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SHEPARD–BERNOULLI OPERATORS

R. CAIRA AND F. DELL’ACCIO

Abstract. We introduce the Shepard–Bernoulli operator as a combination
of the Shepard operator with a new univariate interpolation operator: the
generalized Taylor polynomial. Some properties and the rate of convergence
of the new combined operator are studied and compared with those given for
classical combined Shepard operators. An application to the interpolation of
discrete solutions of initial value problems is given.

1. The problem

Let X = {x1, . . . , xN} be a set of N distinct points of R
s, s ∈ N, and let f be

a function defined on a domain D containing X. The classical Shepard operators
(first introduced in [24] in the particular case s = 2) are defined by

(1.1) SN,µ [f ] (x) =
N∑

i=1

Aµ,i (x) f (xi) , µ > 0,

where the weight functions Aµ,i (x) in barycentric form are

(1.2) Aµ,i (x) =
|x − xi|−µ

N∑
k=1

|x − xk|−µ

and |·| denotes the Euclidean norm in R
s. The interpolation operator SN,µ [f ] is

stable, in the sense that

min
i

f (xi) ≤ SN,µ [f ] (x) ≤ max
i

f (xi) ,

but for µ > 1 the interpolating function SN,µ [f ] (x) has flat spots in the neighbor-
hood of all data points. Also, the degree of exactness of the operator SN,µ [·] is 0, in
the sense that if it is restricted to the polynomial space Pm := {p : deg (p) ≤ m},
then SN,µ [·]|P m = IdP m (the identity function on Pm) only for m = 0. These
drawbacks can be avoided by replacing each value f (xi) in (1.1) with an interpola-
tion operator in xi, applied to f , having a certain degree of exactness m > 0. More
precisely, if for each i = 1, . . . , N P [·, xi] denotes such an interpolation operator in
xi, then the related combined Shepard operator is

(1.3) SN,µP [f ](x) =
N∑

i=1

Aµ,i (x) P [f, xi] (x) .
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Shepard himself proposed such a generalization (in the bivariate case) by using for
each i = 1, . . . , N instead of f (xi) the Taylor polynomial of f of degree 1 at xi,
when the gradient of f at each node xi is also given. In this case the combined
operator has degree of exactness 1 and if µ > 1 it also interpolates the first partial
derivatives at the interpolation nodes [24].

Several interpolation operators have been introduced and studied to increase the
degree of exactness of the Shepard operator: Taylor [7, 8, 14, 15, 24], Lagrange
[8, 9], Hermite [5, 8], Birkhoff [6, 8], least square approximations [20, 21, 22, 25],
and splines [8]. The present paper is devoted to a further combination of the Shep-
ard operator with a new interpolation operator, the generalized Taylor polynomial,
recently proposed by F. Costabile [10]. In section 2 we recall some known prop-
erties of the generalized Taylor polynomial and give new results on the error of
approximation that will be used later in the paper. In section 3 we define the uni-
variate Shepard–Bernoulli operator and study its rate of convergence when applied
to functions in the class Cm in an interval containing the nodes. This operator
has degree of exactness equal to m, while the Shepard–Taylor, Shepard–Lagrange,
and Shepard–Hermite operators all have degree of exactness equal to m − 1. The
considered operators all have the same rate of convergence; numerical examples,
given in section 4, demonstrate the accuracy of the proposed combination in some
special situations. Finally, in section 5 we apply the combined Shepard operators
to the problem of interpolating the discrete solutions of initial value problems for
ordinary differential equations. We interpolate the exact solution of such a prob-
lem by a rational (real analytic) function with an order of approximation that is
comparable with that of the classical Hermite cubic spline interpolation. In our
opinion this kind of approximation is desirable, in particular if the exact solution
is analytic.

2. Some remarks about the generalized Taylor polynomial

The generalized Taylor polynomial is an expansion in Bernoulli polynomials, i.e.,
in the polynomials defined recursively by means of the following relations [18]:

(2.1)

⎧⎪⎪⎨
⎪⎪⎩

B0 (x) = 1,
B′

n (x) = nBn−1 (x) , n ≥ 1,
1∫
0

Bn (x) dx = 0, n ≥ 1.

For functions in the class Cm ([a, b]) , a, b ∈ R, a < b, this expansion is realized by
the equation

(2.2) f (x) = Pm[f, a, b](x) + Rm [f, a, b] (x), x ∈ [a, b] ,

where the polynomial approximant is defined by

(2.3) Pm[f, a, b](x) = f (a) +
m∑

k=1

Bk

(
x−a

h

)
− Bk

k!
hk−1

(
f (k−1) (b) − f (k−1) (a)

)
and the remainder term is
(2.4)

Rm [f, a, b] (x) =
hm−1

m!

b∫
a

f (m) (t)
(

Bm

(
b − t

h

)
− Bm

(
(x − t) − [x − t]

h

))
dt,
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where we have set Bk = Bk (0) and we have denoted by [·] the integer part of
the argument and h = b − a. The name chosen for the polynomial approximant
Pm[f, a, b] is derived from a nice property of this operator: its limit when h → 0 is
the Taylor polynomial Tm [f, a] (x) of degree m of f about a :

lim
h→0

Pm[f, a, b](x) = Tm [f, a] (x) .

Moreover, the polynomial Pm [f, a, b] satisfies the following interpolation conditions:

(2.5) Pm [f, a, b] (a) = f (a) , Pm [f, a, b] (b) = f (b) ,

and
(2.6)

dk

dxk
Pm [f, a, b] (b) − dk

dxk
Pm [f, a, b] (a) = f (k) (b) − f (k) (a) , k = 1, . . . , m − 1.

Another notable property of (2.3) is that, for each fixed m ≥ 1, this approximant
is exact for polynomials of degree not greater than m, since

∫ b

a

(
Bm

(
b − t

h

)
− Bm

(
(x − t) − [x − t]

h

))
dt = 0

for each x ∈ [a, b].
Clearly a polynomial can be defined by means of equation (2.3) also in the case

when a > b; a property of Pm [f, a, b] (x) not stated in [10] is that this polynomial
does not depend on the order of the points a, b.

Theorem 2.1. For each a, b ∈ R, a �= b,

Pm [f, b, a] (x) = Pm [f, a, b] (x) , for each m ≥ 1, x ∈ R.

