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SUPERCONVERGENCE OF THE NUMERICAL TRACES OF
DISCONTINUOUS GALERKIN AND HYBRIDIZED METHODS

FOR CONVECTION-DIFFUSION PROBLEMS
IN ONE SPACE DIMENSION

FATIH CELIKER AND BERNARDO COCKBURN

Abstract. In this paper, we uncover and study a new superconvergence prop-

erty of a large class of finite element methods for one-dimensional convection-
diffusion problems. This class includes discontinuous Galerkin methods defined
in terms of numerical traces, discontinuous Petrov–Galerkin methods and hy-
bridized mixed methods. We prove that the so-called numerical traces of both
variables superconverge at all the nodes of the mesh, provided that the traces
are conservative, that is, provided they are single-valued. In particular, for
a local discontinuous Galerkin method, we show that the superconvergence
is order 2 p + 1 when polynomials of degree at most p are used. Extensive
numerical results verifying our theoretical results are displayed.

1. Introduction

In this paper, we obtain a new superconvergence result for a large class of finite
element methods for one-dimensional convection-diffusion problems. This class in-
cludes discontinuous Galerkin (DG) methods devised by means of numerical traces,
discontinuous Petrov–Galerkin methods, and hybridized mixed methods. We work
in the framework of the model problem

− εu′′ + cu′ = f in Ω = (0, 1),(1.1a)

u = uD on ∂Ω = {0, 1},(1.1b)

where the velocity c is a nonnegative constant and the diffusion coefficient ε a posi-
tive real number. We chose this problem only for the sake of clarity and simplicity.
All the results we obtain can be easily extended to more general convection-diffusion
problems.

Let us briefly describe our result. We consider methods that provide an approx-
imation (qh, uh) to the solution (q, u) of

q = εu′ in Ω,(1.2a)

−(q − c u)′ = f in Ω,(1.2b)

u = uD on ∂Ω.(1.2c)
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The methods we consider rely on a suitable definition of the so-called numerical
traces û ε

h and (−q̂h + c û c
h) which are nothing but approximations to the potential

u and to its flux (−q + c u), respectively. We show that, if they are conservative,
that is, if they are single-valued, these two numerical traces superconverge at the
nodes of the mesh. In particular, if polynomials of degree at most p are used for
the approximation (qh, uh) given by a suitably defined LDG method, the supercon-
vergence is of order 2 p + 1. We also show that in the purely convective case, that
is, if ε = 0, the numerical trace of the flux is always exact ; and that, in the absence
of convection, that is, when c = 0, both numerical traces are always exact .

Let us contrast this result with similar superconvergence results in the available
literature. First, let us consider the purely convective case, namely, the case when
ε = 0. In the first analysis of the original DG method [23], Lesaint and Raviart also
considered the DG method applied to a simple ODE. They showed that a collocation
version of the DG method using the upwinding numerical flux was nothing but an
implicit Runge–Kutta method of order 2 p + 1 when polynomials of degree p are
used. Later, Delfour et al. [19] proved that the numerical trace of the DG method
superconverges at the nodes with order 2 p+1 for a fairly general class of numerical
traces. These results imply ours for DG methods with conservative numerical traces.

Now, let us consider the purely elliptic case, that is, the case in which c = 0. It
is very well known that in this case, the values at the nodes of the approximation
to the potential given by the classical H1-conforming finite element method are
exact. A similar result holds for DG methods. Indeed, in [13] it was proven that
if both numerical traces are conservative and consistent, the numerical trace of the
potential is exact. On the other hand, in [22] Larson and Niklasson showed that
if uniform meshes are used, the numerical trace for the flux is also exact at the
nodes for the interior penalty (IP) method, and of order p for the nonsymmetric
interior penalty Galerkin (NIPG) method. Our main theorem implies all the above-
mentioned results. Note, in particular, that, unlike the IP method, the numerical
trace of the flux of the B.O. method cannot be exact because its numerical trace
for the potential is not conservative.

Finally, let us consider the convection-diffusion case. In [20], Douglas and
Dupont proved that, when applied to general convection-diffusion equations, the
method superconverges at the nodes of the mesh with order 2 p when polynomi-
als of degree at most p are used. In [28], J. Wheeler proposed a postprocessing
that allowed to compute approximations to the flux at the boundary of the com-
putational domain. In [29], the procedure was extended for the computation of
approximations to the flux at all the nodes and a superconvergence of order 2 p was
proven therein. For a unified theory of superconvergence for continuous Galerkin
methods, see Dupont [21]. Our results imply that DG methods employing polyno-
mial approximations of degree p have both numerical traces super-converging with
order 2 p + 1 for some suitably chosen DG methods. Just as proposed in [20], by
using a simple and local postprocessing, we can obtain approximations for both the
potential u and its flux (−q + c u) that converge uniformly with order 2 p+1 in the
whole domain.

In this paper, we have not dealt with two important superconvergence properties.
The first is the identification of superconvergence points of the approximation inside
each element; see the recent work on superconvergence for DG methods [1] and the
references therein. The other property, the uniformity of the superconvergence as
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the parameter ε goes to zero, will be considered elsewhere. It requires a different
type of analysis and the use of Shishkin-like meshes to properly deal with the
boundary layers; see the recent work in [30] and [31].

The organization of the rest of the paper is as follows. In Section 2, we describe
the DG methods under consideration, state our main result, Theorem 2.1, and
discuss some of its consequences; we also present a variation of this result for a
special LDG method, Theorem 2.6. These theorems are proven in Section 3. In
Section 4, we display numerical experiments that verify our theoretical findings.
Finally, in Section 5, we end by pointing out some straightforward extensions and
giving some concluding remarks.

2. The main result

In this section, we describe the class of methods under consideration, state our
main result, and discuss some of its consequences.

2.1. The general form of the methods. To describe the structure of the meth-
ods under consideration, let us begin by partitioning the domain Ω = (0, 1). Thus,
if 0 = x0 < x1 < · · · < xN−1 < xN = 1, the partition is Ωh = {Ij = (xj−1, xj), j =
1, . . . , N}. For each interval Ij ∈ Ωh, we define its outward unit normal nIj

(xj) = 1
and nIj

(xj−1) = −1; if there is no confusion, instead of nIj
we simply write n.

Next, we describe the weak formulation used by the methods. Such a formulation
is satisfied by the exact solution and is obtained as follows. If the restriction of the
exact solution (q, u) to the interval Ij belongs to H1(Ij)×H1(Ij), we immediately
have

(q, v)Ij
= −(εu, v′)Ij

+ 〈εu , vn〉∂Ij
,

(q − cu, w′)Ij
− 〈q − cu , wn〉∂Ij

= (f, w)Ij
,

for all (v, w) ∈ H1(Ij) × H1(Ij). Here, we have used the notation

(ϕ, ψ)Ij
:=

∫
Ij

ϕ(x)ψ(x) dx

and

〈ϕ , ψ n〉∂Ij
= ϕ(x−

j )ψ(x−
j ) − ϕ(x+

j−1)ψ(x+
j−1).

As a consequence, if (q, u) ∈ H1(Ωh) × H1(Ωh), we have

(q, v)Ωh
= −(εu, v′)Ωh

+ 〈εu , vn〉∂Ωh
,(2.1a)

(q − cu, w′)Ωh
− 〈q − cu , wn〉∂Ωh

= (f, w)Ωh
,(2.1b)

u|∂Ω = uD,(2.1c)

where

(ϕ, ψ)Ωh
:=

∑
Ij∈Ωh

(ϕ, ψ)Ij
and 〈ϕ , ψ n〉∂Ωh

:=
∑

Ij∈Ωh

〈ϕ , ψ n〉∂Ij
.

The approximate solution (qh, uh) given by the methods under consideration satis-
fies a similar weak formulation. Indeed, it is sought in a finite-dimensional subspace
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of H1(Ωh) × H1(Ωh), Vh × Wh, and is required to satisfy

(qh, v)Ωh
= −(εuh, v′)Ωh

+ 〈εû ε
h , vn〉∂Ωh

,(2.2a)

(qh − cuh, w′)Ωh
− 〈q̂h − cû c

h , wn〉∂Ωh
= (f, w)Ωh

,(2.2b)

û ε
h|∂Ω = uD,(2.2c)

for all (v, w) ∈ Vh × Wh.
To complete the definition of the method, it remains to define the trial and test

spaces, Vh ×Wh and Vh ×Wh, as well as the numerical trace for the potential, û ε
h,

and for its flux, −q̂h + c û c
h, at the nodes of the mesh, Eh = {xi}N

i=0. The precise
definition of the above-mentioned spaces and of the numerical traces, however, is
irrelevant for our main result since it is completely independent of them. Indeed, it
applies to any well-defined method whose approximate solution satisfies the above-
described weak formulation.

