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NONCONFORMING TETRAHEDRAL FINITE ELEMENTS
FOR FOURTH ORDER ELLIPTIC EQUATIONS

WANG MING AND JINCHAO XU

Abstract. This paper is devoted to the construction of nonconforming finite
elements for the discretization of fourth order elliptic partial differential op-
erators in three spatial dimensions. The newly constructed elements include
two nonconforming tetrahedral finite elements and one quasi-conforming tetra-
hedral element. These elements are proved to be convergent for a model bi-
harmonic equation in three dimensions. In particular, the quasi-conforming
tetrahedron element is a modified Zienkiewicz element, while the nonmodified
Zienkiewicz element (a tetrahedral element of Hermite type) is proved to be
divergent on a special grid.

1. Introduction

The construction of appropriate finite element spaces for fourth order elliptic
partial differential equations is an intriguing subject. This problem has been well-
studied in two-dimensional spaces, and there have been a lot of interesting construc-
tions of both conforming and nonconforming finite element spaces. In comparison,
there has been very little work devoted to three-dimensional problems.

A conforming finite element space for fourth order problems consist of piecewise
polynomials that are globally continuously differentiable (C1). This smoothness
requirement can only be met with piecewise polynomials of sufficiently high degree.
In two dimensions, it is known [31] that at least a 5th degree polynomial (the
well-known Argyris element) is needed on a triangular mesh. Such a high degree
polynomial leads to finite element spaces with a very large degree of freedom which
is not computationally desirable. As a result, many lower degree nonconforming
finite elements have been constructed and used in practice (see [8]).

In three spatial dimensions, even higher degree polynomials are needed to con-
struct a conforming finite element space on, say, a tetrahedral finite element grid.
In [30] (see also [17]), a conforming tetrahedral conforming finite element space was
first constructed using the 9th degree of polynomials. This element requires C1

globally, C2 on all element edges, and C4 on all element vertices. The degree of
freedom for this element is huge, 220 on each element! In order to reduce the degree
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of polynomials, as in two dimensions, there has been some work on the construction
of conforming finite element spaces on macro-elements (namely by further partition-
ing a tetrahedron into sub-tetrahedrons); see [1] and [29] (similar to Clough-Tocher
in two dimensions) and [14]. But these elements all still have a very large degree of
freedom, and furthermore the macro-elements are often awkward to use in practical
applications.

To reduce the degree of polynomials and degree of freedom on each element, one
naturally turns to nonconforming elements. Surprisingly, there has been very little
work on the construction of nonconforming finite elements for fourth order elliptic
boundary value problems in three dimensions. The purpose of this work is to fill
in this important gap in the literature for this type of element.

The construction of nonconforming finite elements for fourth order problems in
three dimensions is not only important from a mathematical point of view but
also potentially important in practical applications. Indeed, two-dimensional bi-
harmonic equations have been much used in modeling linear plates (see [15]), and
such practical applications contributed to the importance and interest of study-
ing efficient numerical methods such as nonconforming finite elements to solve this
type of equation. We would like to point out that the three-dimensional biharmonic
operator also has important applications in practice. One notable example is the
Cahn-Hilliard diffusion equation (see [6]) and its modified version (see [13] and
the references there). The complex microstructure evolutions for many important
material processes, such as the phase separation in binary alloys and the solidifica-
tions of metals and alloys (see [5]), can be modeled by the Cahn-Hilliard diffusion
equations.

There were many works on the numerical methods for the Cahn-Hilliard equa-
tion; see [2, 3, 5], [9]–[12], [19] and their references. In addition to the finite dif-
ference method and also the spectral method, the fourth order term in the Cahn-
Hilliard equation can also be discretized by the finite element method (see [2, 3],
[10]–[12]). The finite element methods of mixed type, namely by writing the bihar-
monic operator as a product of two Laplacian operators, were discussed in [2, 3, 11].
It is conceivable that the biharmonic operator can also be discretized directly from
its original form, as it is often done for biharmonic equations in two dimensions.
This kind of finite element method had been applied to Cahn-Hilliard equation in
one and two dimensions (see [10, 12]), and there is no work for three dimensions
yet. As discussed above, the existing 3-dimensional conforming finite elements are
not very practical and the nonconforming finite element methods proposed in this
paper can hopefully be used for such applications.

In this paper, we will propose some finite elements for three-dimensional fourth
order partial differential equations. We took the natural approach of trying to
extend the various nonconforming finite element in two dimensions to three dimen-
sions. In two dimensions, there are well-known nonconforming elements, including
the elements named after Morley, Zienkiewicz, Adini, Bogner-Fox-Schmit, etc. (see
[4, 8, 16, 18]). There are some other ways of constructing elements, such as the
quasi-conforming method [25, 7]. In this paper, we will focus on tetrahedral com-
plete or incomplete cubic elements, and propose and analyze the following three
types of elements:

(1) A cubic tetrahedral element with 20 degrees of freedom and complete cubic
polynomial shape function space.
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(2) A incomplete cubic tetrahedral element with 16 degrees of freedom and
incomplete cubic polynomial shape function space.

(3) A quasi-conforming tetrahedral element with 16 degrees of freedom similar
to a nine-parameter quasi-conforming element.

The first two are nonconforming elements, and the last one is an element con-
structed by the quasi-conforming method. For nonconforming elements, the basic
mathematical theory has been studied in many works (see [8, 16], [22]–[24], [33]).
For quasi-conforming elements, detailed discussions can be found in [32, 33]. Fol-
lowing these theories, we give the convergence analysis of the elements.