Proof. We will use the well-known symmetry of the Bernoulli polynomials [1]

Bn (1 − x) = (−1)n
Bn (x) , n ≥ 0, x ∈ R,

and the property of the Bernoulli numbers [1]

Bn = (−1)n Bn for each n ≥ 2.
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By a straightforward calculation we have

Pm [f, b, a] (x)

= f (b) +
m∑

k=1

Bk

(
x−b
a−b

)
− Bk

k!
(a − b)k−1

(
f (k−1) (a) − f (k−1) (b)

)

= f (b)+
m∑

k=1

Bk

(
1− x−a

b−a

)
−Bk

k!
(−1)k (b − a)k−1

(
f (k−1) (b)−f (k−1) (a)

)

= f (b) −
(

B1

(
1 − x − a

b − a

)
− B1

)
(f (b) − f (a))

+
m∑

k=2

Bk

(
1 − x−a

b−a

)
− Bk

k!
(−1)k (b − a)k−1

(
f (k−1) (b) − f (k−1) (a)

)

= f (b) −
(

1 − x − a

b − a

)
(f (b) − f (a))

+
m∑

k=2

(−1)kBk

(
x−a
b−a

)
−(−1)kBk

k!
(−1)k (b−a)k−1

(
f (k−1) (b)−f (k−1) (a)

)
= Pm [f, a, b] (x) . �

With regard to the successive derivatives of the polynomial Pm [f, a, b] (x) we
can prove the following result.

Theorem 2.2. Let f ∈ Cm ([a, b]) and suppose that the derivative f (m+1) exists
and is bounded in (a, b); set h = b − a. Then for each j = 1, . . . , m we have

dj

dxj
Pm [f, a, b] (x)

∣∣∣∣
x=a

= f (j) (a) + O
(
hm−j+1

)
.

Proof. By differentiating j times the polynomial Pm [f, a, b] (x) we have

dj

dxj
Pm [f, a, b] (x) =

m∑
k=j

Bk−j

(
x−a

h

)
(k − j)!

hk−j−1
(
f (k−1) (b) − f (k−1) (a)

)
,

so that

dj

dxj
Pm [f, a, b] (x)

∣∣∣∣
x=a

=
m∑

k=j

Bk−j

(k − j)!
hk−j−1

(
f (k−1) (b) − f (k−1) (a)

)

=
m−j∑
k=0

Bk

k!
hk−1

(
f (k+j−1) (b) − f (k+j−1) (a)

)
.

If f ∈ Cm ([a, b]) and the derivative f (m+1) exists and is bounded in (a, b), then
by the well-known Taylor expansion with Lagrange remainder we have, for each
k = 0, 1, . . . , m − j,

hk−1
(
f (k+j−1) (b) −f (k+j−1) (a)

)

=
m∑

i=k+j

f (i) (a)
(i − k − j + 1)!

hi−j +
f (m+1) (ξk)

(m − k − j + 2)!
hm−j+1,
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for some ξk ∈ (a, b). Consequently

dj

dxj
Pm [f, a, b] (x)

∣∣∣
x=a

=
m−j∑
k=0

Bk

k!

⎛
⎝ m∑

i=k+j

f (i) (a)
(i − k − j + 1)!

hi−j +
f (m+1) (ξk)

(m − k − j + 2)!
hm−j+1

⎞
⎠

=
m−j∑
k=0

m∑
i=k+j

Bk

k!
f (i) (a)

(i − k − j + 1)!
hi−j +

m−j∑
k=0

Bk

k!
f (m+1) (ξk)

(m − k − j + 2)!
hm−j+1

=
m∑

i=j

(
i−j∑
k=0

Bk

k! (i − j + 1 − k)!

)
f (i) (a)hi−j +

m−j∑
k=0

Bk

k!
f (m+1) (ξk)

(m − k − j + 2)!
hm−j+1.

Since [18, p. 233]
p∑

k=0

Bk

k! (p + 1 − k)!
=
{

1, if p = 0,
0, if p ≥ 1,

we find

dj

dxj
Pm [f, a, b] (x)

∣∣∣∣
x=a

= f (j) (a) +
m−j∑
k=0

Bk

k!
f (m+1) (ξk)

(m − k − j + 2)!
hm−j+1

= f (j) (a) + O
(
hm−j+1

)
. �

Note that the polynomial Pm[f, a, b] can be extended in a natural way to the
whole real line. In order to obtain bounds for the remainder (2.4) even in points
outside the interval [a, b], we consider the operator

f → Pm[f, a, b]

as acting on the space Cm ([c, d]) with c < a and b < d. Peano’s kernel theorem
[13, p. 70] provides an integral expression for the remainder (2.4), as indicated in
the following theorem.

Theorem 2.3. Let f ∈ Cm ([c, d]) and x ∈ [c, d]. Then for the remainder

(2.7) Rm [f, a, b] (x) = f (x) − Pm[f, a, b] (x)

the following integral representations hold:

(2.8) Rm [f, a, b] (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(m−1)!

∫ b

x
f (m) (t)Ka,b (x, t) dt, c ≤ x ≤ a,

1
(m−1)!

∫ b

a
f (m) (t)Ka,b (x, t) dt, a ≤ x ≤ b,

1
(m−1)!

∫ x

a
f (m) (t) Ka,b (x, t) dt, b ≤ x ≤ d,

where

Ka,b (x, t) = (x − t)m−1
+ − (a − t)m−1

+

−
m∑

k=1

(m − 1)!
(m − k)!

[
(b − t)m−k

+ − (a − t)m−k
+

]
hk−1 Bk

(
x−a

h

)
− Bk

k!
(2.9)

and (·)k
+ denotes the positive part of the kth power of the argument, i.e.,

(s)k
+ = max

{
sk, 0
}

.
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Proof. First note that in the expansion (2.3) there are evaluations of derivatives
of f up to the order m − 1 in points of [c, d]; on the other hand the exactness of
the approximant (2.3) on the polynomial space Pm implies the exactness of this
operator on the space Pm−1. By applying Peano’s kernel theorem, we then have

(2.10) Rm [f, a, b] (x) =
1

(m − 1)!

∫ d

c

f (m) (t)Ka,b (x, t) dt,

where the kernel function (2.9) is obtained by applying the linear functional f →
Rm [f, a, b] (x) to (x − t)m−1

+ considered as a function of x. If x ∈ [c, a], then by the
additivity of the integral we have

Rm [f, a, b] (x)

=
1

(m − 1)!

∫ x

c

f (m) (t)Ka,b (x, t) dt +
1

(m − 1)!

∫ a

x

f (m) (t) Ka,b (x, t) dt

+
1

(m − 1)!

∫ b

a

f (m) (t)Ka,b (x, t) dt +
1

(m − 1)!

∫ d

b

f (m) (t)Ka,b (x, t) dt.

(2.11)

Note that if c < t < x, then

Ka,b (x, t) = (x − t)m−1 − (a − t)m−1

−
m∑

k=1

(m − 1)!
(m − k)!

