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EFFICIENT COMPUTATION
OF ROOT NUMBERS AND CLASS NUMBERS

OF PARAMETRIZED FAMILIES
OF REAL ABELIAN NUMBER FIELDS

STÉPHANE R. LOUBOUTIN

Dedicated to Danièle B.

Abstract. Let {Km} be a parametrized family of simplest real cyclic cu-
bic, quartic, quintic or sextic number fields of known regulators, e.g., the
so-called simplest cubic and quartic fields associated with the polynomials
Pm(x) = x3 − mx2 − (m + 3)x + 1 and Pm(x) = x4 − mx3 − 6x2 + mx + 1.
We give explicit formulas for powers of the Gaussian sums attached to the
characters associated with these simplest number fields. We deduce a method
for computing the exact values of these Gaussian sums. These values are then
used to efficiently compute class numbers of simplest fields. Finally, such class
number computations yield many examples of real cyclotomic fields Q(ζp)+

of prime conductors p ≥ 3 and class numbers h+
p greater than or equal to p.

However, in accordance with Vandiver’s conjecture, we found no example of p
for which p divides h+

p .

1. Introduction

In [Bye], [CW], [Gra2], [Jean], [Laz1], [Laz2], [Lou3], [Lou6], [Lou7], [LP], [Sha],
[SW], [SWW], and [Wa1], various authors dealt with the so-called simplest cubic,
quartic, quintic and sextic fields Km, i.e., the real cyclic cubic, quartic, quintic and
sextic number fields associated with the cubic polynomials Pm(x) = x3 − mx2 −
(m + 3)x − 1, the quartic polynomials Pm(x) = x4 − mx3 − 6x2 + mx + 1, the
quintic polynomials Pm(x) = x5 + m2x4 − 2(m3 + 3m2 + 5m + 5)x3 + (m4 + 5m3 +
11m2 + 15m + 5)x2 + (m3 + 4m2 + 10m + 10)x + 1 and the sextic polynomials
Pm(x) = x6 − 2mx5 − 5(m + 3)x4 − 20x3 + 5mx2 + 2(m + 3)x + 1.

One nice feature of these families of real cyclic number fields Km is that, under
some slightly restrictive conditions, not only are their regulators small and their
class numbers hKm

large, but systems of fundamental units of their ring of algebraic
integers are known. Hence, they can be used to find real cyclic fields Km of prime
conductors p and class numbers hKm

greater than or equal to p (see Tables 1, 2,
and 3, and [CW, Theorem 2] and [Lou7, Corollary 10]). These class numbers hKm

divide the class numbers h+
p of the maximal real subfields Q(ζp)+ of the cyclotomic

fields Q(ζp) of prime conductors p (see [CW, Lemma 2]). However, in accordance

Received by the editor July 8, 2005 and, in revised form, October 14, 2005.
2000 Mathematics Subject Classification. Primary 11R16, 11R20, 11R29, 11R42, 11Y40.
Key words and phrases. Real abelian number field, class number, Gauss sums, simplest cubic

field, simplest quartic field, simplest quintic field, simplest sextic field.

c©2006 American Mathematical Society
455
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with Vandiver’s conjecture, we found no example of p for which p divides one of
these class numbers hKm

.
So, let K be a real cyclic number field of degree q > 1 associated with a Q-

irreducible monic polynomial PK(X) = Xq +aq−1X
q−1 + · · ·+a0 ∈ Z[X]. Let XK

be the cyclic group (of order q) of primitive even Dirichlet characters associated
with K. Let hK and RegK be the class number and regulator of K. We have (see
[Lan, Chapter XIII] and [Lou4, Section 2]):

(1) hKRegK =
∏

1�=χ∈XK

L′(0, χ).

We let χK be any generator of XK and let σ be a generator of the cyclic Galois
group Gal(K/Q). We developed in [Lou3, Section 4.2], [Lou4, Section 2] and [Lou6,
Section 3.3] an efficient method for constructing a generator χK of XK from the
knowledge of PK(X). This construction is particularly simple in the case that the
conductor fK of K is square-free and all the subfields of K are also of conductor
fK , which amounts to asking (i) that fK =

∏t
i=1 pi is a product of distinct odd

primes pi ≡ 1 (mod q) and (ii) that χK =
∏t

i=1 χpi
, where each χpi

is a character
of order q modulo pi. Then, for efficiently computing hK (when RegK is known)
for fK large, we use (1) and generalize [WB, Section 3] to compute efficiently good
enough numerical approximations L′

N (0, χ) to the L′(0, χ)’s, 1 �= χ ∈ XK . Let χ
be a primitive even Dirichlet character of conductor fχ > 1 and order qχ > 1. Set

τ (χ) =
∑

1≤n≤fχ

χ(n) exp(2nπi/fχ) (Gauss sum),

(2) W (χ) = τ (χ)/
√

fχ (root number)

(hence, |W (χ)| = 1), and ω(χ) := (τ (χ))qχ . Then (see [Dav, Chapter 9], [Lou4,
Theorem 12], and [Lou5, (11)]),

L′(0, χ) =
1
2

∑
n≥1

χ(n)
∫ ∞

πn2/fχ

e−t dt

t
+ W (χ)

√
fχ

π

∑
n≥1

χ̄(n)
n

∫ ∞

√
πn2/fχ

e−t2dt.

Let L′
N (0, χ) be the approximation to L′(0, χ) obtained by disregarding in this

formula the indices n > N , N ≥ 1 a positive integer. Then, L′
N (0, χ) is easy to

compute numerically, and setting hK(N) = 1
RegK

∏
1�=χ∈XK

L′
N (0, χ), we proved:

Proposition 1 (See [Lou2, Proof of Theorem 7]). Let q ≥ 2 be a given prime. Fix
t > (q − 1)/2 and M > 0, and let K range over a family of real abelian numbers
fields K of degree q. Then, as fK −→ ∞ and for

(3) N ≥ B(t, fK , M) :=

√
tfK

π
log(MfK),

the limit |hK − hK(N)| is equal to zero.

From a practical point of view, Proposition 1 is useless if we do not know how
to efficiently compute the root numbers W (χ), 1 �= χ ∈ XK . However, there is no
known general formula for root numbers (see [BE82]). In the case of simplest cubic
fields K of prime conductors p, one can use standard formulas on Gauss sums to
get a formula for ω(χK) = (τ (χK))3. This leaves it unspecified as to which third
root of ω(χK)/p3/2 is equal to W (χK). As in [SWW], one can get around this
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problem by using the formula hK = |L′(0, χK)|2/RegK , by (1), to compute three
good enough numerical approximations |L′

N (0, χK)|2/RegK to hK so that only one
out of them is close enough to a positive integer to be the numerical approximation
to the class number hK . The main drawbacks of this method are that its complexity
is hard to study and that it becomes even more complicated for simplest cubic fields
of nonnecessarily prime conductors or for cyclic quintic fields of prime conductors
(see [SW, Section 4]). In contrast, we recall how one can efficiently compute root
numbers. Set

θ(x, χ) =
∑
n≥1

χ(n)e−πn2x/fχ =
W (χ)√

x
θ(

1
x

, χ̄) (x > 0).