The element of Hermite tetrahedron of type (3′) in [8], called a three-dimensional
Zienkiewicz element in this paper, is also viewed as an element for biharmonic
equations just like the two-dimensional Zienkiewicz element. In two-dimensional
case, the Zienkiewicz element is not convergent for general meshes. We will also
show that the three-dimensional Zienkiewicz element is divergent for some popular
grids in three dimensions.

We note that the degree of freedom of each element proposed in this paper is
substantially smaller than any known conforming elements. We expect that they
can be easily used in practice.

The rest of the paper is organized as follows. Section 2 gives a basic description
of the nonconforming element method. Section 3 gives a detailed description of the
new finite elements. Section 4 shows the convergence of the new elements and the
divergence of the three-dimensional Zienkiewicz element. Some concluding remarks
are made at the end of the paper.

2. Preliminaries

In this section, we shall give a brief discussion of a model fourth order elliptic
boundary value problem and how it may be discretized by a nonconforming finite
element method.

Given a bounded polyhedron domain Ω ⊂ R3 with boundary ∂Ω, for a nonnega-
tive integer s, let Hs(Ω), ‖ · ‖s,Ω, and | · |s,Ω be the usual Sobolev space, norm, and
seminorm, respectively. Let Hs

0(Ω) be the closure of C∞
0 (Ω) in Hs(Ω) with respect

to the norm ‖ · ‖s,Ω and (·, ·) denote the inner product of L2(Ω).
For f ∈ L2(Ω), we consider the following fourth order boundary value problem:

(2.1)

⎧⎪⎨⎪⎩
∆2u = f, in Ω,

u|∂Ω =
∂u

∂ν

∣∣∣∣
∂Ω

= 0,

where ν = (ν1, ν2, ν3)� is the unit outer normal to ∂Ω and ∆ is the standard
Laplacian operator.

For any function v ∈ H1(T ), set

Dv =
( ∂v

∂x1
,

∂v

∂x2
,

∂v

∂x3

)
.

When v ∈ H2(Ω), we define

(2.2) E(v) =
(∂2v

∂x2
1

,
∂2v

∂x2
2

,
∂2v

∂x2
3

,
∂2v

∂x1∂x2
,

∂2v

∂x1∂x3
,

∂2v

∂x2∂x3

)�
.
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Let K ∈ R6×6 be the matrix given by

K = diag(1, 1, 1, 2, 2, 2).

Define

(2.3) a(v, w) =
∫

Ω

E(w)�KE(v), ∀v, w ∈ H2(Ω).

The weak form of problem (2.1) is: find u ∈ H2
0 (Ω) such that

(2.4) a(u, v) = (f, v), ∀v ∈ H2
0 (Ω).

For a subset B ⊂ R3 and a nonnegative integer r, let Pr(B) be the space of all
polynomials of degree not greater than r, and let Qr(B) the space of all polynomials
of degree in each coordinate not greater than r.

Let (T, PT , ΦT ) be a finite element where T is the geometric shape, PT the
shape function space, and ΦT the vector of degrees of freedom, and let ΦT be PT -
unisolvent (see [8]). Let Th be a triangulation of Ω with mesh size h. For each
element T ∈ Th, let hT be the diameter of the smallest ball containing T and let
ρT be the diameter of the largest ball contained in T .

Let {Th} be a family of triangulations with h → 0. Throughout the paper, we
assume that {Th} is quasi-uniform, namely, it satisfies that hT ≤ h ≤ ηρT , ∀T ∈ Th

for a positive constant η independent of h.
For each Th, let Vh0 be the corresponding finite element space associated with

(T, PT , ΦT ) for the discretization of H2
0 (Ω). This defines a family of finite element

spaces {Vh0}. In the case of a nonconforming element, Vh0 �⊂ H2
0 (Ω).

For v, w ∈ H2(Ω) + Vh0, we define

(2.5) ah(v, w) =
∑

T∈Th

∫
T

E(w)�KE(v).

The finite element method for problem (2.4) corresponding to element (T, PT , ΦT )
is: find uh ∈ Vh0 such that

(2.6) ah(uh, vh) = (f, vh), ∀vh ∈ Vh0.

We introduce the following mesh-dependent norm ‖ · ‖m,h and seminorm | · |m,h:

‖v‖m,h =
( ∑

T∈Th

‖v‖2
m,T

)1/2

, |v|m,h =
( ∑

T∈Th

|v|2m,T

)1/2

for all functions v ∈ L2(Ω) with vT ∈ Hm(T ), ∀T ∈ Th.
For each element T ∈ Th, let ΠT denote the canonical interpolation operator of

(T, PT , ΦT ), and define Πh by (Πhv)|T = ΠT (v|T ), where T ∈ Th and v is piecewise
smooth.

3. Tetrahedral elements

Given a tetrahedron T with vertices ai = (xi1, xi2, xi3)�, 0 ≤ i ≤ 3, denote by
Fi the facet opposite ai, by bi the barycenter of Fi, 0 ≤ i ≤ 3, and by λ0, · · · , λ3

the barycentric coordinates of T .
Let T̂ be the reference tetrahedron with vertices âi given by

â0 = (0, 0, 0)�, â1 = (1, 0, 0)�, â2 = (0, 1, 0)�, â3 = (0, 0, 1)�.
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Set

BT =

⎛⎝ x11 − x01 x21 − x01 x31 − x01

x12 − x02 x22 − x02 x32 − x02

x13 − x03 x23 − x03 x33 − x03

⎞⎠ = (a1 − a0, a2 − a0, a3 − a0),

and FT x̂ = BT x̂ + a0, x̂ ∈ R3; then

T = FT T̂ , ai = FT âi, 0 ≤ i ≤ 3.