[
(b − t)m−k − (a − t)m−k

]
hk−1 Bk

(
x−a

h

)
− Bk

k!
= 0,

because (x − t)m−1 is a polynomial in x of degree m − 1 so that it must coincide
with its generalized Taylor expansion (2.3). By definition of the positive part, the
kernel (2.9) is also zero in the interval b < t < d, so we have the first case of (2.8).

The remaining expressions may be obtained by analogous arguments. �

The previous theorem allows us to obtain the desired bounds.

Theorem 2.4. Let f ∈ Cm ([c, d]) and x ∈ [c, d]. Then for the remainder (2.7) we
have

(2.12) |Rm [f, a, b] (x)| ≤

⎧⎪⎪⎨
⎪⎪⎩

C (m)
∥∥f (m)

∥∥ (b − x)m
, c < x < a,

C (m)
∥∥f (m)

∥∥ (b − a)m , a < x < b,

C (m)
∥∥f (m)

∥∥ (x − a)m , b < x < d,

where ‖·‖ denotes the sup-norm on [c, d] and

(2.13) C (m) =
1
m!

(
1 +

m∑
k=1

k∑
l=1

(
m

k

)(
k

l

)
|Bk−l|

)
, m = 1, 2, . . . .

Proof. Let us assume that c < x < a. In this case we have from (2.8) that

Rm [f, a, b] (x)

=
1

(m − 1)!

∫ a

x

f (m) (t)Ka,b (x, t) dt +
1

(m − 1)!

∫ b

a

f (m) (t)Ka,b (x, t) dt.
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If x < t < a, then

Ka,b (x, t)

= − (a − t)m−1 −
m∑

k=1

(m − 1)!
(m − k)!

[
(b − t)m−k − (a − t)m−k

]
hk−1 Bk

(
x−a

h

)
− Bk

k!

so that∫ a

x

Ka,b (x, t) f (m) (t) dt

= −
∫ a

x

(a − t)m−1 f (m) (t) dt −
m∑

k=1

(m − 1)!
(m − k)!

hk−1 Bk

(
x−a

h

)
− Bk

k!

×
∫ a

x

(
(b − t)m−k − (a − t)m−k

)
f (m) (t) dt.

Note that the integrands are of type g (t) f (m) (t) with a g (t) that does not change
sign in [x, a] . In view of this last property, by the first mean value theorem for
integrals [13, Theorem 1.4.2] we have∫ a

x

Ka,b (x, t) f (m) (t) dt

= −f (m) (ξ)
∫ a

x

(a − t)m−1 dt −
m∑

k=1

(m − 1)!
(m − k)!

hk−1 Bk

(
x−a

h

)
− Bk

k!

× f (m) (ξk)
∫ a

x

(
(b − t)m−k − (a − t)m−k

)
dt

for some ξ, ξk ∈ [c, b] , k = 1, . . . , m, so that we find after some calculations

∫ a

x

Ka,b (x, t) f (m) (t) dt

= −f (m) (ξ)
(a − x)m

m
− hm

m∑
k=1

(m − 1)!
(m − k + 1)!

Bk

(
x−a

h

)
− Bk

k!

× f (m) (ξk)

⎛
⎝−1 +

m−k∑
j=0

(
b − x

h

)m−k−j (
a − x

h

)j
⎞
⎠ .(2.14)

If a < t < b, then

Ka,b (x, t) = −
m∑

k=1

(m − 1)!
(m − i)!

(b − t)m−k hk−1 Bk

(
x−a

h

)
− Bk

k!

and ∫ b

a

Ka,b (x, t) f (m) (t) dt

= −
m∑

k=1

(m − 1)!
(m − i)!

hk−1 Bk

(
x−a

h

)
− Bk

k!

∫ b

a

(b − t)m−k
f (m) (t) dt,
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and by applying the first mean value theorem for integrals we find after some
calculations that

(2.15)
∫ b

a

Ka,b (x, t) f (m) (t) dt = −hm
m∑

k=1

f (m) (ηk)
(m − 1)!

(m − k + 1)!
Bk

(
x−a

h

)
− Bk

k!

for some ηk ∈ [c, b], k = 1, . . . , m. Substituting into (2.11) the left-hand sides of
(2.14), (2.15) with their respective right-hand sides, we finally obtain the following
expression for the error:

Rm [f, a, b] (x)

= −f (m) (ξ)
(a − x)m

m!
− hm

m!

m∑
k=1

f (m) (ξk)
m!

(m − k + 1)!
Bk

(
x−a

h

)
− Bk

k!

×

⎛
⎝−1 +

m−k∑
j=0

(
b − x

h

)m−k−j (
a − x

h

)j
⎞
⎠− hm

m!

m∑
k=1

f (m) (ηk)
m!

(m − k + 1)!

×
Bk

(
x−a

h

)
− Bk

k!

In order to establish the bound (2.12) we make use of the well-known identities

(2.16) Bk (x) − Bk =
k∑

l=1

(
k

l

)
Bk−lx

l, k = 1, 2, . . . ,

from which it results after some calculations

|Rm [f, a, b] (x)|

≤
∥∥f (m)

∥∥
m!

(
(a − x)m + hm

m∑
k=1

k∑
l=1

(
m

k

)(
k

l

)
|Bk−l|

(
b − x

h

)m−(k−l)
)

≤ hm

∥∥f (m)
∥∥

m!

(
1 +

m∑
k=1

k∑
l=1

(
m

k

)(
k

l

)
|Bk−l|

)(
b − x

h

)m

.

The third expression (2.12) can be proved in an analogous manner. �

Since the degree of exactness of the operator Pm[·, a, b] is equal to m, we can
prove the following result in an analogous manner.

Theorem 2.5. Let f ∈ Cm+1 ([c, d]) and x ∈ [c, d]. Then for the remainder (2.7)
the inequalities

|Rm [f, a, b] (x)| ≤

⎧⎨
⎩

C (m + 1)
∥∥f (m+1)

∥∥ (b − x)m+1
, c < x < a,

C (m + 1)
∥∥f (m+1)

∥∥ (b − a)m+1
, a < x < b,

C (m + 1)
∥∥f (m+1)

∥∥ (x − a)m+1 , b < x < d,

hold with C (m) defined in (2.13).

The first values of C(m) for initial values of m are given in Table 1.
For large values of m the constant C(m) tends quickly to 0; in fact the following

upper bound holds.
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Table 1. First values of C(m)

m 1 2 3 4 5 6 7 8 9
C(m) 2.000 2.500 2.166 1.375 0.677 0.272 0.092 0.027 0.007

Theorem 2.6. For each m = 1, 2, . . . the constant C (m) defined in (2.13) satisfies
the inequality

C (m) ≤ 1
m!