Hence, W (χ) = θ(1, χ)/θ(1, χ), provided that θ(1, χ) �= 0. Also, let θN (1, χ) be
the approximation to θ(1, χ) obtained by disregarding in this formula the indices
n > N , N ≥ 1 a positive integer. Then, N ≥ B(t, fχ, M) (see (3)) implies

(4) |θ(1, χ) − θN (1, χ)| <
1

2M t
√

πt

f
1
2−t
χ√

log(Mfχ)
.

According to numerical computations, to theoretical results and to a conjecture of
ours (see [Lou4, Section 4.4]), θ(1, χ) �= 0 should always hold true. We explained
in [Lou4, Section 4.1] how one can compute the exact value of ω(χ) from the
numerical computation of good enough approximations θN (1, χl) to the θ(1, χl)’s
for 1 ≤ l ≤ qχ and gcd(l, qχ) = 1, provided that θ(1, χl) �= 0 for l ≤ qχ and
gcd(l, qχ) = 1. Here, we will simplify the numerical computation of class numbers
of simplest fields K by obtaining beforehand explicit formulae for the cubic, quartic,
quintic and sextic powers ω(χK) of the Gauss sums of the primitive cubic, quartic,
quintic and sextic Dirichlet characters associated with these simplest cubic, quartic,
quintic and sextic fields (see Theorems 8, 10, 14, 17, and 23). Provided that
θ(1, χ) �= 0, it is then easy to deduce the exact value of W (χ).

Proposition 2 (See [Lou4, Lemma 4]). Fix ε ∈ (0, 1]. Let χ be a primitive, even
Dirichlet character of conductor fχ and order q > 1 Assume that ω(χ) is known and
that N is such that θN (1, χ) �= 0 and |θ(1, χ) − θN (1, χ)| ≤ ε|θN (1, χ)|/q (use (4)
to find such a N). Fix W0 a qth square root of ω(χ)/f

q/2
χ . Then, W (χ) = ζk0

χ W0,
where k0 is the unique integer k ∈ {0, 1, · · · , n − 1} such that |WN (χ) − ζk

χW0| <

2ε/q, where WN (χ) := θN (1, χ)/θN (1, χ).

We end up with a practically very efficient method for computing class numbers
of simplest fields of large conductors. Our method improves upon the ones used in
[CW], [Jean], [Sha], [SW] and [SWW].

2. Prerequisites on Gauss sums

Lemma 3. Let χ be a primitive Dirichlet character of conductor fχ > 1. Then
|τ (χ)| =

√
fχ and τ (χ̄) = χ(−1)τ (χ). If χ is quadratic, then τ (χ) =

√
χ(−1)fχ.

Lemma 4. Let χ1, · · · , χt be t ≥ 1 Dirichlet characters modulo f1, · · · , ft. Assume
that gcd(fi, fj) = 1 for 1 ≤ i �= j ≤ t. Set f =

∏t
i=1 fi and χ =

∏t
i=1 χ, which is

therefore a Dirichlet character modulo f of order q > 1. Then,

τ (χ) :=
f∑

k=1

χ(k)e2πik/f = εχ

t∏
i=1

τ (χi) where εχ =
t∏

i=1

χi(f/fi)
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and

J(χ, χ) :=
f∑

k=1

χ(k)χ(1 − k) =
t∏

i=1

J(χi, χi).

In particular, if all the χ are of the same order q, then

ω(χ) := (τ (χ))q =
t∏

i=1

ω(χi).

Lemma 5. Let µ denote the Möbius function. Then, TrQ(ζf )/Q(ζf ) = µ(f).

Proof. Apply Lemma 4 with χ = 1f the trivial character modulo f , note that
τ (1f ) = TrQ(ζf )/Q(ζf ), and prove the result in the case that f = pe is a power of
a prime, in which case the proof is easy. �

Now, let χ be a primitive Dirichlet chraracter of order q > 1 and conductor
∆ > 1. Let Mχ be the cyclic subfield of Q(ζ∆) of conductor ∆ associated with χ,
i.e., Gal(Q(ζ∆)/Mχ) = kerχ. Set

(5) η(χ) := TrQ(ζ∆)/Mχ
(ζ∆) =

∑
t∈ker χ

ζt
∆ ∈ Mχ.

Consider all the characters χk, 0 ≤ k ≤ q − 1, as defined modulo ∆. Then,

(6)
q−1∑
k=0

τ (χk) =
q−1∑
k=0

∆∑
t=1

χk(a)ζt
∆ =

∆∑
t=1

(q−1∑
k=0

χk(a)
)
ζt
∆ = q

∑
t∈ker χ

ζt
∆ = qη(χ).

Moreover, τ (χq−k) = χk(−1)τ (χk) for 1 ≤ k ≤ q− 1 and τ (χ0) = µ(∆), by Lemma
5. Note finally that Mχ is (totally) real if and only if χ is even.

3. Simplest cubic fields

Set ζ3 = (−1 + i
√

3)/2. The units in Z[ζ3] are {±1,±ζ3,±ζ2
3}. An algebraic

integer α = a + bζ3 ∈ Z[ζ3] is primary if α ≡ −1 (mod 3Z[ζ3]), i.e., if a ≡ −1
(mod 3) and b ≡ 0 (mod 3). The order of the multiplicative group (Z[ζ3]/3Z[ζ3])∗

is equal to 6, and the six units in Z[ζ3] form a set of representatives of this group.
Therefore, if 3 does not divide the norm N(α) = αᾱ = a2 − ab + b2 of α ∈ Z[ζ3],
then exactly one of the six associates of α is primary.

Lemma 6. Let 0 �= α ∈ Z[ζ3] be a nonunit element. Assume that α ≡ (−1)t

(mod 3Z[ζ3]), where t is the number of irreducible factors of α (counted with mul-
tiplicity). Then, α =

∏t
k=1 πk can be written in a unique way as a product of t

primary irreducibles πk.

Proof. For the existence, write α = u
∏t

k=1 πk for some unit u ∈ {±1,±ζ3,±ζ2
3}

and some primary irreducibles πk ≡ −1 (mod 3Z[ζ3]). Since (−1)t ≡ α ≡ (−1)tu
(mod 3Z[ζ3]), we obtain u ≡ 1 (mod 3Z[ζ3]) and u = 1. �

Lemma 7 (See [IR, Corollary, page 115]). Let π ≡ −1 (mod 3Z[ζ3]) be a primary
irreducible element in Z[ζ3] of norm a rational prime p ≡ 1 (mod 3). For α ∈
Z[ζ3] coprime with π, let χπ(α) ∈ {1, ζ3, ζ

2
3} be the cubic residue symbol defined by

α(p−1)/3 ≡ χπ(α) (mod π). Then, ω(χπ) := τ (χπ)3 = pπ.
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Theorem 8. Assume that ∆m = m2+3m+9 is square-free and that m ≥ −1 (there
are infinitely many such m’s, by [Lou7, Proposition 2]). Write ∆m =

∏t
k=1 pk

where the pk ≡ 1 (mod 6)’s are distinct odd primes. Set

δm := µ(∆m)
(m

3

) 2m + 3 + 3i
√

3
2

.

Then, δm can be written in a unique way as a product δm =
∏t

k=1 πk of t primary
irreducibles elements πk ∈ Z[ζ3] with pk = |πk|2. Set χδm

=
∏t

k=1 χπk
. Then, χδm

is a primitive cubic character modulo ∆m,

(7) χδm
(2) =

{
ζ2
3 if m ≡ 0 (mod 2),

ζ3 if m ≡ 1 (mod 2),

and

(8) ω(χδm
) := τ (χδm

)3 = ∆mδm = µ(∆m)
(m

3

) 2m + 3 + 3i
√

3
2

∆m.