Set B−1
T = (ξij)3×3. Let B1, B2, B3 be the row vectors of B−1

T and

B0 = −(B1 + B2 + B3);

then

(3.1) Dλi = Bi, 0 ≤ i ≤ 3.

3.1. The cubic tetrahedral element. For the first nonconforming element, called
the cubic tetrahedral element, (T, PT , ΦT ) is defined by (see Figure 1)

1) T is a tetrahedron,
2) PT = P3(T ),
3) ΦT is the degree of freedom vector with components

v(aj),
∂v

∂ν
(bj), 0 ≤ j ≤ 3, Dv(ai)(aj − ai), 0 ≤ i �= j ≤ 3, ∀v ∈ C1(T ).

Figure 1

�

��

•

•
• •

���

�
��

	
��
�

We claim that ΦT is PT -unisolvent since, with respect to ΦT , we can obtain the
following basis functions of PT :

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi =
9

4‖Bi‖

⎛⎜⎝ ∑
0≤j<k<l≤3
j �=i,k �=i,l �=i

λjλkλl − λi

∑
0≤j<k≤3
j �=i,k �=i

λjλk

⎞⎟⎠ , 0 ≤ i ≤ 3,

pi = 3λ2
i − 2λ3

i +
∑

0≤k≤3
k �=i

4BiB
�
k

3‖Bk‖
qk, 0 ≤ i ≤ 3,

pij = λ2
i λj +

‖Bj‖
9

qj +
∑

0≤k≤3
k �=i,k �=j

(2Bi + Bj)B�
k

9 ‖Bk‖
qk, 0 ≤ i �= j ≤ 3.
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In fact, by a direct calculation (see below), we have that

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qi(ak) = 0, Dqi(ak) = 0,
∂qi

∂ν
(bk) = δik,

pi(ak) = δik, Dpi(ak) = 0,
∂pi

∂ν
(bk) = 0,

pij(ak) = 0, Dpij(ak)(al − ak) = δikδjl,
∂pij

∂ν
(bk) = 0,

when 0 ≤ i �= j ≤ 3 and 0 ≤ k �= l ≤ 3, and where δik and δjl are Kronecker deltas.
The corresponding interpolation operator ΠT can be written by, ∀v ∈ C1(T )

(3.4) ΠT v =
∑

0≤i≤3

piv(ai) +
∑

0≤i≤3

qi
∂v

∂ν
(bi) +

∑
0≤i �=j≤3

pijDv(ai)(aj − ai).

Now we verify (3.3). For the function q0, we have

q0 =
9

4‖B0‖

(
λ1λ2λ3 − λ0(λ1λ2 + λ2λ3 + λ3λ1)

)
,

Dq0 =
9

4‖B0‖

(
λ2λ3Dλ1 + λ1λ3Dλ2 + λ1λ2Dλ3

− (λ1λ2 + λ2λ3 + λ3λ1)Dλ0 − λ0

∑
1≤i �=j≤3

λiDλj

)
.

Since λi(aj) = δij we obviously have q0(aj) = 0 and Dq0(aj) = 0 (0 ≤ j ≤ 3).
Furthermore,

Dq0(b0) =
1

4‖B0‖
(Dλ1 + Dλ2 + Dλ3 − 3Dλ0) = − Dλ0

‖B0‖
= − B0

‖B0‖
,

Dq0(bj) =
1

4‖B0‖

(
Dλj − Dλ0 − 2Dλj −

∑
1≤i≤3

i�=j

Dλi

)
= 0, 1 ≤ j ≤ 3.

Thanks to (3.1) the outer normal of each Fi is just −Bi. Hence ∂
∂ν q0(bj) = δ0j ,

0 ≤ j ≤ 3. For other qi we can use a completely similar argument. Thus the first
line of (3.3) is verified.

Let 0 ≤ i, k ≤ 3. Obviously pi(ak) = δik and

Dpi = 6(1 − λi)λiDλi +
∑

0≤j≤3
j �=i

4BiB
�
j

3‖Bj‖
Dqj .

This directly leads to the fact that Dpi(ak) = 0. By the properties of qj , we have
Dpi(bi) = 0 and

Dpi(bk)B�
k =

4
3
BiB

�
k +

4BiB
�
k

3‖Bk‖
Dqk(bk)B�

k = 0

when k �= i. Thus the second line of (3.3) is also verified.
Finally, we consider pij . Let 0 ≤ i �= j ≤ 3 and 0 ≤ k ≤ 3. Then pij(ak) = 0 by

definition, and

Dpij = 2λiλjDλi + λ2
i Dλj +

‖Bj‖
9

Dqj +
∑

0≤m≤3
m �=i,m �=j

(2Bi + Bj)B�
m

9 ‖Bm‖ Dqm.
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Now, for l �= k, since Dλj(al − ak) = δjl − λj(ak) (see [8, p. 65]), we have

Dpij(ak)(al − ak) = λ2
i (ak)Dλj(al − ak) = δik(δjl − δjk) = δikδjl.

Using the properties of qm, 0 ≤ m ≤ 3, we deduce that

Dpij(bi)B�
i = 0, Dpij(bj)B�

j =
‖Bj‖

9
(‖Bj‖ + Dqj(bj)B�

j ) = 0,

Dpij(bk)B�
k =

2
9
BiB

�
k +

1
9
BjB

�
k +

(2Bi + Bj)B�
k

9‖Bk‖
Dqk(bk)B�

k = 0, k �= i, j.

