregular prime, we obtain for m > 1 that

m2 | S42(m) ⇐⇒ m = 1520097643918070802691.

(2) We have Λ50 = 52 ·417202699·47464429777438199 and V48 = 2·3·5·7·13·17.
Hence, for m > 1 we have

m3 | S50(m) ⇐⇒ m = 5.

Appendix A. Calculations

Table A.1. Bn and Bn/n.

n 0 1 2 4 6 8 10 12 14 16 18 20

Bn 1 − 1
2

1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730
7
6 − 3617

510
43867
798 − 174611

330

Bn
n

1
12 − 1

120
1

252 − 1
240

1
132 − 691

32760
1
12 − 3617

8160
43867
14364 − 174611

6600
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Table A.2. Calculated irregular pairs of order 100 of primes 37,
59, and 67.

Case p = 37.
Zeros of the sequence (sν) occur at index 19 and 81.

sν 1 2 3 4 5 6 7 8 9 10
0 32 7 28 21 30 4 17 26 13 32

10 35 27 36 32 10 21 9 11 0 1
20 13 6 8 10 11 10 11 32 13 30
30 10 6 8 2 12 1 8 2 5 3
40 10 19 8 4 7 19 27 33 29 29
50 11 2 23 8 34 5 8 35 35 13
60 31 29 6 7 22 13 29 7 15 22
70 20 19 29 2 14 2 2 31 11 4
80 0 27 8 10 23 17 35 15 32 22
90 14 7 18 8 3 27 35 33 31 6

Case p = 59.
Zeros of the sequence (sν) occur at index 31 and 95.

sν 1 2 3 4 5 6 7 8 9 10
0 44 15 25 40 36 18 11 17 28 58

10 9 51 13 25 41 44 17 43 35 21
20 10 21 38 9 12 40 43 45 30 41
30 0 3 25 34 49 45 9 19 48 57
40 11 13 29 28 44 41 37 33 29 43
50 8 57 12 48 15 15 53 57 16 51
60 16 54 30 9 26 8 49 22 58 11
70 42 28 36 33 45 24 32 18 12 29
80 45 40 27 19 40 41 11 42 49 35
90 41 57 54 33 0 34 34 49 6 31

Case p = 67.
Zeros of the sequence (sν) occur at index 23 and 85.

sν 1 2 3 4 5 6 7 8 9 10
0 58 49 34 42 42 39 3 62 57 19

10 62 10 36 14 53 57 16 60 22 41
20 21 25 0 56 21 24 52 33 28 51
30 34 60 8 47 39 42 33 14 66 50
40 48 45 28 61 50 27 8 30 59 32
50 15 3 1 54 12 30 20 14 12 10
60 49 33 49 54 13 26 42 8 58 12
70 63 19 16 48 15 2 13 1 23 2
80 44 64 25 40 0 16 58 44 31 62
90 47 61 46 9 2 50 1 62 34 31

Table A.3. Calculated irregular pairs of order 10 of primes below 1000.

(p, l) ∆(p, l) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

(37,32) 21 32 7 28 21 30 4 17 26 13 32
(59,44) 26 44 15 25 40 36 18 11 17 28 58
(67,58) 21 58 49 34 42 42 39 3 62 57 19
(101,68) 42 68 57 57 45 60 16 10 47 53 88
(103,24) 54 24 2 87 55 47 3 72 4 45 52
(131,22) 25 22 93 26 43 74 109 80 5 55 14
(149,130) 79 130 74 68 10 94 16 122 70 110 10
(157,62) 48 62 40 145 67 29 69 0 87 89 21
(157,110) 51 110 73 3 58 9 114 118 21 1 11
(233,84) 132 84 173 164 135 146 127 10 36 108 230
(257,164) 188 164 135 174 30 203 161 193 142 68 126
(263,100) 87 100 198 139 151 106 202 99 202 251 163
(271,84) 179 84 5 14 239 8 233 43 28 57 170
(283,20) 15 20 265 115 171 137 251 118 132 246 265
(293,156) 93 156 230 75 289 47 247 98 100 141 27
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Table A.3. Continued