Moreover (see also [Laz3, Proposition 2.2]),

η̃m := µ(∆m)
(m

3

)
η(χδm

) +
m −

(
m
3

)
3

(see (5)) is a root of Pm(x) = x3−mx2−(m+3)x−1. Therefore, Km = Q(η(χδm
))

is a simplest cubic field of conductor ∆m and χδm
is one of the two conjugate

characters associated with Km. Hence, me may suppose that χKm
= χδm

. Then,
setting εm := (1 − µ(∆m)(m

3 ))/2 ∈ {0, 1}, there exists km ∈ {0, 1, 2} such that

arg(W (χKm
)) ≡ 1

3
arctan(

3
√

3
2m + 3

) +
2km + εm

3
π (mod 2π).

Proof. Since δm ≡ (−1)t (mod 3Z[ζ3]), the first assertion follows from Lemma 6.
By the law of cubic reciprocity (see [IR, Theorem 1, page 114]), we have

χδm
(2) = χ2(δm) ≡ δm ≡

{
ζ2
3 (mod 2Z[ζ3]) if m ≡ 0 (mod 2),

ζ3 (mod 2Z[ζ3]) if m ≡ 1 (mod 2),

which implies (7). Using Lemmas 4 and 7, we obtain (8). Finally, let Mm denote
the real cyclic cubic field of conductor ∆m associated with χδm

. We have ηm :=
η(χδm

) ∈ Mm. Now, ε(3η̃m − m) = 3ηm − µ(∆m) = τ + τ̄ , by Section 2, where
ε = µ(∆m)

(
m
3

)
. Using τ τ̄ = ∆m and (8), we obtain ε(3η̃m − m)3 = (τ + τ̄ )3 =

τ3+τ̄3+3∆m(τ+τ̄) = ε(2m+3)∆m+3ε∆m(3η̃m−m), by (8). Hence, η̃m is a root of
(3x−m)3−(2m+3)∆m−3∆m(3x−m) = 27Pm(x), and Q(η̃m) = Q(ηm) = Mm. �

Now, Pm(x) has only one root ρm > 0,

ρm =
1
3

(
m + 2

√
∆m cos

(1
3

arctan(
√

27
2m + 3

)
))

,

RegKm
= log2 ρm − (log ρm)(log(1 + ρm)) + log2(1 + ρm),

and
hKm

= |L′(0, χKm
)|2/RegKm

≥ ∆m/(e log3 ∆m).
We computed the class numbers of all the Km’s with −1 ≤ m ≤ 1066285 and
∆m = m2 + 3m + 9 ≡ 1 (mod 4) a prime. In that situation, the product hLm

hKm

(of the class numbers of Lm = Q(
√

∆m) and Km) divides the class number of the
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Table 1. Least primes ∆m = m2 + 3m + 9 ≡ 1 (mod 4) with hLm
hKm

≥ ∆m

m ∆m |θ(1, χKm
)| 2km+εm

3
π hLm

hKm
hLm

hKm
/∆m

102496 10505737513 20.268 · · · π/3 891 13152913 1.115 · · ·
106253 11290018777 34.364 · · · 0 2685 6209212 1.476 · · ·
319760 102247416889 202.162 · · · 0 1887 57772549 1.066 · · ·
554869 307881271777 88.861 · · · π/3 7983 93739324 2.430 · · ·
726845 528305834569 20.938 · · · 0 13533 176702419 4.526 · · ·
791021 625716595513 129.812 · · · 0 1737 445142272 1.235 · · ·
796616 634599441313 357.252 · · · 0 1155 696739264 1.268 · · ·
839401 704596557013 293.373 · · · π 1575 554491633 1.239 · · ·
906437 821630754289 93.697 · · · 0 1955 469911916 1.118 · · ·

1066285 1136966900089 140.662 · · · π/3 5389 473034223 2.242 · · ·

real cyclotomic field Q+(ζ∆m
) (see [CW, Lemma 1]). We list below the least ten

m’s for which hLm
hKm

> ∆m.

4. Simplest sextic fields

Using simplest cubic fields we obtain only a few examples of real cyclotomic
fields Q+(ζp) of prime conductor p and class number greater than or equal to p.
To obtain many more examples we will use simplest sextic fields to prove that if
∆m = m2 +3m+9 ≡ 1 (mod 4) is prime and ∆m > 4565, then the class number of
the real cyclotomic field Q+(ζ∆m

) is greater than or equal to ∆m (see Remark 11
below). Assume that ∆m = m2+3m+9 ≡ 1 (mod 4) is square-free, m ≥ 1, and let
Km and χKm

be as in Theorem 8. Then, setting Lm = Q(
√

∆m), the compositum

Nm = LmKm is a cyclic sextic field of conductor ∆m and χNm
(n) =

(
n

∆m

)
χ2

Km
(n)

is one of its two conjugate associated sextic characters. Note that χ2
Nm

= χKm
.

In [Gra2] M. N. Gras proved that Nm is a simplest sextic field associated with the
sextic polynomial

Pm(x) = x6 − 2mx5 − 5(m + 3)x4 − 20x3 + 5mx2 + 2(m + 3)x + 1

(set m = (t − 6)/4 in [Gra2, (8)]) of discriminant dm = 66∆5
m.

Let N be a real cyclic sextic field. Let UN and σ be its group of algebraic units
and a generator of its Galois group. Let L and K denote its real quadratic and real
cyclic cubic subfields. Let U∗

N = {ε ∈ UN ; NN/L(ε) ∈ {±1} and NN/K(ε) ∈ {±1}}
denote the so-called group of relative units of N . It is known that there exists some
so-called generating relative unit ε∗ ∈ U∗

N such that {−1, ε∗, ε
σ
∗} generate U∗

N , and
we set

Reg∗N := (log |ε∗|)2 + (log |εσ
∗ |)2 − (log |ε∗|)(log |εσ

∗ |) > 0,

which does not depend on the generating relative unit. Then, 12RegLRegKReg∗N
= QNRegN for some QN ∈ {1, 3, 4, 12} (see [Lou7, Lemma 3]). Now,

(9) h∗
N := hN/(hLhK) =

QN

12Reg∗N
|L′(0, χN )|2

is a positive divisor of hN , by [CW, Lemma 1], where χN is any one of the two
conjugate primitive, even, sextic Dirichlet characters of conductor fN associated
with N . For the simplest sextic fields we have:

Lemma 9 (See [Gra2, Th. 2] and [Lou7, Lemma 6]). Assume that m > 1 is such
that ∆m = m2 + 3m + 9 ≡ 1 (mod 12) is square-free, and set a = 4

√
∆m. Then,
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ε∗ := −ρm(2ρm + 1)/(ρm + 2) is a generating relative unit of the simplest sextic
field Nm,

ε∗ = −
√

4a(a − 9)
9

cos
(1

3
arctan(

√
27(a2 − 108)

2a2 − 27a + 54
)
)

+ 1 − a

3
,

and

εσ
∗ =

√
4a(a + 9)

9
cos

(1
3

arctan(

√
27(a2 − 108)

2a2 + 27a + 54
) +

π

3

)
+ 1 +

a

3
.