+ 2
(m

2

)1−m
2

+
(

m − 1
2

)1−m−1
2

+
2π2

3

[
m − 1

2

] (m−2[m−31
2 ]

2

)1−
m−2[m−31

2 ]
2

(2π)2[
m−31

2 ]
.

Proof. Let us consider the sums involved in (2.13). By inverting their order and
substituting k − l with s as a dummy index we have

m∑
k=1

k∑
l=1

(
m

k

)(
k

l

)
|Bk−l| =

m∑
l=1

m∑
k=l

(
m

k

)(
k

l

)
|Bk−l|

=
m∑

l=1

m−l∑
s=0

(
m

l + s

)(
l + s

l

)
|Bs|

=
m−1∑
s=0

m−s∑
l=1

(
m

l + s

)(
l + s

l

)
|Bs| .

Since by [1]

B0 = 1, B1 = −1
2
, B2s+1 = 0, s = 1, 2, . . . ,

(2.13) becomes

C (m) =
1
m!

+
m∑

l=1

1
m!

(
m

l

)
+

m−1∑
l=1

1
2m!

(
m

l + 1

)
l

+
1
m!

[m−1
2 ]∑

s=1

m−2s∑
l=1

(
m

l + 2s

)(
l + 2s

l

)
|B2s| .

Now set

Cm,s :=
1
m!

m−2s∑
l=1

(
m

l + 2s

)(
l + 2s

l

)
|B2s| .

By the formula [16]

B2s =
(−1)s−1 2 (2s)!

(2π)2s ζ (2s) , s = 1, 2, . . . ,

where, as usual, ζ denotes the Riemann zeta function, and by the inequality [16]

n! > n
n
2 , n = 1, 2, . . . ,



308 R. CAIRA AND F. DELL’ACCIO

we obtain after some calculations

Cm,s ≤ 2
m−2s∑
l=1

1

(m − 2s − l)
m−2s−l

2 l
l
2

× ζ (2s)
(2π)2s .

For each pair of fixed positive integers m, s, s.t. m − 2s > 0, the function

l �→ (m − 2s − l)
m−2s−l

2 l
l
2 , 0 < l < m − 2s,

attains its minimum value
(

m−2s
2

)m−2s
2 in l = m−2s

2 , so that we get

Cm,s ≤ 2
m−2s∑
l=1

(
m − 2s

2

)−m−2s
2 ζ (2s)

(2π)2s ,

and since [16]

ζ (2s) ≤ ζ (2) =
π2

6
, s = 1, 2, . . . ,

we finally obtain

Cm,s ≤ 4
(

m − 2s

2

)1−m−2s
2 π2

6

(2π)2s .

We can prove in an analogous manner that

m∑
l=1

1
m!

(
m

l

)
≤ 2
(m

2

)1−m
2

and
m−1∑
l=1

1
2m!

(
m

l + 1

)
l ≤
(

m − 1
2

)1−m−1
2

.

A straightforward calculation furthermore shows that

(
m − 2s

2

)1−m−2s
2 1

(2π)2s ≤

(
m−2[m−31

2 ]
2

)1−
m−2[m−31

2 ]
2

(2π)2[
m−31

2 ]
,

m = 1, 2, . . . ; s = 1, 2, . . . ,

[
m − 1

2

]
,

from which it easily follows that

[m−1
2 ]∑

s=1

4
(

m − 2s

2

)1−m−2s
2 π2

6

(2π)2s ≤ 2π2

3

[
m − 1

2

] (m−2[m−31
2 ]

2

)1−
m−2[m−31

2 ]
2

(2π)2[
m−31

2 ]

and then the assertion. �
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3. The Shepard–Bernoulli operator:

definition, error estimation, and rate of convergence

Let x1 < x2 < · · · < xN−1 < xN be fixed points of an interval I ⊂ R; we set
X = {x1, . . . , xN} and xN+1 = xN−1.

Definition 3.1. For each fixed µ > 0 and m = 1, 2, . . . the Shepard–Bernoulli
univariate operator is defined by

(3.1) SBm
[f ] (x) =

N∑
i=1

Aµ,i (x)Pm[f, xi, xi+1](x), x ∈ I,

where Pm[f, xi, xi+1](x) is the natural extension of the polynomial approximant
defined in (2.3) over the whole interval I.

The following statements can be checked without any difficulty.

Theorem 3.2. The operator SBm
[·] is an interpolation operator in xi, i = 1, . . . , N .

Proof. The assertion follows from the relations (2.5) in view of the well-known
property

�(3.2) Aµ,i (xk) = δik, i, k = 1, . . . , N.

Theorem 3.3. The degree of exactness of the operator SBm
[·] is m, i.e., SBm

[p] =
p for each univariate polynomial p ∈ Pm.

Proof. The assertion follows from the well-known property
N∑

i=1

Aµ,i (x) ≡ 1

since the degree of exactness of Pm[·, xi, xi+1] is m for i = 1, . . . , N. �
As for the continuity class of the Shepard operator, and consequently the conti-

nuity class of the Shepard–Bernoulli operators, there is the following result [4].

Theorem 3.4. If P [·, xi], i = 1, . . . , N , are polynomial interpolation operators in
xi, then the continuity class of the operator (1.3) depends upon µ and, for µ > 0,
is as follows:

i) if µ is an even integer, then SN,µP [·] ∈ C∞;
ii) if µ is an odd integer, then SN,µP [·] ∈ Cµ−1;
iii) if µ is not an integer, then SN,µP [·] ∈ C [µ];

here [µ] is the largest integer < µ.

Remark 3.5. We emphasize that if µ is an even integer, then SN,µP [·] ∈ Cω (the
class of real analytic functions); in fact [8]

Aµ,i (x) =

∏N
j=1
j �=i

|x − xj |µ

N∑
k=1

∏N
j=1
j �=k

|x − xj |µ
.

Theorem 3.6. For each j s.t. 1 ≤ j < µ we have

dj

dxj
SBm

[f ] (x)
∣∣∣∣
x=xk

=
dj

dxj
Pm [f, xk, xk+1] (x)

∣∣∣∣
x=xk

, k = 1, .., N.
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Proof. It is known that for each j s.t. 1 ≤ j < µ [8]

(3.3)
dj

dxj
Aµ,i (x)

∣∣∣∣
x=xk

= 0, i, k = 1, . . . , N.