Hence the last line of (3.3) is verified.
For 0 ≤ i ≤ 3, vectors aj − ai, j �= i, form a basis of R3. Thus the degrees of

freedom of the cubic tetrahedral element can be replaced by

v(aj), Dv(aj),
∂v

∂ν
(bj), 0 ≤ j ≤ 3, ∀v ∈ C1(T ).

For the cubic tetrahedral element, we can define the corresponding finite element
space Vh0 as follows: v ∈ Vh0 if any only if (1) v|T ∈ P3(T ), ∀T ∈ Th, (2) v and Dv
are continuous at all vertices of elements in Th and vanish at all vertices belonging
to ∂Ω, and (3) ∂

∂ν v is continuous at the barycenters of all facets of elements in Th

and vanishes at barycenters of all facets on ∂Ω.
Unlike the Zienkiewicz element, this complete cubic finite element space is not

always contained in C0(Ω̄). To see this, let us choose two different elements T, T ′ ∈
Th such that they have a common facet F and T ∪ T ′ ⊂ Ω. Denote by b the
barycenter of F and by ν the unit outer normal to F with respective to T . Let vh

be the function in Vh0 satisfying: vh ≡ 0 outside T ∪ T ′ and ∂
∂ν vh(b) = 1. Then

vh|T is just one of the basis functions qi given by (3.2). From (3.2) vh|T does not
vanish at all relative inner points of each facet of T . Hence vh is not continuous
through the facets of T different from F .

Lemma 3.1. Let Vh0 be the finite element space of the cubic tetrahedral element.
If T, T ′ ∈ Th have a common facet F , then

(3.5)
∫

F

D(vh|T ) =
∫

F

D(vh|T ′), vh ∈ Vh0.

If a facet F of T ∈ Th is on ∂Ω, then

(3.6)
∫

F

D(vh|T ) = 0, vh ∈ Vh0.

Proof. Let vh ∈ Vh0 and let F be the common facet of T, T ′ ∈ Th. Denote the unit
normal of F relative to T by ν, and choose ν, τ (1), τ (2) as an orthogonal unit basis
of R3. Let ã1, ã2, ã3 be vertices of F and let b̃0 be barycenter of F . Denote by λ̃i

the area coordinate of F corresponding to vertex ãi. Then∫
F

λ̃2
j =

|F |
6

=
|F |
12

( 3∑
i=1

λ̃2
j(ãi) + 9λ̃2

j(b̃0)
)
, 1 ≤ j ≤ 3,

∫
F

λ̃j λ̃k =
|F |
12

=
|F |
12

( 3∑
i=1

λ̃j λ̃k(ãi) + 9λ̃j λ̃k(b̃0)
)
, 1 ≤ j �= k ≤ 3.
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From the fact that P2(F ) = span{λ̃2
1, λ̃

2
2, λ̃

2
3, λ̃1λ̃2, λ̃2λ̃3, λ̃3λ̃1}, we obtain

(3.7)
∫

F

p =
|F |
12

( 3∑
i=1

p(ãi) + 9p(b̃0)
)
, ∀p ∈ P2(F ).

By the definition of Vh0, ∂
∂ν (vh|T ) and ∂

∂ν (vh|T ′) are quadratic polynomials on
F , and they equal ∂

∂ν vh at b̃0 and ãi, 1 ≤ i ≤ 3. Hence

(3.8)
∫

F

∂(vh|T )
∂ν

=
|F |
12

( 3∑
i=1

∂vh

∂ν
(ãi) + 9

∂vh

∂ν
(b̃0)

)
=

∫
F

∂(vh|T ′)
∂ν

.

Denote all sides of F by S1, S2, S3, and the unit out normal of Si by n(i), viewed
as the boundary of a triangle in the two-dimensional space spanned by directions
τ (1) and τ (2). Then for i ∈ {1, 2} Green’s formula gives∫

F

∂(vh|T )
∂τ (i)

=
3∑

j=1

n
(j)
i

∫
Sj

vh|T ,

∫
F

∂(vh|T ′)
∂τ (i)

=
3∑

j=1

n
(j)
i

∫
Sj

vh|T ′ .

By the definition of Vh0, vh|T = vh|T ′ on Sj . Therefore

(3.9)
∫

F

∂(vh|T )
∂τ (i)

=
∫

F

∂(vh|T ′)
∂τ (i)

, i = 1, 2.

Equality (3.5) follows from (3.8) and (3.9). Similarly, we can show (3.6). �

3.2. The incomplete cubic tetrahedral element. We shall construct a new
element by removing the degrees of freedom ∂v

∂ν (bj) from the cubic tetrahedral
element.

For 0 ≤ i < j < k ≤ 3, let aijk = (ai + aj + ak)/3 and let νijk be the unit out
normal of the facet with ai, aj , ak as vertices. For v ∈ C1(T ), define ψ̃ijk(v) ∈ R
by

ψ̃ijk(v) =
∂v

∂νijk
(aijk) − 1

3

∑
l=i,j,k

∂v

∂νijk
(al).

Define

P ′′
3 (T ) = { p ∈ P3(T ) | ψ̃ijk(p) = 0, 0 ≤ i < j < k ≤ 3 }.

For a linear polynomial q, we have

q(aijk) − 1
3

∑
l=i,j,k

q(al) = 0.