Theorem 10. Assume that ∆m = m2+3m+9 ≡ 1 (mod 12) is square-free. Then,

ω(χNm
) := (τ (χNm

))6 = (−1)(∆m−1)/2
(
(2m + 3 + 3i

√
3)/2

)4

∆m.

Hence, setting εm := (1−(−1)(∆m−1)/2)/2 ∈ {0, 1}, there exists km ∈ {0, 1, 2, 3, 4, 5}
such that

(10) arg(W (χNm
)) ≡ 1

6
arctan(

3
√

3
2m + 3

) +
2km + εm

6
π (mod 2π).

Proof. Let χ be a sextic Dirichlet character modulo a prime p ≡ 1 (mod 6). Using
[BE71, Theorem 3.1] or [Laz4, Lemma 2.1], we have

ω(χ) := (τ (χ))6 =
(
−1
p

)
(ω(χ2))4/p3.

Using Lemma 4 and Theorem 8, we obtain the desired result. �

Remark 11. Since QNm
is not that easy to compute, it is much easier to compute

h∗∗
Nm

:= 12h∗
Nm

/QNm
= |L′(0, χN )|2/Reg∗K ∈ {h∗

Nm
, 3h∗

Nm
, 4h∗

Nm
, 12h∗

Nm
} which

divides 12h∗
Nm

. According to our computation, we have hKm
h∗∗

Nm
≥ 12∆m for

4565 < m ≤ 105, which implies hNm
/hLm

= hKm
h∗

Nm
≥ ∆m, for 4565 < m ≤ 105,

hence for m > 4565 by [Lou7, Theorem 8].

5. Simplest quartic fields

Let K be a real cyclic quartic field. Let UK and σ be its group of algebraic
units and a generator of its Galois group. Let L denote its real quadratic subfield.
Let hL be its class number. Finally, let U∗

K = {ε ∈ UK ; NK/L(ε) ∈ {±1}} denote
the so-called group of relative units of K. There exists some so-called generating
relative unit ε∗ ∈ U∗

K such that {−1, ε∗, ε
σ
∗} generate U∗

K , and we set

Reg∗K := (log |ε∗|)2 + (log |εσ
∗ |)2 > 0

(which does not depend on the generating relative unit). Then, it holds that
2RegLReg∗K = QKRegK for some QK ∈ {1, 2} (see [Lou6, Lemma 2]). Since
K/L is ramified, hL divides hK and

h∗
K := hK/hL =

QK

2Reg∗K
|L′(0, χK)|2

is a positive divisor of hK .
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5.1. Some quartic Gauss sums. The units in Z[i] are {±1,±i}. An algebraic
integer α = a + bi ∈ Z[i] is primary if α ≡ 1 (mod (1 + i)3Z[i]), i.e., if [a ≡ 1
(mod 4) and b ≡ 0 (mod 4)] or [a ≡ −1 (mod 4) and b ≡ 2 (mod 4)]. The order
of the multiplicative group (Z[i]/(1 + i)3Z[i])∗ is equal to 4 and the four units in
Z[i] form a set of representatives of this group. Therefore, if 2 does not divide the
norm N(α) = αᾱ = a2 + b2 of α ∈ Z[i], then exactly one the four associates of α is
primary. If follows that if 0 �= α ∈ Z[i] is a nonunit primary element, then α can
be written in a unique way as a product of primary irreducibles (for the existence,
see [IR, Lemma 8 page 121]).

Lemma 12 (See [IR, Theorem 3, page 128]). Let p = a2 + b2 ≡ 1 (mod 4) be a
rational prime, where b is even and a ∈ Z is uniquely determined by a ≡ (−1)(p−1)/4

(mod 4). Set π = a + bi ∈ Z[i] (which is primary). For α ∈ Z[i] coprime with π,
let χπ(α) ∈ {±1,±i} be the quartic residue symbol defined by α(p−1)/4 ≡ χπ(α)
(mod π). Then, τ (χπ)2 = −(−1)(p−1)/4π

√
p. (An explicit formula for τ (χπ) is

given in [BE82, Section 4.3], but using it, the numerical determination of τ (χπ)
would require at least 	 p elementary operations.)

Corollary 13. Let δm =
∏t

k=1 πk be a product of t ≥ 1 primary irreducibles
πk ∈ Z[i] such that the pk = |πk|2 ≡ 1 (mod 4) are pairwise distinct primes. Set
∆m = |δm|2 =

∏t
k=1 pk and χδm

=
∏t

k=1 χπk
. Then, χδm

is a primitive, quartic
character modulo ∆m, χδm

(−1) = (−1)(∆m−1)/4,

(11) τ (χδm
)2 = (−1)t+(∆m−1)/4δm

√
∆m,

χ2
δm

is a primitive, even quadratic character modulo ∆m, and τ (χ2
δm

) =
√

∆m.

Proof. According to Lemmas 4 and 12 and using

(12)
t∑

k=1

pk − 1
4

≡ ∆m − 1
4

(mod 2)

(by induction on t) and

ε2χδm
=

( t∏
i=1

t∏
j=1
j �=i

χπi
(pj)

)2

=
t∏

i=1

t∏
j=1
j �=i

(
pj

pi

)
=

∏
1≤i<j≤t

(
pj

pi

) (
pi

pj

)
= +1

(for the pi’s are all equal to 1 modulo 4), we obtain (11). Using (12), we obtain
χδm

(−1) =
∏t

k=1 χπk
(−1) =

∏t
k=1(−1)(pk−1)/4 = (−1)(∆m−1)/4. �

Theorem 14. Assume that ∆m = m2 + 16 ≡ 1 (mod 8) is square-free, and that
m ≥ 1 odd (there are infinitely many such m’s, by [Lou6, Proposition 7]). Write
∆m =

∏t
k=1 pk where the pk ≡ 1 (mod 4) are distinct odd primes. Then,

δm := (−1)(m−1)/2(m + 4i) ≡ 1 (mod 4Z[i])
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is primary, χδm
is a primitive, even, quartic character modulo ∆m, χ2

δm
is a prim-

itive quadratic character modulo ∆m, and there exists εm ∈ {±1} such that

(13) τ (χδm
) = εmit+(m−1)/2

(√
(∆m + m

√
∆m)/2 + i

√
(∆m − m

√
∆m)/2

)
.

Moreover, Q(η(χδm
)) = Q(

√
(∆m + m

√
∆m)/2) and (see also [Laz3, Proposition

3.4])

η̃m := µ(∆m)(−1)(m−1)/2η(χδm
) +

m − (−1)(m−1)/2

4
is a root of Pm(x) = x4 − mx3 − 6x2 + mx + 1. Therefore, Km = Q(η(χδm

))
is a simplest quartic field of conductor ∆m and χδm

is one of the two conjugate
characters associated with the simplest quartic field Km. Hence, we may suppose
that χKm

= χδm
and there exists km ∈ {0, 1} such that

arg(W (χKm
)) = arctan(

4
m +

√
∆m

) + (t + (m − 1)/2)
π

2
+ kmπ (mod 2π).

Proof. (13) follows from (11). Since χδm
is even, the cyclic quartic field Mm of

conductor ∆m associated with χδm
is real and ηm := η(χδm

) ∈ Mm. Now, ε(4η̃m −
m−ε

√
∆m) = 4ηm−µ(∆m)−

√
∆m = τ+τ̄ , by Section 2, where ε := (−1)t+(m−1)/2.