2.2. Examples. Let us display some examples of such methods. In Tables 1, 2
and 3, extracted mostly from [4], we display the the numerical traces and the space
of some methods satisfying (2.2).

We divide them in three groups. The four methods of the first group have
numerical fluxes ûε

h that are not conservative. All the methods of the second group
are DG methods whose numerical fluxes are conservative. The two methods of
the last group are the hybridized Raviart–Thomas method [24, 3], denoted here by
h-R.T., and the discontinuous Petrov–Galerkin method [10], denoted here by DPG.

Almost all the methods of the first two groups have been considered in the
unifying analysis of DG methods proposed in [4]. There are three exceptions. The
first, called the modified Babuška–Zlámal method and denoted by m-B.Z., has both
numerical fluxes conservative; note that the original method of Babuška and Zlámal
[5] does not have a conservative numerical trace ûε

h. The other two are what we
could call the minimal dissipation methods since they do not penalize the jumps
of the potential at the interelement boundaries. For this reason, we denote them
by md-LDG (γ|E ◦

h
= 0) and md-DG (γ|E ◦

h
�= 0). They were introduced in [18]; the

md-LDG method was further studied in [14].
The methods of the third group have the property that some or all of their

numerical traces are new unknowns. Note that the h-R.T. method requires the
additional equations

qh(x−
j ) = qh(x+

j ), j = 1, . . . , N − 1,

to be well defined.
In Table 1, we use the following notation to describe the numerical traces at the

interior nodes. The average of the trace of ϕ at the interior node xj is given by

{{ϕ}}(xj) :=
1
2
(ϕ(x+

j ) + ϕ(x−
j )),

and its jump by

[[ϕ n]](xj) = ϕ(x+
j ) nIj

(xj) + ϕ(x−
j ) nIj+1(xj) = −ϕ(x+

j ) + ϕ(x−
j ).

We also define

[[ϕ n]](0) = −ϕ(0+) and [[ϕ n]](1) = +ϕ(1−).
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Table 1. Numerical traces at the interior nodes.

method û ε
h q̂h

B.Z. [5] {{uh}} + n/2 [[uh n]] −α[[uh n]]
Brezzi et al. [12] {{uh}} + n/2 [[uh n]] −αr([[uh n]])

B.O. [9] {{uh}} + n [[uh n]] ε{{u′
h}}

NIPG [25] {{uh}} + n [[uh n]] ε{{u′
h}} − α[[uh n]]

m-B.Z. {{uh}} −α[[uh n]]
IP [7, 2] {{uh}} ε{{u′

h}} − α[[uh n]]
Bassi et al. [8] {{uh}} ε{{u′

h}} − αr([[uh n]])
Brezzi et al. [11] {{uh}} {{qh}} − αr([[uh n]])

LDG [18] {{uh}} + β [[uh n]] {{qh}} − β[[qh n]] − α[[uh n]]
DG [18, 14] {{uh}} + β [[uh n]] − γ [[qh n]] {{qh}} − β[[qh n]] − α[[uh n]]

md-LDG [18, 15] {{uh}} + 1
2 [[uh n]] = u−

h {{qh}} − 1
2 [[qh n]] = q+

h
md-DG [18] {{uh}} + 1

2 [[uh n]] − γ [[qh n]] {{qh}} − 1
2 [[qh n]]

h-R.T. [24, 3] new unknown qh

DPG [10] new unknown new unknown

Table 2. The numerical trace q̂h at the boundary.

method q̂h(0) q̂h(1)

B.Z. [5] −α(uD(0) − uh(0+)) −α(uh(1−) − uD(1))

Brezzi et al. [12] −αr(uD(0) − uh(0+)) −αr(uh(1−) − uD(1))
B.O. [9] εu′

h(0+) εu′
h(1−)

NIPG [25] εu′
h(0+) − α(uD(0) − uh(0+)) εu′

h(1−) − α(uh(1−) − uD(1))

m-B.Z. −α(uD(0) − uh(0+)) −α(uh(1−) − uD(1))
IP [7, 2] εu′

h(0+) − α(uD(0) − uh(0+)) εu′
h(1−) − α(uh(1−) − uD(1))

Bassi et al. [8] εu′
h(0+) − α(uD(0) − uh(0+)) εu′

h(1−) − α(uh(1−) − uD(1))

Brezzi et al. [11] qh(0+) − αr(uD(0) − uh(0+)) qh(1−) − αr(uh(1−) − uD(1))
LDG [18] qh(0+) − α(uD(0) − uh(0+)) qh(1−) − α(uh(1−) − uD(1))

DG [18, 14] qh(0+) − α(uD(0) − uh(0+)) qh(1−) − α(uh(1−) − uD(1))

md-LDG [18, 15] qh(0+) qh(1−) − α(uh(1−) − uD(1))
md-DG [18] qh(0+) qh(1−) − α(uh(1−) − uD(1))

h-R.T. [24, 3] qh(0+) qh(1−)
DPG [10] new unknown new unknown

Table 3. Polynomial degree of the trial and test functions.

method �Vh
�Wh

�Vh
�Wh

h-R.T. [24, 3] p + 1 p p + 1 p
DPG [10] p p p + 1 p + 1

The numerical traces q̂h at the boundary are displayed in Table 2. In there, the
penalization parameter at the border is typically

α(0) = α(1) = ε p/h.

The numerical trace associated with the convection is the classical upwinding trace,
namely,

û c
h(0) = uD(0) and û c

h(xi) = uh(x−
i )

for all the remaining nodes.
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Note that to define the method of Bassi et al. [8], and the methods of Brezzi et
al. [11, 12] we need to define the lifting operator αr as follows. Given xj ∈ Eh we
define the lifting rxj

(η) ∈ Vh of η by the condition

(rxj
(η), τ )Ωh

:= −η(xj){{τ (xj)}} for all τ ∈ Vh.

We then set [αr(η)](xj) := µxj
{{rxj

(η)}}(xj). Here µxj
is a positive parameter.

Note that rxj
(η) vanishes outside one or two elements containing xj and that r(η) =∑N

j=0 rxj
(η).

Finally, let us describe the spaces of these methods. Since all the spaces are of
the form

X�
h = {w ∈ L2(Ωh) : w|Ij

∈ P �(Ij), j = 1, . . . , N},
where 	 is a natural number, they are characterized by the single natural number 	.
For all the numerical methods of the first two groups, we take all the spaces equal
to Xp

h, that is,
	Vh

= 	Wh
= 	Vh

= 	Wh
= p.

In Table 3 we display such a number for the methods of the third group.

2.3. Superconvergence at the nodes. Our main result identifies quantities u
and flx that always superconverge to the values of the potential u and the flux
(−q + c u), respectively, at each of the nodes. Let us define them.

If xi is a boundary node, we have

u(xi) := uD(xi),(2.3a)

and if xi is an interior node,

u(xi) := {{û ε
h}}(xi) + 〈1 , ε{{ϕ′

xi
}} [[û ε

h n]] + ϕxi
[[(−q̂h + c û c

h) n]]〉E ◦
h
.(2.3b)

Here, for any given point y ∈ (0, 1), ϕy is the solution of

(2.4)

−(εϕ′′
y + cϕ′

y) = 0 in Ω \ {y},
[[ϕy n]](y) = 0, ε[[ϕ′

y n]](y) = 1,

ϕy = 0 in ∂Ω,

E ◦
h denotes the set of interior nodes, and

〈ζ , ξ〉E ◦
h

:=
N−1∑
i=1

ζ(xi) ξ(xi),

for any functions ζ and ξ defined on E ◦
h .

Similarly, if xi is a boundary node,

flx(xi) := (−q̂h + c û c
h)(xi) + 〈1 , ε ψ′

xi
[[û ε

h n]] + {{ψxi
}} [[(−q̂h + c û c

h) n]]〉E ◦
h

(2.5a)

and if xi is an interior node,

flx(xi) := {{−q̂h + c û c
h}}(xi) + 〈1 , ε ψ′

xi
[[û ε

h n]] + {{ψxi
}} [[(−q̂h + c û c

h) n]]〉E ◦
h
.