Then ψ̃ijk(p) = 0 when p ∈ P2(T ), that is, P2(T ) ⊂ P ′′
3 (T ). For incomplete cubic

tetrahedral element, (T, PT , ΦT ) is defined by (see Figure 2)

1) T is a tetrahedron,
2) PT = P ′′

3 (T ),
3) ΦT is the vector with its component the following degrees of freedom,

v(aj), 0 ≤ j ≤ 3, Dv(ai)(aj − ai), 0 ≤ i �= j ≤ 3, ∀v ∈ C1(T ).



NONCONFORMING TETRAHEDRAL ELEMENTS FOR 4TH ORDER PDES 9

Figure 2
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The basis functions of the incomplete cubic tetrahedral element can be derived
from ones of the cubic tetrahedral element. Set

(3.10) p̃ij = λ2
i λj −

2‖Bj‖
9

qj +
∑

1≤k≤4
k �=i,k �=j

2(Bi − Bj)B�
k

9‖Bk‖
qk, 0 ≤ i �= j ≤ 3,

where {qi} are given in (3.2). We can verify that these {p̃ij}, together with the
{pi} given in (3.2), form a basis for the incomplete cubic tetrahedral element. The
corresponding interpolation operator ΠT can be written by

(3.11) ΠT v =
∑

0≤i≤3

piv(ai) +
∑

0≤i �=j≤3

p̃ijDv(ai)(aj − ai), ∀v ∈ C1(T ).

For the incomplete cubic tetrahedral element, we can define the corresponding
finite element space Vh0 as follows: Vh0 = {v ∈ L2(Ω) | v|T ∈ P ′′

3 (T ), ∀T ∈ Th, v
and Dv are continuous at all vertices of elements in Th and vanish at all vertices
belonging to ∂Ω}.

Similar to the cubic tetrahedral element, Vh0 here is still not a subspace of C0(Ω̄).

3.3. The three-dimensional Zienkiewicz element. The incomplete tetrahe-
dral element above is reminiscent to the three-dimensional Zienkiewicz element,
the element of Hermite tetrahedron of type (3′) in [8]. We shall now discuss this
element and its relevant questions.

For 0 ≤ i < j < k ≤ 3, define

ψijk(v) = 6v(aijk) − 2
∑

l=i,j,k

v(al) +
∑

l=i,j,k

Dv(al)(al − aijk).

Define

P ′
3(T ) = { p ∈ P3(T ) |ψijk(p) = 0, 0 ≤ i < j < k ≤ 3 }.

For the three-dimensional Zienkiewicz element, (T, PT , ΦT ) is given as follows:

1) The element T is a tetrahedron.
2) The shape function space PT = P ′

3(T ).
3) For v ∈ C1(T ), its degree of freedom vector ΦT (v) is given by

ΦT (v) =
(
v(a0), Dv(a0), v(a1), Dv(a1), v(a2), Dv(a2), v(a3), Dv(a3)

)�
.
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The corresponding interpolation operator ΠT is defined by

(3.12)

ΠT v =
3∑

i=0

(
3λ2

i − 2λ3
i + 2λi

∑
0≤j<k≤3

j,k �=i

λjλk

)
v(ai)

+
1
2

∑
0≤i �=j≤3

λiλj(1 + λi − λj)Dv(ai)(aj − ai), ∀v ∈ C1(T ).

For the three-dimensional Zienkiewicz element, we can define the corresponding
finite element space Vh0 as follows: Vh0 = {v ∈ L2(Ω) | v|T ∈ P ′

3(T ), ∀T ∈ Th, v
and Dv are continuous at all vertices of elements in Th and vanish at all vertices
belonging to ∂Ω}. From [8], we know that Vh0 ⊂ H1(Ω).

3.4. The quasi-conforming tetrahedral element. The Zienkiewicz element is
not convergent in general. We will show in next section that the three-dimensional
Zienkiewicz element is also divergent for a special tetrahedral grid. In the two-
dimensional case, a convergent element was proposed by the so-called quasi-confor-
ming element technique in [25, 7]. Now we use the technique to give a new element
by modifying the three-dimensional Zienkiewicz element.

Let (T, PT , ΦT ) be the three-dimensional Zienkiewicz element. Given a tetrahe-
dron T , and let Π1

T be the linear interpolation operator with the function values at
four vertices as degrees of freedom. We define

Nij = span {1,
1
2
(λi + λj)}, 1 ≤ i, j ≤ 3.

For p ∈ PT , define ∂ij
T p ∈ N ij (1 ≤ i, j ≤ 3) such that for any q ∈ Nij ,

(3.13)
∫
T

q∂ij
T p =

1
2

∫
∂T

q
(
Π1

T

∂p

∂xi
νj + Π1

T

∂p

∂xj
νi

)
− 1

2

∫
T

( ∂q

∂xi

∂p

∂xj
+

∂q

∂xj

∂p

∂xi

)
.

Set

(3.14) ET (p) =
(
∂11

T p, ∂22
T p, ∂33

T p, ∂12
T p, ∂13

T p, ∂23
T p

)�
.