Using τ τ̄ = ∆m and (11), we obtain (4η̃m − m − ε
√

∆m)2 = 2
(τ2) + 2∆m =
2εm

√
∆m + 2∆m, Q(ηm) = Q(η̃m) = Q

(√
(∆m + εm

√
∆m)/2

)
⊆ Mm, and this

inclusion is an equality. Finally, η̃m satisfies ((4η̃m − m) − ε
√

∆m)2 = 2εm
√

∆m +
2∆m. Hence, (4η̃m − m)2 − ∆m = 8ε

√
∆mη̃m and 0 = ((4η̃m − m)2 − ∆m)2 −

64∆mη̃2
m = 256Pm(η̃m). �

5.2. Some numerical computations. Pm(x) has only one root ρm > 1,

ρm =
(
(m +

√
∆m)/2 +

√
(∆m + m

√
∆m)/2

)
/2,

σ(ρm) =
(
(m −

√
∆m)/2 +

√
(∆m − m

√
∆m)/2

)
/2,

Reg∗Km
= log2 ρm + log2 σ(ρm),

Lm = Q(
√

∆m) is the quadratic subfield of the real cyclic quartic field Km, and

h∗
Km

= hKm
/hLm

=
QKm

2Reg∗Km

|L′(0, χKm
)|2 ≥ 2∆m

3e(log ∆m + 0.35)4
.

Theorem 15. Assume that m ≥ 1 and that ∆m = m2 + 16 is prime. Then, the
class numbers and narrow class numbers of Km and Lm are odd, and QKm

= 2.

Proof. (See [Lou6, Proposition 10] for the determination of QKm
in the general

case.) For the results on the class numbers, see [Wa3, proof of Th. 10.4(b)].
Now, the norm of the fundamental unit εLm

> 1 of Lm is equal to −1. Moreover,
σ3(ρm) < −1 < σ2(ρm) < 0 < σ(ρm) < 1 < ρm. Hence, εLm

ρ1−σ
m is a totally

positive algebraic unit of Km. Since the narrow class number h+
Km

of Km is odd,
εLm

ρ1−σ
m is a square in Km (recall that if K is totally real, then h+

K = (U+
K : U2

K)hK),
and QKm

= 2 (by [Gra1, Proposition 1]). �
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Table 2. Least primes ∆m = m2 + 16 with hKm
≥ ∆m

m ∆m |θ(1, χKm
)| εm hLm

h∗
Km

hKm
/∆m

524285 274874761241 366.538 · · · +1 1911 181442581 1.261 · · ·
1680401 2823747520817 103.742 · · · −1 1537 1878644993 1.022 · · ·

Let q ≡ 3 (mod 4) be the least positive odd prime such that χ2
Km

(q) = (∆m

q ) =
−1. Then χKm

(q) ∈ {±i} and χδm
(q) ∈ {±i}. According to the law of bi-

quadratic reciprocity (see [IR, Theorem 2, page 123]), we have χδm
(q) = χδm

(−q) =

χ−q(δm) ≡ δ
(q2−1)/4
m (mod qZ[i]), which can be efficiently computed by using the

binary expansion of (q2 − 1)/4. Hence, by computing χKm
(q) and by changing

χKm
into its conjugate if necessary, we may assume that χKm

(q) = χδm
(q), which

implies χKm
= χδm

. We used our efficient method to compute the class numbers
of all the Km’s with 1 ≤ m ≤ 1680401 and ∆m = m2 + 16 a prime. In that situa-
tion, the class number hKm

= hLm
h∗

Km
of Km divides the class number of the real

cyclotomic field Q+(ζ∆m
) (see [CW, Lemma 2]). We list below the least two m’s

for which hKm
> ∆m. Note that G. Cornell and L. C. Washington did not find any

such Km (see [CW, bottom of page 268]).

Lemma 16. Let πk = Ak+2iBk ∈ Z[i] be primary of prime norms pk = A2
k+4B2

k ≡
1 (mod 4), 1 ≤ k ≤ t. Set δ :=

∏d
k=1 πk = A + 2iB ∈ Z[i]. Then, χδ(2) = i−B. In

particular, if Km is a simplest quartic field and χKm
is any one of its two associated

quartic characters, then χKm
(2) = −1.

Proof. We have Ak ≡ 1 + 2Bk (mod 4) and χπk
(2) = χπk

(1 + i)χπ̄k
(1 + i) = i−Bk

(by [IR, Exercice 37, page 136]). It follows that B ≡
∑t

k=1 Bk (mod 4) and A ≡
1+2B (mod 4) (by induction on t), which implies χδ(2) =

∏t
k=1 χπk

(2) = i−B. In
particular, we do have χKm

(2) = i−±2 = −1. �

5.3. Washington’s cyclic quartic fields. We deal with the family of real cyclic
number fields introduced in [Wa2].

Theorem 17. Assume that ∆m := m(m + 2)(m2 + 4) ≡ 3 (mod 4) is square-free,
and that m ≥ 1 odd. Let t ≥ 1 denote the number of prime divisors of dm := m2+4.
Set δm = (−1)(m+1)/2(m− 2i), which is primary, and χ∆m

(n) =
(

n
m(m+2)

)
χδm

(n).
Then, χ∆m

is a primitive, even, quartic Dirichlet character modulo ∆m, χ2
∆m

is of
conductor dm, χ∆m

(2) = i, and there exists εm ∈ {±1} such that

(14) τ (χ∆m
) = εmit+(m2−1)/8 4

√
m(m + 2)∆m

(√√
dm + m

2
− i

√√
dm − m

2

)
.

Moreover, Q(η(χ∆m
)) = Q

(√
(∆m ± m

√
m(m + 2)∆m)/2

)
and

η̃m := ηm(χ∆m
) +

m2 − µ(∆m) +
(
(m + 2)

(
2
m

)
µ(dm) +

(
−2
m

)
µ(m(m + 2))

)√
dm

4
is a root of Pm(x) = x4 − m2x3 − (m3 + 2m2 + 4m + 2)x2 − m2x + 1. Therefore,
Km = Q(η(χ∆m

)) is a cyclic quartic field of conductor ∆m, and its real quadratic
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subfield is km = Q(
√

dm), of conductor dm. We may suppose that χKm
= χ∆m

and
there exists km ∈ {0, 1} such that

arg(W (χKm
)) = − arctan(

2
m +

√
dm

) + (t + (m2 − 1)/8)
π

4
+ kmπ (mod 2π).

Proof. By Lemma 16, we have χ∆m
(2) =

(
2

m(m+2)

)
i(−1)(m+1)/2

= i (check it on
the four cases m ≡ 1, 3, 5, 7 (mod 8)). By Corollary 13, we have χ∆m

(−1) =( −1
m(m+2)

)
(−1)(dm−1)/4 = (−1) × (−1) = +1, and

(15) τ (χ∆m
)2 = ε(m − 2i)

√
m(m + 2)∆m,

where
ε = (−1)t

( 2
m

)
= µ(dm)

( 2
m

)
(use Section 2, Corollary 13 and

(
m(m+2)

m2+4

)
= −

(
−2
m

)
), from which (14) follows.

Hence χ∆m
is even and the cyclic quartic field Mm of conductor ∆m associated with

χ∆m
is real. As in the proof of Theorem 14, set τ = τ (χ∆m

) and ηm := η(χ∆m
) ∈

Mm. Now, τ (χ2
∆m

) = τ (1m(m+2)

(
•

dm

)
) = ε′

√
dm (use Section 2), where

ε′ = µ(m(m + 2))
(m(m + 2)

m2 + 4

)
= −

(−2
m

)
µ(m(m + 2)).