The assertion of the theorem then follows by applying the Leibniz rule and by using
relations (3.2), (3.3):

dj

dxj
SBm

[f ] (x)
∣∣∣∣
x=xk

=
N∑

i=1

dj

dxj
(Aµ,i (x)Pm [f, xi, xi+1] (x))

∣∣∣∣
x=xk

=
N∑

i=1

j∑
l=0

(
j

l

)
dj−l

dxj−l
Aµ,i (x)

∣∣∣∣
x=xk

dl

dxl
Pm [f, xi, xi+1] (x)

∣∣∣∣
x=xk

=
dj

dxj
Pm [f, xk, xk+1] (x)

∣∣∣∣
x=xk

. �

In order to study the rate of convergence of the Shepard–Bernoulli operator
we follow the ideas of Farwig’s paper [15], later pursued in [8]. We introduce the
following notations:

Iρ (x) = [x − ρ, x + ρ] , ρ > 0,

r = inf {ρ > 0 : ∀x ∈ I, Iρ (x) ∩ X �= ∅} ,

and
M = sup

x∈I
# (Ir (x) ∩ X) ,

where # (·) denotes the cardinality function, so M is the maximum number of
points from X contained in an interval Ir (x). For the Shepard–Bernoulli univariate
operator we then have the following error estimates.

Theorem 3.7. If f ∈ Cm (I), then

‖SBm
[f ] − f‖ ≤ CM

∥∥∥f (m)
∥∥∥ εm−1

µ (r) ,

where ‖·‖ denotes the sup norm in I,

(3.4) εm−1
µ (r) =

⎧⎪⎪⎨
⎪⎪⎩

|log r|−1 , µ = 1,
rµ−1, 1 < µ < m + 1,
rµ−1 |log r| , µ = m + 1,
rm, µ > m + 1,

C is a positive constant independent of x and X, and r is given above.

Proof. Let a, b ∈ I be fixed, a < b; for each x ∈ I we set

(3.5) d [a, b] (x) =

⎧⎨
⎩

b − x, x < a,
b − a, a ≤ x ≤ b,
x − a, b < x,

i.e., d [a, b] (x) is the distance of x from the interval [a, b], plus b − a; we set also

dm [a, b] (x) = (d [a, b] (x))m .
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In view of (2.12) the following inequality holds :

|SBm
[f ] (x) − f (x)| ≤

∣∣∣∣∣
N∑

i=1

Ai (x) Pm[f, xi, xi+1](x) − f (x)

∣∣∣∣∣
≤

N∑
i=1

Ai (x) |Pm[f, xi, xi+1](x) − f (x)|

≤ C (m)
∥∥∥f (m)

∥∥∥
∞

sm
µ (x) ,

where

(3.6) sm
µ (x) =

N∑
i=1

|x − xi|−µ
dm [xi, xi+1] (x)

N∑
k=1

|x − xk|−µ

.

We want to show that

sm
µ (x) ≤ CMεm−1

µ (r) ,

where C is a constant independent of x and X. Denoting by diam (I) the diameter
of the interval I, we set

n =
[
diam (I)

2r

]
+ 1,

Qρ (u) = (u − ρ, u + ρ] , u ∈ I, ρ > 0,

and

Tj = Qr (x − 2rj) ∪ Qr (x + 2rj) , j = 0, 1, . . . , n.

Clearly the set
⋃n

j=−nQr (x + 2rj) is a covering of I with half open intervals; con-
sequently, for each i ∈ {1, . . . , N} there exists a j ∈ {0, . . . , n} such that xi ∈ Tj .
Then the following inequalities hold:

(3.7) (2j − 1) r ≤ |x − xi| ≤ (2j + 1) r,

and by (3.5)

(3.8) d [xi, xi+1] (x) ≤ (2 (j + 1) + 1) r.

On the other hand, by definition of M it follows that

1 ≤ # (X ∩ Tj) ≤ M

for each j = 0, 1, . . . , n. Let us denote by xd the node closest to x; since

|x − xd|−µ

N∑
k=1

|x − xk|−µ

≤ 1
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we get, by applying (3.7), (3.8)

sm
µ (x) ≤

∑
xi∈T0

|x − xi|−µ dm [xi, xi+1] (x)
N∑

k=1

|x − xk|−µ

+
n∑

j=1

∑
xi∈Tj

|x − xi|−µ dm [xi, xi+1] (x)
N∑

k=1

|x − xk|−µ

≤
∑

xi∈T0

dm [xi, xi+1] (x) + |x − xd|µ
n∑

j=1

∑
xi∈Tj

|x − xi|−µ dm [xi, xi+1] (x)

≤ M (3r)m + 2Mrµ
n∑

j=1

((2j − 1) r)−µ ((2j + 3) r)m

≤ M5mrm
(
1 + 2

n∑
j=1

jm−µ
)
,

where the last inequality follows from{
2j − 1 ≥ j, j = 1, 2, . . . ,
2j + 3 ≤ 5j, j = 1, 2, . . . .

We have two cases:
Case 1 (µ > 1).
Subcase 1a. If 1 < µ < m + 1, then

rm

⎛
⎝1 + 2

n∑
j=1

jm−µ

⎞
⎠ = O

(
rµ−1

)
.

Subcase 1b. If µ = m + 1, then
n∑

j=1

jm−µ = log n ≥ |log r| .

Subcase 1c. If µ > m + 1, then
∑n

j=1j
m−µ is bounded.

Case 2 (µ = 1). The function sm
1 (x) defined in (3.6),

sm
1 (x) =

N∑
i=1

|x − xi|−1 dm [xi, xi+1] (x)

N∑
k=1

|x − xk|−1

has its denominator greater than or equal to

∑
xk∈T0

|x − xk|−1 +
n∑

j=1

∑
xk∈Tj

|x − xk|−1 ≥
∑

xk∈T0

|x − xk|−1 +
C

r
|log r|

and its numerator less than or equal to

∑
xi∈T0

|x − xi|−1
dm [xi, xi+1] (x) +

n∑
j=1

∑
xi∈Tj

|x − xi|−1
dm [xi, xi+1] (x).