(2.5b)
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Here, for any point y ∈ (0, 1), ψy is the solution of

(2.6)

−(εψ′′
y + cψ′

y) = 0 in Ω \ {y},
[[ψy n]](y) = 1, ε[[ψ′

y n]](y) = 0,

ψy = 0 in ∂Ω.

We also define, for z ∈ {0, 1},

(2.7) (ϕz, ψz) := lim
y→z

(ϕy, ψy).

Note that this implies that the function (ϕz, ψz) is identically zero for z ∈ {0, 1}.
The estimate of the errors

eu := u − u and eflx := (−q + c u) − flx

is going to be given in terms of the L2(Ωh)-norm of the errors

eu := u − uh and eq := q − qh,

and Hs(Ωh)-seminorms of the Green’s functions ϕxi
and ψxi

. The Hs(Ωh)-semi-

norm of a function w is given by |w|s,Ωh
:=

(∑N
j=1 |w|2s,Ij

) 1
2
, where |w|s,Ij

:=∥∥w(s)
∥∥

0,Ij
and ‖·‖0,Ij

is the L2-norm on Ij .
We are now ready to state our main result.

Theorem 2.1. Consider any well-defined method whose approximate solution sat-
isfies the weak formulation (2.2). Suppose that the spaces of test functions Vh and
Wh contain the space X�

h where 	 ≥ 1. Then,

| eu(xi) | ≤ Cs ||| (eu, eq) |||c,Ωh
|ϕxi

|s+1,Ωh

(
hmin(s,�)

	s

)
,

| eflx(xi) | ≤ Cs ||| (eu, eq) |||c,Ωh
|ψxi

|s+1,Ωh

(
hmin(s,�)

	s

)
,

for all nodes xi. Here,

||| (eu, eq) |||c,Ωh
:= ‖eq‖0,Ωh

+ c ‖eu‖0,Ωh
,

and the constant Cs only depends on s ≥ 0.

Note that, given ε, c and s, the quantities |ϕxi
|s+1,Ωh

and |ψxi
|s+1,Ωh

can be
bounded independently of i and h.

Next, we discuss several important consequences of this result.

• Methods with conservative numerical traces. When the numerical traces
are conservative, Theorem 2.1 is a superconvergence result for them, thanks to the
following simple result.

Proposition 2.2. Assume that the numerical traces û ε
h and are (−q̂h + c û c

h) are
conservative. Then

u = û ε
h and flx = (−q̂h + c û c

h),

on all the nodes of the mesh.
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Table 4. Order of convergence p� of both numerical traces of
conservative methods guaranteed by Theorem 2.1.

method α|E◦
h

β|E◦
h

γ|E◦
h

||| (eu, eq) |||c,Ωh
p�

IP [7, 2] ε p/h - - p 2p
Bassi et al. [8] - - - p 2p

Brezzi et al. [11] - - - p 2p
LDG [18] ε p/h 0 0 p 2p
LDG [18] ε p/h 1/2 0 p 2p

DG [18, 14] ε p/h 0 h/p p 2p
md-LDG [18] 0 1/2 0 p + 1 2p + 1

md-DG [18, 14] 0 1/2 h/p p + 1 2p + 1

h-R.T. [24, 3] - - - p + 1 2p + 1
DPG [10] - - - p + 1 2p + 2

Proof. Conservativity of the numerical traces û ε
h and (−q̂h + c û c

h) means that (see
[4]) for all interior nodes xi,

[[û ε
h n]](xi) = 0 and [[(−q̂h + c û c

h) n]](xi) = 0.

By the definitions of u and flx, (2.3) and (2.5), respectively, this immediately implies
the result. �

A straightforward application of Theorem 2.1 is summarized in Table 4, where we
display the orders of superconvergence of the numerical traces of several methods.
To obtain them, all we need to do is to provide estimates for ‖eu‖0,Ωh

and ‖eq‖0,Ωh
.

For the purely elliptic case, these estimates are available in [4] for the first six DG
methods, in [24] for the h-R.T. method, and in [10] for the DPG method. Similar
estimates for the convection-diffusion case can be easily obtained.

For the md-LDG and md-DG methods, such estimates can be obtained by a suit-
able modification of the analysis proposed in [15] for the time-dependent convection-
diffusion problem. On the other hand, Theorem 2.6, which is a variation on our
main result that takes into account the special structure of these methods, also
implies a superconvergence of order 2 p + 1 of the numerical traces of the md-LDG
method and the md-DG method with γ = h/p.

All the orders of convergence in Table 4 have been numerically verified to be
sharp.

• Postprocessing. When the numerical method has conservative numerical
traces, it is possible to use their superconvergence to construct a new approximate
solution (q�

h, u�
h) that converges uniformly to the exact solution with the same order

of convergence of the numerical traces. This can be achieved by a straightforward
extension of the procedure used in [17] in the framework of DG methods for Tim-
oshenko beams.

Next we define this postprocessing. On the element Ij , 1 ≤ j ≤ N, we define
(q∗h, u∗

h) as the element of the space [P p∗
(Ij)] for some p < p∗ ≤ 2p such that

(q∗h, w′)Ij
+ (

c

ε
q∗h, w)Ij

− q∗h(x−
j )w(x−

j )(2.9a)

= (f, w)Ij
− (q̂h − cûc

h + cûε
h)(xj−1) w(x+

j−1),

−(εu∗
h, v′)Ij

+ εu∗
h(x−

j ) v(x−
j ) = (q∗h, v)Ij

+ εûε
h(xj−1) v(x+

j−1)(2.9b)

for all v, w ∈ P p∗
(Ij).
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It is not difficult to see that the above equations are the discretization by the
classical DG method of the following simple set of initial value problems for ODEs:

−(q∗)′ +
c

ε
q∗ = f in Ij , q∗(xj−1) = (q̂h − cûc

h + cûε
h)(xj−1),

ε(u∗)′ = q∗ in Ij , u∗(xj−1) = ûε
h(xj−1).

Both this system of ODEs as well as its discrete counterpart are extremely simple
to solve. Indeed, we first obtain q∗h by solving (2.9a), we then insert it into (2.9b) to
solve for u∗

h. Note that to compute this postprocessing, all we need is to invert only
two matrices of order (p∗ + 1) which are the same for all the elements. The first is
the stiffness matrix associated with the equations (2.9a), and the second the matrix
associated with (2.9b). Thus the overall computational cost of this postprocessing is
negligible as compared to the cost of actually computing the approximate solution.

As an application of our superconvergence results at the nodes we provide the
main approximation property of the postprocessed solution. It is given in terms of
the norm given by ‖u ‖∞,Ωh

:= max1≤j≤N (supx∈Ij
|u(x)|).

Proposition 2.3. Let (qh, uh) be the approximate solution by any of the methods
under consideration with conservative numerical traces. Suppose further that

|(u − û ε
h)(xi)| + |(q − cu)(xi) − (q̂h − cû c

h)(xi)| ≤ Chk

for all xi ∈ Eh. Then, the error of the postprocessed approximation is such that

‖ q − q∗h ‖∞,Ωh
+ ‖u − u∗

h ‖∞,Ωh
≤ D hmin(p∗+1,k)

for some constant D independent of h.

The proof of this result is a variation of a similar result proven in [17]. Note
that for most of the conservative methods in Table 1 the superconvergence is of
order 2 p, hence one can take p∗ = 2 p. As a result, (q∗h, u∗

h) will converge to the
exact solution with order 2 p, uniformly in the whole domain. For some particular
methods, such as md-LDG or h-R.T., the convergence of the postprocessed solution
is of order 2 p + 1.

• Exactness of the numerical traces for the purely elliptic case c = 0.
It is very well known that in the purely elliptic case, the nodal values of the

conforming finite element method coincide with the exact solution. A similar result
holds for LDG methods: the numerical traces for the potential are also exact for
LDG methods; see [13]. In [22], the numerical trace for the flux of the IP method
was shown to be exact. These are particular cases of the following result.

Corollary 2.4. Assume that the hypotheses of Theorem 2.1 are satisfied. Assume
also that the numerical traces are conservative. Then, for the purely elliptic case,
c = 0, we have that, for all nodes,

û ε
h = u and q̂h = q.

In other words, for the methods with conservative numerical traces, both numer-
ical traces are exact regardless of the way they are actually defined. In particular,
this holds the m-B.Z. method even though its numerical trace for the flux is not
consistent. It also holds for any well-defined DG method, independently of the
actual values of the parameters α, γ, and β defining their numerical traces.
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For example, it was shown in [16] that the LDG method with β = 0 is well
defined not only for α > 0, but also for

α < −3 (2 p + 1)
2h

,

for uniform meshes. Thus, the numerical fluxes are exact for all these values of α.
This indicates that the so-called penalization parameter α can be negative without
having a detrimental impact on the numerical traces.