Hence, η′
m := 4ηm − µ(∆m) − ε′

√
dm = τ + τ̄ , by Section 2. Using τ τ̄ = ∆m and

(15), we obtain η′2
m = 2
(τ2)+2∆m = 2εm2(m+2)

√
dm+2∆m, Q(ηm) = Q(η′

m) =

Q
(√

(∆m + εm
√

m(m + 2)∆m)/2
)
⊆ Mm, and this inclusion is an equality. Fi-

nally, η̃m = (η′
m + m2 + ε(m + 2)

√
dm)/4 satisfies ((4η̃m −m2)− ε(m + 2)

√
dm)2 =

4η′2
m = 2m(m + 2)dm + 2εm2(m + 2)

√
dm. Hence,

(4η̃m − m2) − (m2 − 4)dm = 8ε(m + 2)
√

dmη̃m

and 0 = ((4η̃m − m2) − (m2 − 4)dm)2 − 64(m + 2)2dmη̃2
m = 256Pm(η̃m). �

6. Simplest quintic fields

In [Jean] and [SW], S. Jeannin, R. Schoof and L. C. Washington dealt with the
so-called simplest quintic fields, the real cyclic quintic number fields associated with
the quintic polynomials

Pm(x) = x5 + m2x4 − 2(m3 + 3m2 + 5m + 5)x3

+(m4 + 5m3 + 11m2 + 15m + 5)x2 + (m3 + 4m2 + 10m + 10)x + 1

of discriminants dm = (m3 +5m2 +10m+7)2∆4
m, where ∆m = m4 +5m3 +15m2 +

25m + 25. We assume that ∆m is square-free. Then, the conductor of Km is equal
to ∆m (see [Jean, Th. 1]) and the zeros of Pm(X) generate the unit group of Km

(see [SW, Theorem (3.5)] and [Jean, Théorème 2]).

6.1. Minimal polynomials of Gaussian periods. If gcd(a, f) = 1, we let σa,f ∈
Gal(Q(ζf )/Q) be defined by σa,f (ζf ) = ζa

f .
Fix χ a primitive even Dirichlet character of order q ≥ 2 and conductor ∆ > 1.

All the characters χa, a ∈ Z, are considered as characters modulo ∆.
We assume (i) that ∆ is square-free, hence ∆ =

∏t
i=1 pi is a product of t ≥ 1

distinct primes pi ≡ 1 (mod q), and (ii) that the q−1 characters χa, 1 ≤ a ≤ q−1,
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are primitive modulo ∆. Then, none of the Gaussian sums τ (χa), a ∈ Z, is equal to
zero, for |τ (χa)| =

√
∆ if q does not divide a (see [Wa3, Lemma 4.8]) and τ (χa) =

µ(∆) = (−1)t if q divides a (by Lemma 5). Let K ⊆ Q(ζ∆) be the real cyclic
number field of degree q and conductor ∆ associated with χ (see [Wa3, Chapter
3]), i.e., Gal(Q(ζ∆)/K) = kerχ as a subgroup of (Z/∆Z)∗ = Gal(Q(ζ∆)/Q). For
k ∈ Z, let k∗ ∈ Z coprime with ∆ be such that χ(k∗) = ζk

q . Set

ηk :=
∆∑

l=1
χ(l)=ζk

q

ζl
∆ ∈ Q(ζ∆) (k ∈ Z).

Then, η0 = TrQ(ζ∆)/K(ζ∆) ∈ K,

(16) σk∗,∆(ηi) =
∆∑

l=1
χ(l)=ζi

q

ζlk∗

∆ =
∆∑

l=1
χ(lk∗)=ζ

i+k
q

ζlk∗

∆ = ηi+k,

and ηk = σk∗,∆(η0) ∈ σk∗,∆(K) = K. Now, suppose that
∑q−1

i=0 λiηi = 0, λi ∈ Q.
Then, 0 = σk∗,∆(

∑q−1
i=0 λiηi) =

∑q−1
i=0 λiηi+k for 0 ≤ k ≤ q − 1, by (16). Since

det[ηi+k]0≤i,k≤q−1 =
∏q−1

a=0 τ (χa) (by (19)) is not equal to 0, we obtain λ0 = · · · =
λq−1 = 0. In particular, the ηk, 0 ≤ k ≤ q − 1, are Q-linearly independent. Hence,
they form a Q-basis of K, K = Q(η0) (see [Lon, Theorem 2.11 page 105] for a more
general result), and there exists

C = [ci,j ]0≤i,j≤q−1 ∈ Mq(Q)

such that

(17) η0ηi =
q−1∑
j=0

ci,jηj (0 ≤ i ≤ q − 1).

In particular, η0 is an eigenvalue of C and P (x) := det(xIq −C) ∈ Q[x] is a monic
polynomial of degree q such that P (η0) = 0, i.e., P (x) is the minimal polynomial
of the ηk’s. Note that (by (17) and (16)),

(18) ηkηi+k = σk∗,∆(η0ηi) =
q−1∑
j=0

ci,jηj+k (i, k ∈ Z).

Remark 18. Let us point out that if χ is the character of order q = 6 and conductor
∆ = 9 defined by χ(2) = ζ6, then τ (χ3) =

∑9
a=1(

a
3 )ζa

9 = ζ9−ζ2
9 +ζ4

9 −ζ5
9 +ζ7

9 −ζ8
9 =

0. Hence, the ηk, 0 ≤ k ≤ q − 1, are not Q-linearly independent. Indeed, we have
η0 − η1 + η2 − η3 + η4 − η5 = ζ9 − ζ2

9 + ζ4
9 − ζ8

9 + ζ7
9 − ζ5

9 = 0.

We now explain how one can practically compute this matrix C (see (20) and
Lemma 19 below for the result). Let

(19) τ (χa) :=
∆∑

l=1

χa(l)ζl
∆ =

q−1∑
k=0

ζak
q ηk ∈ K(ζq)
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and J(χa, χb) ∈ Q(ζq) denote the Gauss and Jacobi sums associated with the
powers of χ (considered as not necessarily primitive characters modulo ∆). Set

Ja,b :=
τ (χa)τ (χb)

τ (χa+b)

=

⎧⎪⎨
⎪⎩

J(χa, χb) if a, b and a + b �≡ 0 (mod q),
(−1)t if aor b ≡ 0 (mod q),
(−1)t∆ if a and b �≡ 0 (mod q) but a + b ≡ 0 (mod q)

(use Lemma 4 and [IR, Theorem 1, page 93]). We have

Ja,bτ (χa+b) = τ (χa)τ (χb)

=
q−1∑
k=0

( q−1∑
k1=0

q−1∑
k2=0

ck2−k1,k−k1ζ
ak1+bk2
q

)
ηk (by (19) and (18))

=
(q−1∑

i=0

q−1∑
j=0

ci,jζ
bi−(a+b)j
q

) q−1∑
k=0

ζ(a+b)k
q ηk (set i = k2 − k1 and j = k − k1)

=
(q−1∑

i=0

q−1∑
j=0

ci,jζ
bi−(a+b)j
q

)
τ (χa+b) (by (19)),

which implies (see also [Tha, Proposition 3])

q−1∑
i=0

q−1∑
j=0

ci,jζ
bi−(a+b)j
q = Ja,b (0 ≤ a, b ≤ q − 1),

for τ (χa+b) �= 0, from which it follows that

(20) q2ci,j =
q−1∑
a=0

q−1∑
b=0

ζ−bi+(a+b)j
q Ja,b (0 ≤ i, j ≤ q − 1).