For the quasi-conforming tetrahedral element, we use ET (p) to approximate E(p).
Define

N =

⎛⎜⎜⎜⎜⎜⎜⎝

Ñ11

Ñ22 0
Ñ33

Ñ12

0 Ñ13

Ñ23

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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where Ñij =
(
1, 1

2 (λi + λj)
)
, 1 ≤ i, j ≤ 3,

HT =

⎛⎜⎜⎜⎜⎜⎝
ξ2
11 ξ2

21 ξ2
31 2ξ11ξ21 2ξ11ξ31 2ξ21ξ31

ξ2
12 ξ2

22 ξ2
32 2ξ12ξ22 2ξ12ξ32 2ξ22ξ32

ξ2
13 ξ2

23 ξ2
33 2ξ13ξ23 2ξ13ξ33 2ξ23ξ33

ξ11ξ12 ξ21ξ22 ξ31ξ32 ξ12ξ21 + ξ11ξ22 ξ12ξ31 + ξ11ξ32 ξ22ξ31 + ξ21ξ32

ξ11ξ13 ξ21ξ23 ξ31ξ33 ξ13ξ21 + ξ11ξ23 ξ13ξ31 + ξ11ξ33 ξ23ξ31 + ξ21ξ33

ξ12ξ13 ξ22ξ23 ξ32ξ33 ξ13ξ22 + ξ12ξ23 ξ13ξ32 + ξ12ξ33 ξ23ξ32 + ξ22ξ33

⎞⎟⎟⎟⎟⎟⎠ ,

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −32 0 0 0 32 0 0 0 0 0 0 0 0 0 0
32 0 4 4 −32 24 −4 −4 0 4 0 0 0 4 0 0
0 0 −32 0 0 0 0 0 0 0 32 0 0 0 0 0

32 4 0 4 0 0 4 0 −32 −4 24 −4 0 0 4 0
0 0 0 −32 0 0 0 0 0 0 0 0 0 0 0 32

32 4 4 0 0 0 0 4 0 0 0 4 −32 −4 −4 24
0 −16 −16 0 0 0 16 0 0 16 0 0 0 0 0 0

16 −1 −1 2 −8 4 4 −1 −8 4 4 −1 0 1 1 0
0 −16 0 −16 0 0 0 16 0 0 0 0 0 16 0 0

16 −1 2 −1 −8 4 −1 4 0 1 0 1 −8 4 −1 4
0 0 −16 −16 0 0 0 0 0 0 0 16 0 0 16 0

16 2 −1 −1 0 0 1 1 −8 −1 4 4 −8 −1 4 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A1 =
(

4 −10
−10 40

)
,

A2 =
(

9 −30
−30 −120

)
,

A =

⎛⎜⎜⎜⎜⎜⎜⎝
A1

A1 0
A1

A2

0 A2

A2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and

MT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 B�

T 0
1 0
0 B�

T

1 0
0 B�

T

0 1 0
0 B�

T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

then

(3.15) ET (p) =
1
48

HT NAQMT ΦT (p), ∀p ∈ PT .

Now let Vh0 be the finite element space corresponding to the three-dimensional
Zienkiewicz element. Define

(3.16) āh(vh, wh) =
∑

T∈Th

∫
T

ET (wh)�KET (vh), ∀vh, wh ∈ Vh0.

Instead of solving problem (2.6), the new element finds ūh ∈ Vh0 such that

(3.17) āh(ūh, vh) = (f, vh), ∀vh ∈ Vh0.

The quasi-conforming tetrahedral element is a three-dimensional analogue of the
element proposed in [25, 7] (see also [33]).
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For vh ∈ Vh0 and i, j ∈ {1, 2, 3}, define ∂ij
h vh by

∂ij
h vh|T = ∂ij

T (vh|T ), ∀T ∈ Th.

Let ΠT be the interpolation operator of the three-dimensional Zienkiewicz element.

Lemma 3.2. The quasi-conforming tetrahedral element has the following proper-
ties:

(1) ET (p) = E(p), ∀p ∈ P2(T ).
(2) There exist positive constants c1 and c2 independent of h such that

(3.18) c1|p|2,T ≤
∑

1≤i,j≤3

|∂ij
T p|0,T ≤ c2|p|2,T , ∀p ∈ PT .

(3) There exists a constant C independent of h such that

(3.19)
∑

1≤i,j≤3

∣∣∣ ∂2v

∂xi∂xj
− ∂ij

T ΠT v
∣∣∣
0,T

≤ Ch|v|3,T , ∀v ∈ H3(T ).

Proof. For 1 ≤ i, j ≤ 3, any p ∈ PT and any q ∈ Nij , Green’s formula gives

(3.20)
∫
T

q
∂2p

∂xi∂xj
=

1
2

∫
∂T

q
( ∂p

∂xi
νj +

∂p

∂xj
νi

)
− 1

2

∫
T

( ∂q

∂xi

∂p

∂xj
+

∂q

∂xj

∂p

∂xi

)
.

If p ∈ P2(T ), then E(p) is uniquely determined by (3.20). On the other hand,

Π1
T

∂p

∂xi
=

∂p

∂xi
, ∀p ∈ P2(T ).

By (3.13) we obtain that ET (p) = E(p), ∀p ∈ P2(T ).
It can be verified that the rank of matrix Q is 12. Thus the rank of AQMT is

12, too. Let S be the subspace of R16 such that AQMT d = 0, ∀d ∈ S. Then the
dimension of S is 4. By conclusion (1) of the lemma, we have

S = span {ΦT (1), ΦT (x1), ΦT (x2), ΦT (x3)}.
If ET (p) = 0 for some p ∈ PT , then AQMT ΦT (p) = 0. It follows that p ∈ P1(T ).
Therefore, for all T ∈ Th,

(3.21) α1T |p|2,T ≤
∑

1≤i,j≤3

|∂ij
T p|0,T ≤ α2T |p|2,T , ∀p ∈ PT ,

where α1T and α2T are positive constants perhaps dependent on T . Now define

g(T ) = sup
p∈PT

|p|2,T �=0

1
|p|2,T

∑
1≤i,j≤3

|∂ij
T p|0,T .