This raises the issue of what is the effect of the actual definition of the numerical
traces on the approximate solution (qh, uh). The following result identifies the
degrees of freedom that are completely independent of the actual definition of the
numerical traces. We denote by P

�
h the L2-projection into the space X�

h.

Corollary 2.5. Assume that the hypotheses of Theorem 2.1 are satisfied. Assume
also that the numerical traces are conservative. Then, for the purely elliptic case,
c = 0, we have that,

P
�Wh

−1

h qh = P
�Wh

−1

h q and P
min{�Vh

−1,�Wh
−2}

h uh = P
min{�Vh

−1,�Wh
−2}

h u.

This implies that only the degrees of freedom associated to the Legendre polyno-
mials of highest degree are affected by the definition of the numerical traces. Take,
for example, the DG methods under consideration. For those methods, we have
p = 	Vh

= 	Wh
, and so

P
(p−1)
h qh = P

(p−1)
h q and P

(p−2)
h uh = P

(p−2)
h u.

Thus, if we write, for x in the element Ij ,

qh(x) =
p∑

k=0

qj
k Lk(Tj(x)) and uh(x) =

p∑
k=0

uj
k Lk(Tj(x)),

where Tj(x) = (2 x− xj − xj−1)/(xj − xj−1) and Lk(·) is the Legendre polynomial
of degree k, the above result states that only qj

p, uj
p−1 and uj

p are actually affected
by the definition of the numerical traces.

Let us end by pointing out that we can use the last two corollaries to construct
a new approximation that is not affected by the definition of the numerical traces.
Let us illustrate this with the DG methods under consideration. On each interval
Ij , we define the function u�

h to be the polynomial of degree p + 2 such that

u�
h(xi) = û ε

h(xi), i ∈ {j − 1, j},

(u�
h)′(xi) =

1
ε
q̂h(xi), i ∈ {j − 1, j},

P
(p−2)
h (u�

h) = P
(p−2)
h uh.

Then we immediately have that u− u�
h and h (u− u�

h)′ are of order hp+3 pointwise
in the whole domain.

• Methods with nonconservative numerical traces. The B.Z., B.O. and
the NIPG methods do not appear in Table 4 because although their numerical trace
(−q̂h + c û c

h) is conservative, their numerical trace û ε
h is not. On the other hand,

Theorem 2.1 still gives useful information for these schemes. Indeed, since in this
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case we have

u(xi) = {{û ε
h}}(xi) + m 〈{{ε ϕ′

xi
}} , [[uh n]]〉E ◦

h
,

flx(xi) = (q̂h + c û c
h)(xi) + m 〈ε ψ′

xi
, [[uh n]]〉E ◦

h
,

with m = 1 for B.Z. and m = 2 for B.O. and NIPG, and since

{{û ε
h}}(xi) = {{uh}}(xi),

we readily obtain that

| (u − {{uh}})(xi) | ≤ | eu(xi) | + C ε ‖ϕ′
xi
‖1,Ωh

(
N−1∑
i=1

1
h

[[uh n]]2
) 1

2

,

| ((−q + c u) − (−q̂h + c û c
h))(xi) | ≤ | eflx(xi) | + C ε ‖ψ′

xi
‖1,Ωh

(
N−1∑
i=1

1
h

[[uh n]]2
) 1

2

.

Thus, the order of convergence of {{uh}} and (−q̂h + c û c
h) is given by the order of

convergence of the global quantity
(∑N−1

i=1 h−1 [[uh n]]2
)1/2

. Larson and Niklasson
[22] recently proved that for the NIPG method this quantity converges with order
p for the purely elliptic case.

2.4. Another version of the main result for the md-LDG and the md-
DG methods. Here we consider a variation of the main result for two special
DG methods, namely, the md-LDG and the md-DG method. The result does not
require estimates for ‖eu‖0,Ωh

and ‖eq‖0,Ωh
. Instead, it requires an estimate for the

quantity
|(π+eq, π

−eu)|Ah
,

where the seminorm |(·, ·)|Ah
is given by

(2.10)

|(qh, uh)|Ah
:=

(
1
ε
‖qh‖2

0,Ωh
+

1
2
〈c , [[uh n]]2〉Eh

+ 〈γ , [[qh n]]2〉E ◦
h

+ αu2
h(1−)

)1/2

,

and the operators π+ and π− are defined as follows. If φ ∈ H1(Ωh), then π±φ is
the function Xp

h such that, for each element Ij = (xj−1, xj) of the mesh Ωh,

(π±φ − φ, v)Ij
= 0 ∀v ∈ P p−1(Ij), if p > 0,(2.11a)

(π−φ)(x−
j ) = φ(x−

j ), (π+φ)(x+
j−1) = φ(x+

j−1).(2.11b)

Theorem 2.6. For the md-LDG and the md-DG methods, we have

| êu
ε(xi) | ≤ Cs ||| (eq, eu) |||Ah,Ωh

|ϕxi
|s+1,Ωh

(
hmin(s,p)

ps

)
,

| êq − c êu
c(xi) | ≤ Cs ||| (eq, eu) |||Ah,Ωh

|ψxi
|s+1,Ωh

(
hmin(s,p)

ps

)
,

for all the nodes xi and for all s ≥ 0. Here

||| (eq, eu) |||Ah,Ωh
:=

∥∥q − π+q
∥∥

0,Ωh
+
√

ε|(π+eq, π
−eu)|Ah

,

and the constant Cs depends only on s.
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Since, by Proposition 5.1,

||| (eq, eu) |||Ah,Ωh
≤2

(∥∥π+q − q
∥∥2

0,Ωh
+ 〈ε γ , [[π+q n]]2〉E ◦

h
+

ε

α
|(π+q − q)(1)|2

)1/2

,

for γ of order h/pε we get, by the approximation properties of the operators π±,

||| (eq, eu) |||Ah,Ωh
≤Cτ | q |τ+1,Ωh

(
hmin(τ,p)+1

pτ+1

)
,

where Cτ only depends on τ . This immediately implies that

| êu
ε(xi) | ≤ Cs Cτ | q |τ+1,Ωh

|ϕxi
|s+1,Ωh

(
hmin(s,p)+min(τ,p)+1

ps+τ+1

)
,

| êq − c êu
c(xi) | ≤ Cs Cτ | q |τ+1,Ωh

|ψxi
|s+1,Ωh

(
hmin(s,p)+min(τ,p)+1

ps+τ+1

)
.

Hence, the rate of convergence of the numerical traces of the md-methods is of
order (2 p + 1)/(p2 p+1) for sufficiently smooth exact solutions.

3. Proofs

3.1. The error representation formulas. The proofs of our main results are
based on the following key result. To state it, we need to introduce some notation.
Let Eh denote the set of nodes, and

〈ζ , ξ〉Eh
:=

N∑
i=0

ζ(xi) ξ(xi),

for any functions ζ and ξ defined on Eh.

Lemma 3.1 (Error representation). Let xi be any node in Eh and let (Zh, ζh) be
any function in the space Vh × Wh. Then

eu(xi) =〈1 , [[εêu
ε (ϕ′

xi
− Zh) n]]〉E ◦

h
− 〈1 , [[(êq − cêu

c) ( ϕxi
− ζh) n]]〉Eh

+ (eq, (Zh − ϕ′
xi

) − (ζh − ϕxi
)′)Ωh

+ (eu, ε (Zh − ϕ′
xi

)′ + c (ζh − ϕxi
)′)Ωh

and

eflx(xi) =〈1 , [[εêu
ε (ψ′

xi
− Zh) n]]〉E ◦

h
− 〈1 , [[(êq − cêu

c) ( ψxi
− ζh) n]]〉Eh

+ (eq, (Zh − ψ′
xi

) − (ζh − ψxi
)′)Ωh

+ (eu, ε (Zh − ψ′
xi

)′ + c (ζh − ψxi
)′)Ωh

.

To prove this result, we need the following identity.

Lemma 3.2 (Basic identity). Let (Z, ζ) be a solution of

Z = ζ ′ and − (εZ ′ + cζ ′) = 0 in Ωh.

Set
Ξi := 〈1 , [[εêu

ε Z n]]〉Eh
− 〈1 , [[(êq − cêu

c) ζ n]]〉Eh
.