Lemma 19. Assume that q is prime. Set

δi,j =

{
1 if i ≡ j (mod q),
0 if i �≡ j (mod q).

Define the coefficients di,j ∈ Z in a unique way by means of

J1,i :=
q−1∑
j=0

di,jζ
j
q with

q−1∑
j=0

di,j = 0 (0 ≤ i ≤ q − 1).

For 0 ≤ m, n ≤ q − 1, it holds that

qcm,n = (−1)t
(
∆δm,0 + δm,n + δ0,n − ∆ + 1

q

)
+

q−2∑
b=1

db,bm−(1+b)n.

Proof. If gcd(a, q) = 1, then

Ja,ab =
q−1∑
k=0

db,kζak
q
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(if b ≡ 0 (mod q), then J1,b = (−1)t∆ = Ja,ab, and if b �≡ 0 (mod q), then Ja,ab =
J(χa, χab) = σa,q(J(χ, χb)) = σa,q(J1,b) =

∑q−1
k=0 db,kζak

q ). Therefore, using (20),
we obtain

q2cm,n =
q−1∑
b=0

ζb(n−m)
q J0,b +

q−1∑
a=1

q−1∑
b=0

ζ−bm+(a+b)n
q Ja,b

= (−1)tqδm,n +
q−1∑
a=1

q−1∑
b=0

ζ−abm+(a+ab)n
q Ja,ab (for J0,b = (−1)t)

= (−1)tqδm,n +
q−1∑
a=1

q−1∑
b=0

q−1∑
k=0

db,kζa(k−bm+(1+b)n)
q

= (−1)tqδm,n −
q−1∑
b=0

q−1∑
k=0

db,k +
q−1∑
b=0

q−1∑
k=0

db,k

q−1∑
a=0

ζa(k−bm+(1+b)n)
q

and

qcm,n = (−1)tδm,n +
q−1∑
b=0

db,bm−(1+b)n (0 ≤ m, n ≤ q − 1)

(see also [Tha, Formula (8)]). Finally, since

d0,j = (−1)t(qδ0,j − 1)/q

(for
∑q−1

j=0(−1)t qδ0,j−1
q ζj

q = (−1)t = J1,0) and

dq−1,j = (−1)t∆(qδ0,j − 1)/q

(for
∑q−1

j=0(−1)t∆ qδ0,j−1
q ζj

q = (−1)t∆ = J1,q−1), we obtain the desired result. �

Remark 20. If χ is even, then J1,q−1−a = J1,a for 1 ≤ a ≤ q − 2. Indeed,

J(χ, χq−1−a)
J(χ, χa)

=
τ (χ)τ (χq−1−a)

τ (χq−a)
τ (χ1+a)

τ (χ)τ (χa)
= χ(−1)

|τ (χ1+a)|2
|τ (χa)|2 = χ(−1) = 1.

6.2. Some quintic Gauss sums.

Lemma 21. Assume that ∆m = m4 +5m3 +15m2 +25m+25 is square-free, write
∆m =

∏t
k=1 pk where the pk’s are distinct odd primes, and set

δm := (m + 1)ζ5 + mζ2
5 + (m + 2)ζ3

5 + (m + 2)ζ4
5 ∈ Z[ζ5].

Then NQ(ζ5)/Q(δm) = ∆m. Therefore, (δm) =
∏t

k=1 Pk for some distinct prime
ideals of Z[ζ5] with NQ(ζ5)/Q(Pk) = pk ≡ 1 (mod 5). Let χPk

denote the quintic
character on the multiplicative group (Z[ζ5]/Pk)∗ by letting χPk

(α) be the unique
power of ζ5 congruent to α(pk−1)/5 modulo Pk. Set χδm

=
∏t

k=1 χPk
. Then,

χδm
(2) =

{
ζ3
5 if m ≡ 0 (mod 2),

ζ4
5 if m ≡ 1 (mod 2).
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Moreover,

J1,1 = J(χδm
, χδm

) = (−1)t(
m

5
)δmσ3,5(δm)

= (−1)t(
m

5
)
(4m2 + 10m + 5

5
− m2 − 5m − 5

5
ζ5

−m2 − 5
5

ζ2
5 − m2 + 5m − 5

5
ζ3
5 − m2 + 10m + 20

5
ζ4
5

)
,

...

J1,2 = J(χδm
, χ2

δm
) = (−1)t(

m

5
)δmσ2,5(δm)

= (−1)t(
m

5
)
(4m2 + 10m + 5

5
− m2 + 5m − 5

5
ζ5

−m2 − 5m − 5
5

ζ2
5 − m2 + 10m + 20

5
ζ3
5 − m2 − 5

5
ζ4
5

)
,

and J1,3 = J(χδm
, χ3

δm
) = J(χδm

, χδm
) = J1,1. Then (see also [Leh, Section 5] and

[SW, (3.4)]),

η̃m := −(−1)t(
m

5
)ηm(χδm

) +
(m

5 ) − m2

5
is a root of Pm(x) = x5 + m2x4 − 2(m3 + 3m2 + 5m + 5)x3 + (m4 + 5m3 + 11m2 +
15m + 5)x2 + (m3 + 4m2 + 10m + 10)x + 1. Therefore, Km = Q(ηm(χδm

)) is
a simplest quintic field of conductor ∆m, and χδm

is one of the four conjugate
characters associated with the simplest quintic field Km.

Proof. Using Eisenstein’s reciprocity law (see [IR, Th. 1 page 207]), we have

χδm
(2) =

(
2

δm

)
5

=
(

δm

2

)
5

≡ δ(24−1)/5
m ≡ δ3

m (mod (2)).

Since δ3
m ≡ ζ3

5 (mod (2)) if m ≡ 0 (mod 2) and δ3
m ≡ (ζ2

5 +ζ3
5 +ζ4

5 )3 ≡ (−1−ζ5)3 ≡
1 + ζ5 + ζ2

5 + ζ3
5 ≡ ζ4

5 (mod (2)) if m ≡ 1 (mod 2), the desired first result follows.
According to [BEW, Th. 2.1.14] and section 2, the principal ideal (J(χδm

, χδm
))

of Z[ζ5] is equal to the principal ideal (δmσ3,5(δm)). Hence, there exists some
algebraic unit ε ∈ Z[ζ5] such that

J(χδm
, χδm

) = (−1)t(
m

5
)εδmσ3,5(δm).

Taking absolute values, we obtain |ε| = 1 and ε = ±ζc
5 for some c ∈ Z (see [BEW,

Th. 2.1.13]). Set λ5 = 1−ζ5. Since δm ≡ −m (mod λ2
5) (use ζl

5 = (1−λ5)l ≡ 1−lλ5

(mod λ2
5)), we obtain δmσ3,5(δm) ≡ m2 ≡ (m

5 ) (mod λ2
5) (for m2 ≡ (m

5 ) (mod 5)),
and

J(χδm
, χδm

) = ±ζc
5(−1)t(

m

5
)δmσ3,5(δm) ≡ ±(−1)tζc

5 ≡ ±(−1)t(1−cλ5) (mod λ2
5).