By (3.15), (3.1) and the quality

p =
3∑

i=0

(
3λ2

i − 2λ3
i + 2λi

∑
0≤j<k≤3

j,k �=i

λjλk

)
p(ai)

+
1
2

∑
0≤i �=j≤3

λiλj(1 + λi − λj)Dp(ai)(aj − ai), ∀p ∈ PT ,

we can treat |∂ij
T p|0,T and |p|2,T as continuous functions with respect to BT and

ΦT (p). Thus function g(T ) is a continuous function with respect to matrix BT , say
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g(BT ). By (3.21) and the property of continuous function, there exist two positive
constants c1 and c2 such that

(3.22) max
‖BT ‖=1

g(BT ) ≤ c2, min
‖BT ‖=1

g(BT ) ≥ c1,

where ‖BT ‖ is a norm of matrix BT .
For T ∈ Th, define T̃ = { x̃ | x̃ = ‖BT ‖−1x, ∀x ∈ T}. Then ‖BT̃ ‖ = 1 and

(3.23) c1|p̃|2,T̃ ≤
∑

1≤i,j≤3

|∂ij

T̃
p̃|0,T̃ ≤ c2|p̃|2,T̃ , ∀p̃ ∈ PT̃ .

Given p ∈ PT , let p̃(x̃) = p(‖BT ‖x̃), ∀x̃ ∈ T̃ . Then

(3.24) |p̃|2,T̃ = ‖BT ‖1/2|p|2,T .

On the other hand, by (3.13) we have, ∀q̃ ∈ Nij , 1 ≤ i, j ≤ 3,∫
T̃

q̃∂ij

T̃
p̃ =

1
2

∫
∂T̃

q̃
(
Π1

T̃

∂p̃

∂x̃i
νj + Π1

T̃

∂p̃

∂x̃j
νi

)
− 1

2

∫
T̃

( ∂q̃

∂x̃i

∂p̃

∂x̃j
+

∂q̃

∂x̃j

∂p̃

∂x̃i

)

=
1

2‖BT ‖

∫
∂T

q̃
(
Π1

T

∂p

∂xi
νj + Π1

T

∂p

∂xj
νi

)
− 1

2‖BT ‖

∫
T

( ∂q̃

∂xi

∂p

∂xj
+

∂q̃

∂xj

∂p

∂xi

)
=

1
‖BT ‖

∫
T

q̃∂ij
T p.

Hence ∫
T̃

q̃∂ij

T̃
p̃ = ‖BT ‖2

∫
T̃

q̃∂̃ij
T p, ∀q̃ ∈ Nij .

By the fact that ∂̃ij
T p ∈ Nij , we obtain

∂ij

T̃
p̃ = ‖BT ‖2∂̃ij

T p,

and it follows that

(3.25) |∂ij

T̃
p̃|0,T̃ = ‖BT ‖1/2|∂ij

T p|0,T .

By (3.23), (3.24) and (3.25), we obtain (3.18).
Using the first two conclusions of the lemma and the interpolation theory, we

can prove (3.19). �

3.5. Remarks. In the coding for real computation, one prefers to use the de-
grees of freedom at the element vertices than ones at the relative interior of el-
ement edges and facets. In this sense, the incomplete cubic tetrahedral element,
the three-dimensional Zienkiewicz element and the quasi-conforming tetrahedral
element seem better than the cubic tetrahedral element. Although the interpo-
lation error (or the approximation error) of the cubic tetrahedral element is one
order higher than those of the incomplete cubic tetrahedral element and the quasi-
conforming element, the error of these elements, to solve the boundary value prob-
lem of fourth order partial differential equation, are all the same order (see the
next section). As for the three-dimensional Zienkiewicz element, it is divergent and
cannot be used.

Using a nonconforming element in real computation for problem (2.1), one needs
to derive the second order derivatives of the shape functions and to write these
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derivatives in a form with respect to the vector of degrees of freedom. For the
quasi-conforming tetrahedral element above, this has been given by (3.15), though
the description of the element looks more complicated than ones of the cubic and
incomplete cubic tetrahedral elements.

4. Convergence analysis

In this section, we discuss the convergence properties of the new elements in pre-
vious sections. Toward the end of this section, we show that the three-dimensional
Zienkiewicz element is not convergent in general.

First, let us derive the error estimates for the interpolation operator.

Theorem 4.1. Let ΠT be the interpolation operator corresponding to the cubic
tetrahedral element, the incomplete cubic tetrahedral element, and the three-dimen-
sional Zienkiewicz elements. Then there exists a constant C independent of h such
that

(4.1) |v − ΠT v|m,T ≤ Chr−m|v|r,T , 0 ≤ m ≤ r, ∀v ∈ Hr(T ),

where r = 4 for the cubic tetrahedral element and r = 3 for the other two elements.

From Lemma 3.1 and the argument [21] for the Morley element, we can show
the following lemma.

Lemma 4.2. Let Vh0 be the finite element space of the cubic tetrahedral element
or the incomplete cubic tetrahedral element. Then there exists a constant C inde-
pendent of h such that for v ∈ H3(Ω) ∩ H2

0 (Ω) with ∆2v ∈ L2(Ω),

(4.2) |ah(v, vh) − (∆2v, vh)| ≤ Ch(|v|3,Ω + h‖∆2v‖0,Ω)|vh|2,h, ∀vh ∈ Vh0.

Now let u and uh be the solutions of problems (2.4) and (2.6), respectively.
Combining Theorem 4.1 and Lemma 4.2, we get the following theorem.