Then

Ξi =〈1 , [[εêu
ε (Z − Zh) n]]〉Eh

− 〈1 , [[(êq − cêu
c) (ζ − ζh) n]]〉Eh

+ (eq, (Zh − Z) − (ζh − ζ)′)Ωh
+ (eu, ε (Zh − Z)′ + c (ζh − ζ)′)Ωh

,

for all (Zh, ζh) ∈ Vh × Wh.
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Proof. Since

Ξi =〈1 , [[εêu
ε (Z − Zh) n]]〉Eh

− 〈1 , [[(êq − cêu
c) (ζ − ζh) n]]〉Eh

+ 〈1 , [[εêu
ε Z n]]〉Eh

− 〈1 , [[(êq − cêu
c) ζ n]]〉Eh

,

we only have to prove that the last term of the above identity is equal to

(eq, (Zh − Z) − (ζh − ζ)′)Ωh
+ (eu, ε (Zh − Z)′ + c (ζh − ζ)′)Ωh

.

To do that, we proceed as follows. Subtracting equations (2.2) from equations
(2.1), we get

〈εêu
ε , v n〉∂Ωh

= (eq, v)Ωh
+ (εeu, v′)Ωh

,

〈êq − cêu
c , w n〉∂Ωh

= (eq − c eu, w′)Ωh
,

for all (v, w) ∈ Vh × Wh. Taking (v, w) = (Zh, ζh) and subtracting the second
equation from the first, we obtain

〈εêu
ε , Zh n〉∂Ωh

− 〈êq − cêu
c , ζh n〉∂Ωh

= (eq, Zh − ζ ′h)Ωh
+ (eu, ε Z ′

h + c ζ ′h)Ωh
,

and using the definition of (Z, ζ),

〈εêu
ε , Zh n〉∂Ωh

− 〈êq − cêu
c , ζh n〉∂Ωh

=(eq, (Zh − Z) − (ζh − ζ)′)Ωh

+ (eu, ε (Zh − Z)′ + c (ζh − ζ)′)Ωh
.

The result follows by noting that

〈εêu
ε , Zh n〉∂Ωh

= 〈1 , [[εêu
ε Z : h n]]〉Eh

,

〈êq − cêu
c , ζh n〉∂Ωh

= 〈1 , [[(êq − cêu
c) ζh n]]〉Eh

.

This completes the proof. �

We are now ready to prove the error representation formulas.

Proof of Lemma 3.1. Since êu
ε(0) = êu

ε(1) = 0, Lemma 3.1 follows from Lemma
3.2 if we show that if we take (Z, ζ) = (ϕ′

xi
, ϕxi

), we have

〈1 , [[εêu
ε Z n]]〉Eh

− 〈1 , [[(êq − cêu
c) ζ n]]〉Eh

= eu(xi),

and that if we take (Z, ζ) = (ψ′
xi

, ψxi
),

〈1 , [[εêu
ε Z n]]〉Eh

− 〈1 , [[(êq − cêu
c) ζ n]]〉Eh

= eflx(xi).

We only prove the first identity since the proof of the second is similar.
If xi ∈ ∂Ω, by the definition of the Green’s function, (2.4) and (2.7), ϕxi

≡ 0
and the identity follows since êu(xi) = 0. Assume now that xi is an interior node.
Then

Θi :=〈1 , [[εêu
ε ϕ′

xi
n]]〉E ◦

h
− 〈1 , [[(êq − cêu

c) ϕxi
n]]〉Eh

=〈1 , [[εêu
ε ϕ′

xi
n]]〉E ◦

h
− 〈1 , [[(êq − cêu

c) ϕxi
n]]〉E ◦

h
, since ϕxi

= 0 at ∂Ω

=〈1 , ε{{êu
ε}} [[ϕ′

xi
n]] + ε[[êu

ε n]] {{ϕ′
xi
}}〉E ◦

h

− 〈1 , {{(êq − cêu
c)}} [[ϕxi

n]] + [[(êq − cêu
c) n]] {{ϕxi

}}〉E ◦
h

={{êu
ε}}(xi) + 〈1 , ε[[êu

ε n]] {{ϕ′
xi
}} − [[(êq − cêu

c) n]] {{ϕxi
}}〉E ◦

h
,

by the definition of the Green’s function ϕxi
, (2.4). Finally, by the definition of

eu(xi), (2.3), we get that Θi = eu(xi). This completes the proof. �
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3.2. Proof of the main result, Theorem 2.1. The proof of the theorem follows
from the error representation result, Lemma 3.1 and the approximation properties
of a projection operator we introduce below.

Since p = min{	Vh
, 	Wh

} ≥ 1, we can take (Zh, ζh) = (πϕ′
xi

, πϕxi
), in the first

identity of Lemma 3.1, where πφ, for any φ ∈ H1(Ωh), is a function in Xp
h defined

on the element Ij = (xj−1, xj) by

(πφ − φ, v)Ij
= 0 ∀v ∈ P p−2(Ij), if p > 1,

(πφ)(x−
j ) = φ(x−

j ), (πφ)(x+
j−1) = φ(x+

j−1).

We readily obtain

eu(xi) =(eq, (πϕ′
xi

− ϕ′
xi

) − (πϕxi
− ϕxi

)′)Ωh

+ (eu, ε (πϕ′
xi

− ϕ′
xi

)′ + c (πϕxi
− ϕxi

)′)Ωh
.

This implies

| eu(xi) | ≤ ‖eq‖0,Ωh

(∥∥πϕ′
xi

− ϕ′
xi

∥∥
0,Ωh

+ ‖(πϕxi
− ϕxi

)′‖0,Ωh

)
+ ‖eu‖0,Ωh

(
ε
∥∥(πϕ′

xi
− ϕ′

xi
)′

∥∥
0,Ωh

+ c ‖(πϕxi
− ϕxi

)′‖0,Ωh

)
,

and by the approximation properties of the operator π, namely,

|πw − w|0,Ij
+

hj

p
|(πw − w)′|0,Ij

≤ Cs

(
h

min(s,p)+1
j

ps+1

)
|w|s+1,Ij

,

where the constant Cs only depends on s (see [27]), we get

| eu(xi) | ≤Cs ‖eq‖0,Ωh
(2 |ϕxi

|s+1,Ωh
)

(
h

min(s,p)
j

ps

)

+ Cs ‖eu‖0,Ωh
(ε |ϕxi

|s+2,Ωh
+ c|ϕxi

|s+1,Ωh
)

(
h

min(s,p)
j

ps

)
.

Finally, by the definition of the Green’s function ϕxi
(2.4),

| eu(xi) | ≤2 Cs

(
‖eq‖0,Ωh

+ c ‖eu‖0,Ωh

) (
h

min(s,p)
j

ps

)
|ϕxi

|s+1,Ωh
,

and the first inequality of Theorem 2.1 follows. The other inequality can be obtained
in the same way.

This completes the proof of Theorem 2.1.

3.3. Proof of the estimate for the md-DG methods, Theorem 2.6. To
prove Theorem 2.6, we proceed as we did in the proof of Theorem 2.1. We begin by
deriving suitable expressions for the numerical traces êu

ε(xi) and (êq − cêu
c)(xi).
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Lemma 3.3. For any node xi, we have

êu
ε(xi) = ε π−eu(1−) (π+ϕ′

xi
− ϕ′

xi
)(1−)

+ 〈c [[π−eu n]], [[(π−ϕxi
− ϕxi

) n]]〉Eh\{1}

+ (q − π+q, (π+ϕ′
xi

− ϕ′
xi

) − (π−ϕxi
− ϕxi

)′)Ωh

+ (π+eq, π
+ϕ′

xi
− ϕ′

xi
)Ωh

and

(êq − cêu
c)(xi) = ε π−eu(1−) (π+ψ′

xi
− ψ′

xi
)(1−)

+ 〈c [[π−eu n]][[(π−ψxi
− ψxi

) n]]〉Eh\{1}

+ (q − π+q, (π+ψ′
xi

− ψ′
xi

) − (π−ψxi
− ψxi

)′)Ωh

+ (π+eq, π
+ψ′

xi
− ψ′

xi
)Ωh

.