By applying the inequality∑
ai∑
bi

≤
∑ ai

bi
, ai ≥ 0, bi > 0,
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we get

sm
1 (x) ≤

∑
xi∈T0

|x − xi|−1
dm [xi, xi+1] (x) +

n∑
j=1

∑
xi∈Tj

|x − xi|−1
dm [xi, xi+1] (x)

∑
xk∈T0

|x − xk|−1 + C
r |log r|

≤
∑

xi∈T0

dm [xi, xi+1] (x) +
C1r

|log r|

n∑
j=1

∑
xi∈Tj

|x − xi|−1
dm [xi, xi+1] (x)

≤ M (3r)m +
C1

|log r|

n∑
j=1

∑
xi∈Tj

(2j − 1)−1 (2j + 3)m rm

≤ M5mrm

⎛
⎝1 +

C2

|log r|

n∑
j=1

jm−1

⎞
⎠

≤ M5mrm

(
1 +

C2

|log r|O
(
r−m
))

= O
(
|log r|−1

)
. �

Remark 3.8. In the papers [15], [8] estimates similar to those of Theorem 3.7 have
been proven for the Shepard–Taylor, Shepard–Lagrange, and Shepard–Hermite
combinations, thus the rate of convergence is equal for all considered operators.
Nevertheless we underline the following fact: for fixed m ≥ 1 and f ∈ Cm (I), the
Shepard–Bernoulli operator has degree of exactness m, while the degree of exact-
ness of Shepard–Taylor, Shepard–Lagrange, and Shepard–Hermite combinations is
m − 1.

In an analogous manner we can prove the following result:

Theorem 3.9. If f ∈ Cm+1 (I), then

‖SBm
[f ] − f‖I ≤ CM

∥∥∥f (m+1)
∥∥∥ εm

µ (r)

where

(3.9) εm
µ (r) =

⎧⎪⎪⎨
⎪⎪⎩

|log r|−1
, µ = 1,

rµ−1, 1 < µ < m + 2,
rµ−1 |log r| , µ = m + 2,
rm+1, µ > m + 2,

and C is a positive constant independent of x and X.

4. Numerical tests

Let us investigate the accuracy of the combined Shepard–Bernoulli approxi-
mation operator when applied to the following set of functions on the interval
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I = [0, 1] :

Saddle f1 =
1.25

6 + 6 (3x − 1)2
,

Sphere f2 =

√
64 − 81(x − .5)2

9
− .5,

Cliff f3 =
tanh(−9x + 1)

2
+ .5,

Gentle f4 =
exp(−81

16 (x − .5)2)
3

,

Steep f5 =
exp(−81

4 (x − .5)2)
3

,

Exponential f6 =.75 exp
(
− (9x − 2)2

4

)
+ .75 exp

(
− (9x + 1)2

49

)

+ .5 exp
(
− (9x − 7)2

4

)
+ .2 exp

(
− (9x − 4)2

)
.

These functions result from adapting to the univariate case test functions generally
used in the multivariate interpolation of large sets of scattered data [19]. For each
function fi we will compare the numerical results obtained by applying the approxi-
mation SBm

[f ] with those resulting from applying the following combined Shepard
approximation operators known in literature: the Shepard–Lagrange univariate
operator SLm

[f ] and the Shepard–Taylor univariate operator STm
[f ] defined as

follows [8, 15, 25]:

SLm
[f ] (x) =

N∑
i=1

Ai (x)Lm [f, xi] (x) ,

with

Lm [f, xi] (x) =
m∑

j=0

m∏
k=0
k �=j

x − xi+k

xi+j − xi+k
f (xi+j) , xN+j = xN−m+j−1, j = 1, . . . , m,

and

STm
[f ] (x) =

N∑
i=1

Ai (x)Tm [f, xi] (x)

with

Tm [f, xi] (x) =
m∑

j=0

f (j) (xi)
j!

(x − xi)
j .

In the following section we will also consider a special case of the Shepard–Hermite
univariate operator

SH2m−1 [f ] (x) =
N∑

i=1

Ai (x)H2m−1 [f, xi] (x) ,
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obtained from the Shepard operator in combination with the two-point Taylor in-
terpolating polynomial [2], a special case of the Hermite interpolating polynomials:

H2m−1[f, xi](x)

=
m−1∑
j=0

m−j−1∑
k=0

(
m + k − 1

k

)[
(x − xi)

j

j!

(
x − xi+1

xi − xi+1

)m(
x − xi

xi+1 − xi

)k

f (j)(xi)

+
(x − xi+1)

j

j!

(
x − xi

xi+1 − xi

)m(
x − xi+1

xi − xi+1

)k

f (j)(xi+1)

]
.

Tables 2–7 show mean and maximum absolute interpolation errors, computed
for different values of the parameters µ and m. Taking into account the number
of degrees of freedom of each operator according to [3], we used uniform grids of
33 points in the interval [0, 1] for SL0 and ST0 ; at the same time we used grids
of 17 points for SB1 , SL1 , and ST1 , grids of 11 points for SB2 , SL2 , and ST2 , and
finally grids of 8 points for SB3 . In order to have as accurate an estimation of the
error as possible, we computed the resulting function approximations at the points

Table 2. Saddle

SLm−1 [f1] (x) STm−1 [f1] (x) SBm
[f1] (x)

(µ, m) εmean εmax εmean εmax εmean εmax

(2, 1) 0.001328 0.003901 0.001328 0.003901 0.001050 0.004954
(2, 2) 0.001050 0.004954 0.001067 0.003575 0.001062 0.004715
(2, 3) 0.001248 0.007232 0.001043 0.003988 0.001490 0.005153
(3, 1) 0.001246 0.002785 0.001246 0.002785 0.000476 0.003314
(3, 2) 0.000476 0.003314 0.000321 0.002282 0.000333 0.002302
(3, 3) 0.000718 0.004230 0.000151 0.001188 0.000206 0.001096
(4, 1) 0.001437 0.003308 0.001437 0.003308 0.000457 0.003233
(4, 2) 0.000457 0.003233 0.000244 0.001837 0.000259 0.001908
(4, 3) 0.000699 0.004160 0.000052 0.000503 0.000136 0.001460

Table 3. Sphere

SLm−1 [f2] (x) STm−1 [f2] (x) SBm
[f2] (x)

(µ, m) εmean εmax εmean εmax εmean εmax

(2, 1) 0.001330 0.006394 0.001330 0.006394 0.002145 0.005623
(2, 2) 0.002145 0.005623 0.002263 0.005076 0.000312 0.000842
(2, 3) 0.000260 0.000758 0.000371 0.000945 0.000586 0.002344
(3, 1) 0.001408 0.004570 0.001408 0.004570 0.000583 0.001620
(3, 2) 0.000583 0.001620 0.000480 0.001313 0.000058 0.000247
(3, 3) 0.000106 0.000421 0.000034 0.000133 0.000079 0.000323
(4, 1) 0.001628 0.005677 0.001628 0.005677 0.000510 0.001447
(4, 2) 0.000510 0.001447 0.000287 0.000958 0.000039 0.000255
(4, 3) 0.000096 0.000452 0.000007 0.000024 0.000025 0.000113
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Table 4. Cliff

SLm−1 [f3] (x) STm−1 [f3] (x) SBm
[f3] (x)