(p, l) ∆(p, l) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

(307,88) 205 88 70 234 51 173 104 140 140 107 201
(311,292) 277 292 204 183 9 260 183 214 254 2 151
(347,280) 106 280 113 250 150 307 264 145 177 101 156
(353,186) 301 186 190 147 13 34 171 106 304 190 102
(353,300) 161 300 181 300 314 327 67 26 113 18 336
(379,100) 276 100 242 277 88 236 225 22 221 54 26
(379,174) 82 174 364 216 20 128 277 134 257 164 31
(389,200) 48 200 354 33 371 189 29 219 44 11 319
(401,382) 376 382 263 126 213 197 170 320 107 297 331
(409,126) 180 126 389 343 247 322 24 187 75 91 179
(421,240) 396 240 351 141 36 169 124 164 342 365 156
(433,366) 284 366 406 342 372 234 21 328 346 279 155
(461,196) 281 196 423 121 233 61 353 421 414 350 92
(463,130) 78 130 376 404 124 420 63 438 185 124 18
(467,94) 118 94 219 393 264 70 75 254 361 332 157
(467,194) 269 194 283 329 154 419 170 152 78 304 326
(491,292) 456 292 218 299 225 362 461 37 65 203 228
(491,336) 103 336 260 15 41 381 66 376 391 209 305
(491,338) 475 338 59 160 106 105 33 346 158 314 233
(523,400) 497 400 36 230 180 431 235 114 104 152 399
(541,86) 211 86 436 29 482 424 74 212 259 419 287
(547,270) 348 270 458 536 35 521 413 88 545 44 537
(547,486) 139 486 100 4 33 153 282 467 233 482 17
(557,222) 153 222 549 505 399 472 49 20 81 279 513
(577,52) 452 52 309 416 274 56 20 476 164 309 19
(587,90) 286 90 109 344 244 53 93 454 292 291 547
(587,92) 319 92 213 332 470 36 479 508 134 323 275
(593,22) 331 22 188 388 541 576 371 26 586 40 514
(607,592) 435 592 369 428 162 503 358 484 411 67 267
(613,522) 57 522 549 451 318 312 243 38 265 552 215
(617,20) 289 20 384 107 161 281 358 64 604 336 326
(617,174) 317 174 546 83 114 484 121 229 335 597 570
(617,338) 312 338 419 570 496 63 247 46 604 464 134
(619,428) 121 428 457 363 526 36 179 79 170 485 47
(631,80) 139 80 146 468 175 34 249 169 26 498 528
(631,226) 221 226 338 510 318 581 572 363 422 111 405
(647,236) 318 236 480 525 205 103 205 620 394 553 25
(647,242) 94 242 487 519 49 109 373 451 586 250 57
(647,554) 209 554 558 568 174 579 545 5 377 242 81
(653,48) 363 48 154 558 439 300 59 541 242 205 47
(659,224) 200 224 140 131 396 158 367 79 256 620 615
(673,408) 325 408 26 64 257 158 213 430 659 144 600
(673,502) 585 502 293 198 436 506 441 27 89 416 407
(677,628) 440 628 504 457 324 461 88 532 653 89 244
(683,32) 477 32 266 20 625 119 190 13 190 222 214
(691,12) 611 12 496 104 197 607 590 303 96 461 152
(691,200) 592 200 496 333 578 93 160 436 611 215 278
(727,378) 398 378 683 722 169 391 150 694 210 228 130
(751,290) 164 290 481 37 181 27 31 71 8 36 164
(757,514) 554 514 364 164 375 7 720 750 273 592 643
(761,260) 462 260 729 680 274 188 464 183 283 52 235
(773,732) 517 732 147 306 278 370 412 89 340 637 223
(797,220) 375 220 369 279 501 300 168 530 534 747 268
(809,330) 88 330 52 743 100 336 157 759 348 43 736
(809,628) 18 628 773 629 623 160 494 339 244 463 274
(811,544) 381 544 424 100 346 749 624 220 410 313 62
(821,744) 704 744 621 319 498 427 50 21 237 305 809
(827,102) 105 102 164 443 469 568 671 183 372 512 464
(839,66) 269 66 135 305 36 40 659 431 326 591 293
(877,868) 480 868 554 279 714 821 520 76 565 104 22
(881,162) 789 162 372 330 89 244 27 229 418 438 89
(887,418) 611 418 76 698 835 872 130 319 217 439 573
(929,520) 607 520 433 27 711 366 902 838 7 351 805
(929,820) 706 820 749 156 59 913 480 432 114 129 491
(953,156) 24 156 720 516 620 229 251 77 805 689 477
(971,166) 715 166 538 594 897 509 355 749 180 174 96
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Table A.4. Calculation: n = 1, p = 37, l = 32, (p, l) ∈ Ψirr
1 .

j Index αj (mod p3) ≡ (mod p3) ∆αj
(mod p3) ∆αj

(mod p2)

0 32 3941/2720 42144 45827 650
1 68 2587/15 37318 49934 650
2 104 3821/1272 36599 30768 650
3 140 6497/7198 16714 ∆(p, l) = 21

Using Proposition 2.10 with r = 3 and (r − 1)n = 2 yields s ≡ 1043 (mod p2)
and l3 = 32 + sϕ(p) = 37580. We obtain (37, 284) ∈ Ψirr

2 , (37, 37580) ∈ Ψirr
3 , and

(37, 32, 7, 28) ∈ Ψ̂irr
3 .

Table A.5. Calculation: n = 3, p = 37, l = 37580, (p, l) ∈ Ψirr
3 .

j Index αj (mod p3) ≡ (mod p3) ∆αj
(mod p3)

0 37580 11241/22913 24645 45827
1 86864 49609/46188 19819 45827
2 136148 5261/24 14993 ∆(p, l) = 21

Using Proposition 2.9 yields s ≡ 6607 (mod p3) and l6 = 37580 + sϕ(p3) =
325656968. We obtain (37, 325656968) ∈ Ψirr

6 , (37, 55777784) ∈ Ψirr
5 , (37, 1072544)

∈ Ψirr
4 , and (37, 32, 7, 28, 21, 30, 4) ∈ Ψ̂irr

6 .

Table A.6. Calculation: n = 3, p = 37, l = 37580, (p, l) ∈ Ψirr
3 .

j Index αj (mod p9) ≡ (mod p9)

0 37580 3791602112159/3307480 45520991695194
1 86864 1046892158059/484258896735 47985230204445
2 136148 13280633201029/15 70198303437443
3 185432 8822143378793/98280020 73479320052104

Using Proposition 5.1 with r = 4 and (r − 1)n = 9 yields the sequence 21, 30, 4,

. . . , 27 which provides (37, 32, 7, 28, 21, 30, 4, 17, 26, 13, 32, 35, 27) ∈ Ψ̂irr
12 .

Note that Tables A.2 and A.3 were calculated with smallest possible indices of
the Bernoulli numbers using Proposition 5.1; they agree with the results above.
Additionally, the results were checked by Corollary 4.23 and Proposition 5.3. The
program calcbn [11, Section 2.7] was used to calculate these large Bernoulli numbers
extremely quickly.
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