Proof. We only prove the first identity, as the proof of the second is similar. From
the error representation result, Lemma 3.1 with (Zh, ζh) = (π+ϕ′

xi
, π−ϕxi

), we have
the expression

eu(xi) = 〈1 , [[εêu
ε (ϕ′

xi
− π+ϕ′

xi
) n]]〉E ◦

h

− 〈1 , [[(êq − cêu
c) ( ϕxi

− π−ϕxi
) n]]〉Eh

+ (eq, (π+ϕ′
xi

− ϕ′
xi

) − (π−ϕxi
− ϕxi

)′)Ωh

+ (eu, ε (π+ϕ′
xi

− ϕ′
xi

)′ + c (π−ϕxi
− ϕxi

)′)Ωh
,

which, after simple algebraic manipulations, can be written as

eu(xi) = T1 + T2 + T3 + T4,

where

T1 = 〈1 , [[εêu
ε (ϕ′

xi
− π+ϕ′

xi
) n]]〉E ◦

h
+ (π−eu, ε (π+ϕ′

xi
− ϕ′

xi
)′)Ωh

,

T2 = −〈1 , [[(êq − cêu
c) ( ϕxi

− π−ϕxi
) n]]〉Eh

+ ((−ε π+eq + c π−eu), (π−ϕxi
− ϕxi

)′)Ωh
,

T3 = (eq − π+eq, (π+ϕ′
xi

− ϕ′
xi

) − (π−ϕxi
− ϕxi

)′)Ωh
+ (π+eq, (π+ϕ′

xi
− ϕ′

xi
))Ωh

,

T4 = (eu − π−eu, ε (π+ϕ′
xi

− ϕ′
xi

)′ + c (π−ϕxi
− ϕxi

)′)Ωh
.

Let us work on the first term. Integrating by parts, we get

T1 = 〈1 , [[ε(êu
ε − π−eu) (ϕ′

xi
− π+ϕ′

xi
) n]]〉E ◦

h
− 〈1 , [[ε π−eu (ϕ′

xi
− π+ϕ′

xi
) n]]〉∂Ω

− (ε (π−eu)′, π+ϕ′
xi

− ϕ′
xi

)Ωh

= ε π−eu(1−) (ϕ′
xi

− π+ϕ′
xi

)(1−),

by the definition of the projection operators π± (2.11) and the numerical trace û ε
h.

We deal with the second term in a similar way. Thus, integrating by parts, we
get

T2 = −〈1 , [[((êq − π+eq) − c(êu
c − π−eu)) ( ϕxi

− π−ϕxi
) n]]〉Eh

− ((−ε π+eq + c π−eu)′, (π−ϕxi
− ϕxi

))Ωh

= 〈1 , [[c(êu
c − π−eu) ( ϕxi

− π−ϕxi
) n]]〉Eh

,
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by the definition of the projection operators π± (2.11) and the numerical trace q̂h.
Since, for interior nodes xi,

[[c(êu
c − π−eu) ( ϕxi

− π−ϕxi
) n]](xi)

= −c (π−eu(x−
i ) − π−eu(x+

i ))( ϕxi
− π−ϕxi

)(x+
i )

= c [[π−eu n]] [[( ϕxi
− π−ϕxi

) n]](xi)

and

[[c(êu
c − π−eu) ( ϕxi

− π−ϕxi
) n]](0) = cπ−eu(0+) ( ϕxi

− π−ϕxi
)(0+)

= c [[π−eu n]] [[( ϕxi
− π−ϕxi

) n]](0),

[[c(êu
c − π−eu) ( ϕxi

− π−ϕxi
) n]](1) = 0,

again by the definition of the projection operators π±, (2.11), and the numerical
trace û c

h, we get that

T2 = 〈c [[π−eu n]] , [[(π−ϕxi
− ϕxi

) n]]〉Eh\{1}.

For the term T3, we simply use the fact that eq − π+eq = q − π+q to write

T3 =(q − π+q, (π+ϕ′
xi

− ϕ′
xi

) − (π−ϕxi
− ϕxi

)′)Ωh
+ (π+eq, (π+ϕ′

xi
− ϕ′

xi
))Ωh

.

Finally, by the definition of the Green’s function ϕxi
, (2.4),

T4 =(eu − π−eu, (ε π+ϕ′
xi

+ c π−ϕxi
)′)Ωh

= 0,

by the definition of the projection operators π±, (2.11). This completes the proof.
�

We are now ready to prove Theorem 2.6. We only prove the first inequality since
the second can be obtained in a similar way. Thus, from the above lemma and the
definition of the energy seminorm |(·, ·)|Ah

(2.10),

| êu
ε(xi) | ≤

∥∥q − π+q
∥∥

0,Ωh

(∥∥π+ϕ′
xi

− ϕ′
xi

∥∥
0,Ωh

+
∥∥(π−ϕxi

− ϕxi
)′

∥∥
0,Ωh

)
+

∥∥π+eq

∥∥
0,Ωh

∥∥π+ϕ′
xi

− ϕ′
xi

∥∥
0,Ωh

+
(
〈c , [[π−eu n]]2〉Eh\{1}〈c , [[(π−ϕxi

− ϕxi
) n]]2〉Eh\{1}

)1/2

+ ε |π−eu(1−) | | (π+ϕ′
xi

− ϕ′
xi

)(1−) |

≤
∥∥q − π+q

∥∥
0,Ωh

(∥∥π+ϕ′
xi

− ϕ′
xi

∥∥
0,Ωh

+
∥∥(π−ϕxi

− ϕxi
)′

∥∥
0,Ωh

)
+ |(π+eq, π

−eu)|Ah
Θi,

where

Θ2
i = ε

∥∥π+ϕ′
xi
−ϕ′

xi

∥∥2

0,Ωh
+〈c , [[(π−ϕxi

−ϕxi
) n]]2〉Eh\{1}+

ε2

α
| (π+ϕ′

xi
−ϕ′

xi
)(1−) |2.

Finally, using the approximation properties of the operators π±, namely,

|π±w − w|0,Ij
+

hj

p
|(π±w − w)′|0,Ij

≤ Cs

(
h

min(s,p)+1
j

ps+1

)
|w|s+1,Ij

,

|(π+w − w)(xj)| + |(π−w − w)(xj−1)| ≤ Cs

(
h

min(s,p)+1/2
j

ps+1/2

)
|w|s+1,Ij

,
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where Cs depends only on s (see [26]; see also [14]), and using the definition of the
Green’s function ϕxi

, we easily get that∥∥π+ϕ′
xi

− ϕ′
xi

∥∥
0,Ωh

+
∥∥(π−ϕxi

− ϕxi
)′

∥∥
0,Ωh

≤ 2 Cs

(
h

min(s,p)
j

ps

)
|ϕxi

|s+1,Ωh

and that

|Θi | ≤ 3 Cs

√
ε

(
h

min(s,p)
j

ps

)
|ϕxi

|s+1,Ωh
.

As a consequence

| êu
ε(xi) | ≤3 Cs

(∥∥q − π+q
∥∥

0,Ωh
+
√

ε|(π+eq, π
−eu)|Ah

) (
h

min(s,p)
j

ps

)
|ϕxi

|s+1,Ωh
,

and the first inequality of Theorem 2.6 follows. This completes the proof of Theorem
2.6.

4. Numerical results

In this section, we numerically verify the sharpness of our theoretical findings
and explore some situations not covered by them. In all the experiments, we take
ε = c = 1. The function f is chosen so that the exact solution is u(x) = ex sin(πx),
except in Section 4.5 for which we take u(x) = x7/2.

We display the history of convergence of our methods in several tables. Therein,
p indicates the polynomial degree used to define the method. A uniform mesh with
2i elements is called the mesh “i”; nonuniform meshes are used in the very last
numerical experiment. We also display numerical rates of convergence which are
computed as follows. Let e(j) denote the error of the approximation computed on
the mesh j. Then the approximate order of convergence, ri, is defined by

ri :=
log

( e(i−1)
e(i)

)
log 2

.

Finally, we define ‖êu
ε‖∞ := max1≤j≤N |(u − ûε

h)(xj)|. The quantity ‖êq − cêu
c‖∞

is defined in a similar way.