(µ, m) εmean εmax εmean εmax εmean εmax

(2, 1) 0.004773 0.039174 0.004773 0.039174 0.006604 0.038815
(2, 2) 0.006604 0.038815 0.005827 0.019985 0.004710 0.031367
(2, 3) 0.005537 0.046979 0.007020 0.025692 0.013455 0.062821
(3, 1) 0.004080 0.026022 0.004080 0.026022 0.002522 0.021627
(3, 2) 0.002522 0.021627 0.001727 0.015187 0.002466 0.027527
(3, 3) 0.003962 0.035485 0.001144 0.011410 0.002138 0.016732
(4, 1) 0.004661 0.030332 0.004661 0.030332 0.002405 0.021752
(4, 2) 0.002405 0.021752 0.001347 0.013669 0.002170 0.034048
(4, 3) 0.004146 0.040890 0.000663 0.008714 0.001542 0.024101

Table 5. Gentle

SLm−1 [f4] (x) STm−1 [f4] (x) SBm
[f4] (x)

(µ, m) εmean εmax εmean εmax εmean εmax

(2, 1) 0.002243 0.006798 0.002243 0.006798 0.002590 0.007116
(2, 2) 0.002590 0.007116 0.002512 0.006030 0.001897 0.005956
(2, 3) 0.001895 0.006919 0.001898 0.005585 0.001138 0.006015
(3, 1) 0.002184 0.004667 0.002184 0.004667 0.000681 0.003277
(3, 2) 0.000681 0.003277 0.000490 0.002431 0.000378 0.001727
(3, 3) 0.000783 0.003035 0.000187 0.001007 0.000175 0.000940
(4, 1) 0.002525 0.005541 0.002525 0.005541 0.000618 0.002978
(4, 2) 0.000618 0.002978 0.000333 0.001689 0.000270 0.001163
(4, 3) 0.000709 0.002656 0.000045 0.000249 0.000089 0.000575

Table 6. Steep

SLm−1 [f5] (x) STm−1 [f5] (x) SBm
[f5] (x)

(µ, m) εmean εmax εmean εmax εmean εmax

(2, 1) 0.003744 0.012533 0.003744 0.012533 0.002358 0.012532
(2, 2) 0.002358 0.012532 0.001790 0.007709 0.002950 0.015868
(2, 3) 0.004414 0.027049 0.002697 0.011764 0.004950 0.019728
(3, 1) 0.003060 0.008709 0.003060 0.008709 0.001930 0.011016
(3, 2) 0.001930 0.011016 0.001218 0.006998 0.001501 0.009079
(3, 3) 0.003487 0.017791 0.000586 0.003912 0.000909 0.005278
(4, 1) 0.003527 0.010438 0.003527 0.010438 0.001945 0.011413
(4, 2) 0.001945 0.011413 0.001000 0.005903 0.001323 0.008184
(4, 3) 0.003478 0.018516 0.0002566 0.001789 0.000815 0.006381

i/101, i = 1, . . . , 100. Note that the approximation data corresponding to the
classical Shepard operator coincide with those obtained by applying the operators
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Table 7. Exponential

SLm−1 [f6] (x) STm−1 [f6] (x) SBm
[f6] (x)

(µ, m) εmean εmax εmean εmax εmean εmax

(2, 1) 0.007930 0.025868 0.007930 0.025868 0.007669 0.034957
(2, 2) 0.007669 0.034957 0.006299 0.022608 0.005271 0.025436
(2, 3) 0.012072 0.045807 0.003968 0.019925 0.025296 0.067861
(3, 1) 0.007543 0.018120 0.007543 0.018120 0.005122 0.021099
(3, 2) 0.005122 0.021099 0.002905 0.015777 0.004379 0.024620
(3, 3) 0.011187 0.048933 0.001660 0.010758 0.003523 0.020488
(4, 1) 0.008484 0.020677 0.008484 0.020677 0.005026 0.022762
(4, 2) 0.005026 0.022762 0.002402 0.013701 0.004233 0.024080
(4, 3) 0.011221 0.051697 0.001198 0.008318 0.003020 0.018326

SL0 or ST0 ; furthermore SB1 = SL1 . Numerical results show that the accuracy of
the Shepard–Bernoulli interpolation is comparable with the accuracy of Shepard–
Lagrange and Shepard–Taylor interpolation. To verify that the obtained results do
not depend on the particular grid, we computed numerical approximations using
sets of random nodes of interpolation in the interval [0, 1]; the results show that
the approximations are comparable in those cases, too.

5. An application of the combined Shepard operators

After solving initial value problems

(5.1)
{

y′ (x) = ϕ (x, y (x)) , (x, y) ∈ I × R,
y (x0) = y0, x0 ∈ I,

by means of a discrete method, we often need to know the solution on a set of points
that differs from the grid. The nonnodal approximations are generally obtained by
interpolation of the discrete data, and different features can be requested from
the interpolants according to the problem. When the exact solution is infinitely
many times differentiable (analytic), then the combined Shepard operators can be
used to interpolate the discrete data. In fact, combinations of these operators with
discrete solvers of ODEs will provide, for special values of µ, infinitely differentiable
(analytic) approximations of the solution of the problem (5.1) on the whole interval
I. An algorithm for constructing these interpolants can be arranged as follows. The
discrete solver produces an approximation ỹi of the exact solution y (xi), with a
certain tolerance, at each node xi, i = 1, . . . , N , in the interval I of interest. Since
a step control algorithm is enclosed in the ODE solver, the distribution of the nodes
depends on the function ϕ. When ϕ is smooth enough then y ∈ C1 (I) (at least)
and the value ỹ′

i = ϕ (xi, ỹi) approximates the value y′ (xi) , i = 1, . . . , N , with the
same precision as that of ỹi with respect to y (xi). The proposed interpolants are
then obtained by substituting the exact values into the definition of the combined
Shepard operators with their respective approximations.

Tables 8–11 show the accuracy of the combined Shepard operators ST1 [·], SB2 [·],
and SH3 [·] , when applied to interpolating the discrete solutions of the first four
nonstiff DETEST problems A1–A4 [17]; a comparison of this accuracy to that
of the classical cubic Hermite spline [3], here denoted by CH3 , is possible. The
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discrete approximations are computed by means of the MATLAB� ode45 solver
in the interval [0, 20] with various settings of the absolute and relative tolerances
ε = {AbsTol, RelTol}. If we denote by hε = max1≤n≤Nε−1

∣∣xε
n+1 − xε

n

∣∣ the size of
the grid 0 = xε

1 < xε
2 < · · · < xε

Nε
= 20 of the nodal approximations ỹ = {ỹi}, then

for µ = 6, ST1 [ỹ] (x), SB2 [ỹ] (x), and SH3 [ỹ] (x) are rational, infinitely differentiable
(analytic) functions, and, according to Theorem 3.9 and [8, Theorem 4],

‖ST1 [y] − y‖ ≤ C1

∥∥y(2)
∥∥

I
h2

ε ,

‖SB2 [y] − y‖ ≤ C2

∥∥y(3)
∥∥

I
h3

ε ,

‖SH3 [y] − y‖ ≤ C3

∥∥y(4)
∥∥

I
h4

ε .