Theorem 4.3. Let Vh0 be the finite element space of the cubic tetrahedral element
or the incomplete cubic tetrahedral element. Then

(4.3) lim
h→0

‖u − uh‖2,h = 0,

and there exists a constant C independent of h such that

(4.4) ‖u − uh‖2,h ≤ Ch(|u|3,Ω + h‖f‖0,Ω)

when u ∈ H3(Ω).

Proof. By the generalized Poincare-Friedrichs inequality (see [24]), we have

‖vh‖2
2,h ≤ Cah(vh, vh), ∀vh ∈ Vh0.

That is, ah(·, ·) is uniformly Vh0-elliptic. From the well-known Strang Lemma (see
[8] or [22]),

(4.5) ‖u−uh‖2,h ≤ C

(
inf

wh∈Vh0
‖u − wh‖2,h + sup

wh∈Vh0 wh �=0

| ah(u, wh) − (f, wh)|
‖wh‖2,h

)
.

When u ∈ H3(Ω), we obtain (4.4) directly from (4.5), (4.1), and (4.2).
For general case, we obtain from Lemma 3.1 and Green’s formula that

(4.6)
∑

T∈Th

∫
T

∂2vh

∂xi∂xj
= 0, ∀vh ∈ Vh0, 1 ≤ i, j ≤ 3.
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Then the patch test is passed on each Th. Because the assumption of Theorem 4.7
in [26] is satisfied, we obtain (4.3). �

Now let Π1
h be the interpolation operator corresponding to the linear conforming

element for the second order partial differential equation and Th. For the cubic
tetrahedral element and the incomplete cubic tetrahedral elements, we can also
consider another finite element method: to find ũh ∈ Vh0 such that

(4.7) ah(ũh, vh) = (f, Π1
hvh), ∀vh ∈ Vh0.

For the finite element solution ũh of problem (4.7), we can obtain its convergence
and the error estimate.

Theorem 4.4. Let Vh0 be the finite element space of the cubic tetrahedral element
or the incomplete cubic tetrahedral element. Then

(4.8) lim
h→0

‖u − ũh‖2,h = 0,

and there exists a constant C independent of h such that

(4.9) ‖u − ũh‖2,h ≤ Ch|u|3,Ω

when u ∈ H3(Ω).

For the convergence of the quasi-conforming tetrahedral element, we can follow
the method used in [32] or [33]. We give the result without proof.

Theorem 4.5. For the quasi-conforming tetrahedral element, problem (3.17) has
a unique solution ūh and

(4.10) lim
h→0

‖u − ūh‖2,h +
∑

1≤i,j≤3

∣∣∣ ∂2u

∂xi∂xj
− ∂ij

h ūh

∣∣∣
0,Ω

= 0,

and there exists a constant C independent of h such that

(4.11) ‖u − ūh‖2,h +
∑

1≤i,j≤3

∣∣∣ ∂2u

∂xi∂xj
− ∂ij

h ūh

∣∣∣
0,Ω

≤ Ch|u|3,Ω

when u ∈ H3(Ω).

It is known that the Zienkiewicz element is not convergent for general meshes
in two dimensions (see [20]). As an analogue in the three-dimensional case, the
three-dimensional Zienkiewicz element has the same divergence property. Now we
show that it is divergent for a special grid.

In Figure 3, a cube is divided into eight sub-cubes, and then each sub-cube is
divided six tetrahedrons, where the tetrahedrons not represented by dashed lines
are symmetric with respect to the centric point of the cube.

Now let Ω be the cube [−1, 1]3. For k = 1, 2, · · · , let Tk be a triangulation of Ω
defined as follows. First, Ω is subdivided into equal cubes with side length hk = 2/k,
and then each cube is subdivided into tetrahedrons such as the one shown in Figure
3. The cases of k = 1 and k = 2 are shown in Figures 3 and 4, respectively.
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Figure 3 Figure 4

Theorem 4.6. The three-dimensional Zienkiewicz element is divergent for trian-
gulations Tk.

Proof. Let V10 be the finite element space of the three-dimensional Zienkiewicz
element on T1. Let vh ∈ V10 be the function such that vh is 1 at the center point
of Ω and vanishes at other vertices of all elements in T1, and Dvh vanishes at all
vertices of all elements in T1. It can be computed that∑

T∈T1

∫
T

∂2vh

∂x2
i

= −8
3
, i = 1, 2, 3,

∑
T∈T1

∫
T

∂2vh

∂xi∂xj
= 0, 1 ≤ i ≤ 3, i < j ≤ 3.

That is, the three-dimensional Zienkiewicz element does not pass the patch test.
On the other hand, for Tk the number of the patches reduced from T1 is k3, and the
number of elements in Tk is 48k3. By Theorem 6.1 in [26], we obtain the conclusion
of the lemma. �

5. Concluding remarks

In this paper, we proposed and analyzed several tetrahedral complete or incom-
plete cubic finite elements for fourth order elliptic partial differential operators.

More work needs to be done for constructing other types of nonconforming ele-
ments. One noticeable element that is missing from our work is a three-dimensional
extension of the Morley triangular element in two dimensions that only makes use
of quadratic polynomials (although the cubic tetrahedral element, a P3-element
in three-dimensions, may be viewed as a 3D extension of the P2-Morley element
in 2D). As it turns out, in three and higher dimensions, the construction of the
P2-Morley element is possible, but it no longer uses the element vertices as part
of the degrees of freedom. We will report an extension of the Morley element in
any dimensions in [28]. Another type of element is the hexehedral nonconforming
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element that may be extended from rectangular nonconforming elements in two
dimensions. We will report these extensions in any dimensions in [27].
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