Table 5. History of convergence of the B.Z. method with α = ( p
h)p+1.

||| (eu, eq) |||c,Ωh
‖u − {{uh}}‖∞ ‖êq − cêu

c‖∞ (
∑

h−1[[uh n]]2)1/2

p mesh error order error order error order error order

4 3.79E-01 1.06 9.33E-02 0.79 6.04E-02 0.97 2.27E-01 0.85
1 5 1.83E-01 1.05 4.96E-02 0.91 3.08E-02 0.97 1.19E-01 0.93

6 8.97E-02 1.03 2.55E-02 0.96 1.55E-02 0.98 6.07E-02 0.97
7 4.43E-02 1.02 1.29E-02 0.98 7.82E-03 0.99 3.07E-02 0.98

4 7.29E-03 2.16 7.25E-04 1.79 4.91E-04 1.99 1.78E-03 1.86
2 5 1.69E-03 2.11 1.93E-04 1.91 1.23E-04 2.00 4.65E-04 1.94

6 4.01E-04 2.07 4.97E-05 1.96 3.07E-05 2.00 1.19E-04 1.97
7 9.77E-05 2.04 1.26E-05 1.98 7.68E-06 2.00 3.00E-05 1.98

4 1.39E-04 3.07 4.48E-06 2.79 3.03E-06 2.99 1.10E-05 2.86
3 5 1.70E-05 3.04 5.96E-07 2.91 3.79E-07 3.00 1.43E-06 2.94

6 2.09E-06 3.02 7.67E-08 2.96 4.74E-08 3.00 1.83E-07 2.97
7 2.60E-07 3.01 9.72E-09 2.98 5.93E-09 3.00 2.31E-08 2.98

4 1.43E-06 4.02 2.21E-08 3.79 1.50E-08 3.99 5.43E-08 3.86
4 5 8.91E-08 4.00 1.47E-09 3.91 9.43E-10 3.99 3.55E-09 3.94

6 5.56E-09 4.00 9.47E-11 3.96 5.90E-11 4.00 2.26E-10 3.97
7 3.48E-10 4.00 6.01E-12 3.98 3.68E-12 4.00 1.43E-11 3.98
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Table 6. History of convergence of the B.O. method.

||| (eu, eq) |||c,Ωh
‖u − {{uh}}‖∞ ‖êq − cêu

c‖∞ (
∑

h−1[[uh n]]2)1/2

p mesh error order error order error order error order

4 2.50E+00 1.15 1.75E-01 1.22 2.82E-01 1.76 1.13E+00 1.00
1 5 1.28E+00 0.96 6.74E-02 1.38 9.21E-02 1.61 6.25E-01 0.85

6 7.01E-01 0.87 2.46E-02 1.46 3.11E-02 1.57 3.60E-01 0.80
7 3.94E-01 0.83 8.74E-03 1.49 1.06E-02 1.55 2.10E-01 0.78

4 3.83E-02 1.86 6.04E-03 1.60 1.78E-02 1.87 1.12E-02 1.82
2 5 9.96E-03 1.94 1.67E-03 1.86 4.59E-03 1.95 2.95E-03 1.92

6 2.53E-03 1.98 4.35E-04 1.94 1.16E-03 1.98 7.54E-04 1.97
7 6.36E-04 1.99 1.11E-04 1.97 2.92E-04 1.99 1.90E-04 1.98

4 1.66E-04 3.27 1.91E-06 3.84 1.03E-05 3.99 8.36E-06 3.79
3 5 1.85E-05 3.17 1.41E-07 3.76 6.45E-07 4.00 6.64E-07 3.65

6 2.16E-06 3.10 9.86E-09 3.84 4.03E-08 4.00 5.56E-08 3.58
7 2.61E-07 3.05 6.54E-10 3.91 2.52E-09 4.00 4.78E-09 3.54

4 3.81E-06 3.97 1.90E-07 3.84 1.17E-06 3.95 6.92E-07 3.96
4 5 2.40E-07 3.99 1.21E-08 3.97 7.38E-08 3.99 4.37E-08 3.99

6 1.50E-08 4.00 7.60E-10 3.99 4.63E-09 4.00 2.74E-09 4.00
7 9.40E-10 4.00 4.75E-11 4.00 2.90E-10 4.00 1.72E-10 4.00

Table 7. History of convergence of the NIPG method.

||| (eu, eq) |||c,Ωh
‖u − {{uh}}‖∞ ‖êq − cêu

c‖∞ (
∑

h−1[[uh n]]2)1/2

p mesh error order error order error order error order

4 1.51E+00 1.34 8.89E-02 1.50 9.40E-02 1.76 2.58E-01 1.34
1 5 5.72E-01 1.40 2.61E-02 1.77 2.58E-02 1.87 9.65E-02 1.42

6 2.13E-01 1.43 7.06E-03 1.89 6.76E-03 1.93 3.51E-02 1.46
7 7.99E-02 1.41 1.83E-03 1.94 1.73E-03 1.96 1.26E-02 1.48

4 2.01E-02 2.08 2.35E-03 1.87 6.15E-03 1.96 4.14E-03 1.95
2 5 4.74E-03 2.09 5.99E-04 1.97 1.55E-03 1.99 1.04E-03 1.99

6 1.13E-03 2.07 1.50E-04 1.99 3.90E-04 1.99 2.59E-04 2.01
7 2.75E-04 2.04 3.77E-05 2.00 9.76E-05 2.00 6.44E-05 2.01

4 1.85E-04 3.32 1.84E-06 3.78 7.70E-06 3.99 6.82E-06 3.73
3 5 1.98E-05 3.22 1.34E-07 3.78 4.82E-07 4.00 5.57E-07 3.62

6 2.25E-06 3.14 9.16E-09 3.87 3.01E-08 4.00 4.74E-08 3.55
7 2.67E-07 3.08 6.02E-10 3.93 1.88E-09 4.00 4.11E-09 3.53

4 2.83E-06 3.99 1.15E-07 3.86 7.05E-07 3.97 4.18E-07 3.97
4 5 1.78E-07 3.99 7.27E-09 3.98 4.44E-08 3.99 2.63E-08 3.99

6 1.11E-08 4.00 4.56E-10 3.99 2.78E-09 4.00 1.65E-09 4.00
7 6.95E-10 4.00 2.85E-11 4.00 1.74E-10 4.00 1.03E-10 4.00

Note that since the order of convergence of the numerical traces for many meth-
ods considered here is equal to or greater than 2p + 1, we made use of the high-
precision library provided by D. H. Bailey [6] to perform our numerical computa-
tions. This library allows one to carry out scientific computations at an arbitrary
level of precision. In our numerical experiments, we performed the computations
with 32-digit accuracy.

4.1. Methods with nonconservative numerical traces. We begin by consid-
ering the B.Z. method. If we take the penalization parameter α = p/h, this method
does not converge because its numerical trace q̂h is not consistent. In particular, the
quantity (

∑
h−1[[uh n]]2)1/2 remains of order one as h/p go to zero. An illustration

of this phenomenon is given in Figure 1. Therein, the little triangles denote the
values of the numerical trace û ε

h, which are two per interior node. The values of
the numerical trace q̂h are denoted by little diamonds. In Table 5, we show the
performance of the method when we take α = (p/h)p+1. Note that since the nu-
merical trace û ε

h is not conservative, we cannot display the order of convergence for
‖êu

ε‖∞. However, a corollary to Theorem 2.1 predicts that both of the quantities



SUPERCONVERGENCE OF NUMERICAL TRACES 85

{{uh}} and q̂h − cûh converge with the order of convergence of (
∑

h−1[[uh n]])1/2.
The results in Table 5 verify the prediction.

Similar results hold for the B.O. and NIPG methods, both of which have a
nonconservative numerical trace û ε

h; see Tables 6 and 7. These three methods have
the same behavior in the case c = 0.

4.2. Methods with conservative numerical traces. Let us begin by consider-
ing the modified B.Z. method, m-B.Z. The only difference between the B.Z. and the
m-B.Z. methods concerns the numerical trace û ε

h: For both methods such a trace
is consistent, but it is conservative only for the m-B.Z. method. So, comparing
the performances of these two methods gives us an idea of the relevance of having
conservative numerical traces.

In Table 8 we display the numerical results for the m-B.Z. method α = p/h.
First, we see that, as a consequence of the lack of consistency of the numerical
trace for q̂h, the method does not always converge in ||| · |||c,Ωh

-norm. Nevertheless,

Table 8. History of convergence of the m-B.Z. method with α = εp/h.