Similarly, higher order approximations can be obtained by using the Shepard op-
erator in combination with the osculatory interpolation polynomial that involves
more than two points (for example three) [2, 3] or the operators STm−1 [·], SBm

[·],
and SH2m−1 [·], m ≥ 3; but, in the last three cases, symbolic partial differentiations
of the function defining the IVP problem are required. On the other hand it is well
known [3] that CH3 is differentiable only once and

‖CH3 [y] − y‖ ≤ C4

∥∥∥y(4)
∥∥∥

I
h4

ε .

Problem A1: ẏ = −y, y(0) = 1. Solution: y(x) = e−x.
With the tolerances ε1 = {1.0e − 06, 1.0e − 03} the MATLAB� ode45 solver

returns the discrete solution ỹ on a grid of 77 points and size hε = 5.0e − 1; by
changing the error tolerances to ε2 = {1.0e − 08, 1.0e − 05}, ode45 returns the
discrete solution on a grid of 161 points and hε = 4.2e − 1; finally by setting
ε3 = {1.0e − 10, 1.0e − 07} ode45 returns the discrete solution on a grid of 373
points and hε = 2.4e− 1; the maxima of the global errors computed on the output
grid for ỹ and on the grid of 1001 points i/1001, i = 1, . . . , 1000, with ST1 , SB2 , SH3 ,
and CH3 are presented in the Table 8.

Table 8. Accuracy for the A1 DETEST problem

ỹ ST1 SB2 SH3 CH3

ε1 2.93e − 04 4.43e − 03 7.23e − 04 2.96e − 04 2.95e − 04
ε2 2.49e − 06 8.32e − 04 2.56e − 05 2.50e − 06 2.50e − 06
ε3 2.27e − 08 1.20e − 04 2.08e − 06 2.69e − 08 2.27e − 08

Problem A2: ẏ = −y3

2 , y(0) = 1. Solution: y(x) = 1√
1+x

.

In this case and with the error tolerances ε1 = {1.0e − 06, 1.0e − 03}, the
MATLAB� ode45 solver returns the discrete solution ỹ on a grid of 49 points
and hε = 5.0e − 1; by changing the error tolerances to ε2 = {1.0e − 08, 1.0e − 05},
ode45 returns the discrete solution on a grid of 65 points and hε = 5.0e− 1; finally
by setting ε3 = {1.0e− 10, 1.0e− 07}, ode45 returns the discrete solution on a grid
of 117 points and hε = 4.8e − 1; the maxima of the global errors computed on the
output grid for ỹ and on the grid of 1001 points for ST1 , SB2 , SH3 , and CH3 are in
the Table 9.

Problem A3: ẏ = y cos x, y(0) = 1. Solution: y(x) = esin x.
In this case and with the error tolerances ε1 = {1.0e − 06, 1.0e − 03}, the

MATLAB� ode45 solver returns the discrete solution ỹ on a grid of 93 points
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Table 9. Accuracy for the A2 DETEST problem

ỹ ST1 SB2 SH3 CH3

ε1 3.65e − 04 1.61e − 03 3.67e − 04 3.70e − 04 3.65e − 04
ε2 2.85e − 06 4.01e − 04 2.85e − 05 3.06e − 06 2.85e − 06
ε3 4.79e − 08 7.29e − 05 2.95e − 06 9.06e − 08 4.91e − 08

and hε = 3.1e − 1; by changing the error tolerances to ε2 = {1.0e − 08, 1.0e − 05},
ode45 returns the discrete solution on a grid of 197 points and hε = 1.5e−1; finally,
by setting ε3 = {1.0e− 10, 1.0e− 07}, ode45 returns the discrete solution on a grid
of 465 points and hε = 6.3e − 2; the maxima of the global errors computed on the
output grid for ỹ and on the grid of 1001 points for ST1 , SB2 , SH3 , and CH3 are in
the Table 10.

Table 10. Accuracy for the A3 DETEST problem

ỹ ST1 SB2 SH3 CH3

ε1 3.76e − 03 2.54e − 02 7.43e − 03 3.79e − 03 3.79e − 03
ε2 7.49e − 05 4.55e − 03 6.73e − 04 7.46e − 05 7.46e − 05
ε3 7.08e − 07 7.65e − 04 3.22e − 05 8.72e − 07 7.07e − 07

Problem A4: ẏ = y
4

(
1 − y

20

)
, y(0) = 1. Solution: y(x) = 20

1+19e−x/4 .
In this case and with the error tolerances ε1 = {1.0e − 06, 1.0e − 03}, the

MATLAB� ode45 solver returns the discrete solution ỹ on a grid of 45 points
and hε = 5.0e − 1; by changing the error tolerances to ε2 = {1.0e − 08, 1.0e − 05},
ode45 returns the discrete solution on a grid of 49 points and hε = 5.0e− 1; finally,
by setting ε3 = {1.0e− 10, 1.0e− 07}, ode45 returns the discrete solution on a grid
of 93 points and hε = 3.6e − 1; the maxima of the global errors computed on the
output grid for ỹ and on the grid of 1001 points for ST1 , SB2 , SH3 , and CH3 are in
the Table 11.

Table 11. Accuracy for the A4 DETEST problem

ỹ ST1 SB2 SH3 CH3

ε1 4.64e − 05 3.82e − 03 3.57e − 04 4.64e − 05 4.64e − 05
ε2 3.07e − 05 3.81e − 03 3.74e − 04 3.07e − 05 3.07e − 05
ε3 2.05e − 06 1.75e − 03 1.26e − 04 2.17e − 06 2.05e − 06

Remark 5.1. The combined Shepard operators are global (i.e., their values at each
point x are affected by all the data); however, the global character of these in-
terpolants can be avoided by substituting the weight functions Aµ,i (x) with basis
functions Wµ,i (x) of an opportune class of differentiability Cs

0 (R), 0 ≤ s ≤ ∞,
with small compact support and which may depend on the local distribution of
data points [4, 23, 24, 26].

6. Conclusions

The univariate Shepard–Bernoulli operator can be extended to the multivariate
case by using the expansions studied in [11, 12].
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