Since J(χδm
, χδm

) ≡ (−1)t (mod λ2
5) (see [BEW, 2.1.11] and use Lemma 4), we

obtain that c = 0, that the sign ± in ε = ±ζc
5 is a + sign. The desired formula for

J1,1 follows. Applying Remark 20 with a = 1 to χ = χ2
δm

, we have J1,2 = J2,2 =
σ2,5(J1,1) and the desired formula for J1,2. Applying Remark 20 with a = 1 to
χ = χδm

, we obtain J1,3 = J1,1. Hence, by Lemma 19, C = (−1)t(C1 + (m
5 )C2)
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with

C1 =
1

25

⎛
⎜⎜⎜⎜⎝

4∆ + 9 4∆ − 1 4∆ − 1 4∆ − 1 4∆ − 1
−(∆ − 4) −(∆ − 4) −(∆ + 1) −(∆ + 1) −(∆ + 1)
−(∆ − 4) −(∆ + 1) −(∆ − 4) −(∆ + 1) −(∆ + 1)
−(∆ − 4) −(∆ + 1) −(∆ + 1) −(∆ − 4) −(∆ + 1)
−(∆ − 4) −(∆ + 1) −(∆ + 1) −(∆ + 1) −(∆ − 4)

⎞
⎟⎟⎟⎟⎠

and

C2 =

⎛
⎜⎜⎜⎜⎜⎝

12m2+30m+15
25

− 3m2−5m−15
25

− 3m2−5m−15
25

− 3m2+20m+10
25

− 3m2+20m+35
25

− 3m2−5m−15
25

− 3m2+20m+35
25

2m2+5m+15
25

2m2+5m−10
25

2m2+5m+15
25

− 3m2−5m−15
25

2m2+5m+15
25

− 3m2+20m+10
25

2m2+5m−10
25

2m2+5m−10
25

− 3m2+20m+10
25

2m2+5m−10
25

2m2+5m−10
25

− 3m2−5m−15
25

2m2+5m+15
25

− 3m2+20m+35
25

2m2+5m+15
25

2m2+5m−10
25

2m2+5m+15
25

− 3m2−5m−15
25

⎞
⎟⎟⎟⎟⎟⎠ .

It follows that η(χδm
) is a root of det(xI5 − C) and that η̃m is a root of

det
((

x +
m2 − (m

5 )
5

)
I5 + (

m

5
)C1 + C2

)
= Pm(x).

The proof of the lemma is complete. �

Lemma 22. Let χ be a primitive quintic Dirichlet character modulo f =
∏r

i=1 pi,
a product of r ≥ 1 distinct primes equal to 1 modulo 5. Then,

ω(χ) := (τ (χ))5 = f · (J(χ, χ))2 · J(χ2, χ2).

Proof. According to Lemma 4, we may assume that f = p ≡ 1 (mod 5) is prime.
Then, ω(χ) = pJ(χ, χ)J(χ, χ2)J(χ, χ3) (see [IR, Proposition 8.3.3] and use χ(−1) =
1 for quintic characters) and J(χ, χ2)J(χ, χ3) = J(χ, χ)J(χ2, χ2) (use [IR, Theorem
1(d), page 93]). The desired result follows. �

Putting everything together, we obtain:

Theorem 23. Assume that ∆m = m4 + 5m3 + 15m2 + 25m + 25 is square-free.
Choose the quintic character χKm

associated with the simplest quintic field Km such
that

(21) χKm
(2) =

{
ζ3
5 if m ≡ 0 (mod 2),

ζ4
5 if m ≡ 1 (mod 2).

Then, χKm
= χδm

and ω(χKm
) := (τ (χKm

))5 = −µ(∆m)(m
5 )∆mΩm, where

Ωm = (m6 + 5m5 + 5m4 + 25m2 + 125m + 125)ζ5

+(m6 + 5m5 − 5m4 − 75m3 − 175m2 − 125m)ζ2
5

+(m6 + 10m5 + 25m4 − 100m2 − 125m)ζ3
5

+(m6 + 10m5 + 40m4 + 75m3 + 50m2)ζ4
5 ∈ Z[ζ5].

Hence, setting εm := (1 + µ(∆m)(m
5 ))/2 ∈ {0, 1} and assuming that |m| ≥ 6, there

exists km ∈ {0, 1, 2, 3, 4} such that

(22) arg(W (χKm
)) ≡ 1

5
arg(Ωm) +

2km + εm

5
π (mod 2π).
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Table 3. Simplest quintic fields Km of prime conductors ∆m <
2 · 1010

m ∆m hKm

27 641491 1566401
−61 12765251 66431941

66 20479231 61 · 2988151
73 30425111 11 · 30494041
77 37526591 3233114891

−84 46927381 2068985771
−88 56676161 5912208301
−99 91352671 3144379001

−102 103090711 3626779141
−121 205717691 11420513591

122 230839031 11 · 5490034301
128 279170201 24178878281
129 287909191 32215474121
139 387022451 11 · 3871903571

−147 451386751 24 · 9707049091
−163 684652511 41 · 19155428231

162 710402911 24 · 26333557751
178 1032554351 320881058831

−187 1190654831 11 · 23562499501

m ∆m hKm

−237 3089232931 1634411025661
238 3276804731 71 · 46688410201
242 3501489071 24 · 299565631061

−249 3767856571 11 · 204883296461
−263 4694424311 11 · 887549864351
−264 4766572561 112 · 2860886261

268 5256015221 151 · 28085651441
271 5494201451 6532834598131
282 6437395351 11 · 1650567867511
291 7295360131 5988407760191
293 7497114671 112 · 88831947341

−303 8291171431 2311 · 11223836111
−312 9325450081 41 · 383458530551

319 10519144331 13957149210871
−333 12113395171 151 · 358454263301
−339 13013760511 11 · 4393967408821
−362 16937296931 32280558127001
−363 17125876111 125133985556911

363 17604215731 34 · 573154162571

6.3. Some numerical computations. Since

Pm(m + 1)Pm(m + 2) = −(m3 + 5m2 + 10m + 7)2 < 0

we can use Newton’s method for computing efficiently numerical approximations to
a root θ0 ∈ (m+1, m+2) of Pm(x). The four other roots are computed inductively
by the transformation

θj �→ θj+1 :=
(
(m + 2) + mθj − θ2

j

)
/(1 + (m + 2)θj),

and we finally compute the regulator of Km by the formula

RegKm
=

1
5

4∏
i=1

( 4∑
j=0

ζij
5 log |θj |

)
∼ 71

256
log4 ∆m

(see [SW, Page 550] for the asymptotic) and

hKm
= |L′(0, χKm

)|2|L′(0, χ2
Km

)|2/RegKm
	 ∆2

m/ log8 ∆m,

by [Lou1]. We used our efficient method to compute the class numbers of all the
simplest quintic fields Km’s with ∆m = m4 + 5m3 + 15m2 + 25m + 25 ≤ 2 · 1010

a prime (see Table 3). In that situation, hKm
divides the class number of the real

cyclotomic field Q+(ζ∆m
) (see [CW, Lemma 2]). We list below the least values of

∆m for which some prime q ≥ ∆m (in boldface letters) divides hKm
.

7. Acknowledgment

All our class number computations were carried out on a personal microcomputer
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calculation on PCs.
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