‖eu‖0,Ωh
‖eq‖0,Ωh

‖êu
ε‖∞ ‖êq − cêu

c‖∞

p mesh error order error order error order error order

4 8.87E-02 1.18 2.02E+00 0.54 7.18E-03 1.81 1.50E-02 1.95
1 5 4.05E-02 1.13 1.41E+00 0.52 1.93E-03 1.90 3.81E-03 1.97

6 1.92E-02 1.08 9.91E-01 0.51 5.01E-04 1.95 9.61E-04 1.99
7 9.28E-03 1.05 6.99E-01 0.50 1.28E-04 1.97 2.41E-04 1.99

4 4.24E-02 1.16 5.13E+00 0.12 2.98E-04 2.11 1.60E-04 1.94
2 5 1.97E-02 1.11 4.82E+00 0.09 7.13E-05 2.06 4.06E-05 1.98

6 9.41E-03 1.06 4.64E+00 0.05 1.74E-05 2.03 1.02E-05 1.99
7 4.59E-03 1.03 4.54E+00 0.03 4.31E-06 2.02 2.56E-06 2.00

4 1.92E-02 1.21 1.16E+00 0.67 1.70E-07 3.94 3.96E-07 3.99
3 5 8.75E-03 1.13 7.64E-01 0.60 1.09E-08 3.96 2.49E-08 3.99

6 4.15E-03 1.08 5.21E-01 0.55 6.94E-10 3.98 1.56E-09 4.00
7 2.01E-03 1.04 3.62E-01 0.53 4.38E-11 3.99 9.75E-11 4.00

4 1.41E-02 1.18 3.47E+00 0.13 4.18E-09 4.12 2.23E-09 3.91
4 5 6.49E-03 1.12 3.25E+00 0.10 2.50E-10 4.07 1.42E-10 3.98

6 3.09E-03 1.07 3.12E+00 0.06 1.52E-11 4.03 8.91E-12 3.99
7 1.51E-03 1.04 3.05E+00 0.03 9.40E-13 4.02 5.58E-13 4.00

Table 9. History of convergence of the m-B.Z. method with α = ε( p
h )p+1.

||| (eu, eq) |||c,Ωh
‖êu

ε‖∞ ‖êq − cêu
c‖∞

p mesh error order error order error order

4 2.34E-01 0.80 1.13E-03 1.59 1.76E-03 0.52
1 5 1.27E-01 0.88 3.21E-04 1.81 5.83E-04 1.59

6 6.62E-02 0.94 8.54E-05 1.91 1.64E-04 1.83
7 3.38E-02 0.97 2.20E-05 1.96 4.32E-05 1.92

4 9.84E-03 2.07 5.27E-07 4.05 7.68E-07 3.98
2 5 2.38E-03 2.05 3.19E-08 4.04 4.81E-08 4.00

6 5.83E-04 2.03 1.96E-09 4.02 3.01E-09 4.00
7 1.44E-04 2.01 1.22E-10 4.01 1.88E-10 4.00

4 1.36E-04 3.08 3.95E-11 6.03 2.70E-11 6.19
3 5 1.66E-05 3.04 6.08E-13 6.02 3.93E-13 6.10

6 2.04E-06 3.02 9.42E-15 6.01 5.92E-15 6.05
7 2.53E-07 3.01 1.47E-16 6.01 9.08E-17 6.03

4 1.43E-06 4.02 7.47E-16 8.04 3.47E-15 8.01
4 5 8.86E-08 4.01 2.89E-18 8.02 1.44E-17 7.91

6 5.53E-09 4.00 1.12E-20 8.01 5.28E-20 8.00
7 3.45E-10 4.00 4.37E-23 8.00 2.06E-22 8.00
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Figure 1. The B.Z. method with α = p/h and p = 2.
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Figure 2. The m-B.Z. method with α = p/h and p = 2.
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Table 10. History of convergence of the md-LDG method.

||| (eu, eq) |||c,Ωh
‖êu

ε‖∞ ‖êq − cêu
c‖∞

p mesh error order error order error order

4 1.26E-02 2.00 3.59E-05 2.95 9.76E-05 3.00
1 5 3.15E-03 2.00 4.62E-06 2.96 1.22E-05 3.00

6 7.88E-04 2.00 5.84E-07 2.99 1.53E-06 3.00
7 1.97E-04 2.00 7.33E-08 2.99 1.91E-07 3.00

4 2.42E-04 2.98 8.51E-09 4.96 4.98E-09 4.93
2 5 3.04E-05 2.99 2.67E-10 5.00 1.59E-10 4.97

6 3.81E-06 3.00 8.35E-12 5.00 5.04E-12 4.98
7 4.76E-07 3.00 2.61E-13 5.00 1.59E-13 4.99

4 2.88E-06 3.99 1.73E-13 6.99 1.03E-12 6.99
3 5 1.81E-07 4.00 1.34E-15 7.01 8.06E-15 7.00

6 1.13E-08 4.00 1.04E-17 7.01 6.31E-17 7.00
7 7.06E-10 4.00 8.12E-20 7.00 4.93E-19 7.00

4 2.86E-08 4.99 2.08E-17 8.99 1.16E-17 9.04
4 5 8.95E-10 5.00 4.08E-20 8.99 2.24E-20 9.02

6 2.80E-11 5.00 7.99E-23 9.00 4.34E-23 9.01
7 8.76E-13 5.00 1.57E-25 9.00 8.52E-26 8.99

Table 11. History of convergence of the h-R.T. method.

||| (eu, eq) |||c,Ωh
‖êu

ε‖∞ ‖êq − cêu
c‖∞

p mesh error order error order error order

4 4.42E-03 2.00 1.37E-06 4.12 2.86E-06 4.01
1 5 1.11E-03 1.99 8.16E-08 4.07 1.78E-07 4.01

6 2.78E-04 2.00 4.96E-09 4.04 1.11E-08 4.00
7 6.95E-05 2.00 3.06E-10 4.02 6.94E-10 4.00

4 6.37E-05 3.01 1.25E-09 4.77 4.01E-09 5.06
2 5 7.94E-06 3.00 4.24E-11 4.88 1.22E-10 5.03

6 9.92E-07 3.00 1.38E-12 4.94 3.78E-12 5.02
7 1.24E-07 3.00 4.35E-14 4.99 1.18E-13 5.00

4 9.88E-07 3.97 1.69E-14 8.05 1.40E-14 7.94
3 5 6.25E-08 3.98 6.47E-17 8.03 5.59E-17 7.97

6 3.93E-09 3.99 2.50E-19 8.02 2.20E-19 7.99
7 2.46E-10 4.00 9.76E-22 8.00 8.60E-22 8.00

4 9.44E-09 5.02 2.48E-18 9.20 1.24E-17 8.99
4 5 2.93E-10 5.01 4.45E-21 9.12 2.43E-20 8.99

6 9.12E-12 5.01 8.27E-24 9.07 4.75E-23 9.00
7 2.85E-13 5.00 1.58E-26 9.03 9.29E-26 9.00

since the method does not diverge, the orders of convergence of its numerical traces
are at least p, in full agreement with Theorem 2.1. An illustration of this behavior
is displayed in Figure 2. Comparing this figure with Figure 1 for the original B.Z.
method, we can see the dramatic improvement on the quality of the approximation
in the numerical traces induced by having a conservative numerical trace.

In Table 9 we display our numerical results for the m-B.Z. method for α =
(p/h)p+1. We observe that a convergence of order p in the ||| · |||c,Ωh

-norm is obtained
and that, in agreement with Theorem 2.1, the orders of converge of the numerical
traces are 2 p.

Finally, in Tables 10 and 11 we display the numerical results for md-LDG and
h-R.T. methods. We see that both numerical traces converge with order 2 p + 1 as
predicted by Theorem 2.1.

4.3. Postprocessing of methods with conservative numerical traces. In
Table 12, we see that the postprocessed solution (q∗h, u∗

h) of the md-LDG method
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Table 12. History of convergence of the postprocessed md-LDG method.

‖u − u∗
h ‖∞,Ωh

‖ q − q∗
h ‖∞,Ωh

p mesh error order error order

4 2.09E-04 2.96 1.26E-03 2.98
1 5 2.64E-05 2.98 1.58E-04 2.99

6 3.37E-06 2.97 1.98E-05 3.00
7 4.33E-07 2.96 2.48E-06 3.00

4 4.52E-08 4.99 1.67E-07 4.88
2 5 1.42E-09 5.00 5.41E-09 4.94

6 4.42E-11 5.00 1.72E-10 4.97
7 1.38E-12 5.00 5.43E-12 4.99

4 2.85E-12 6.99 7.55E-12 6.98
3 5 2.22E-14 7.00 5.90E-14 7.00

6 1.73E-16 7.00 4.61E-16 7.00
7 1.35E-18 7.00 3.60E-18 7.00

4 1.12E-16 8.92 2.53E-16 9.01
4 5 2.25E-19 8.96 4.94E-19 9.00

6 4.45E-22 8.98 9.63E-22 9.00
7 8.75E-25 8.99 1.88E-24 9.00

converges uniformly in the whole domain with order 2 p+1, as predicted by Propo-
sition 2.3.

4.4. The effect of negative “stabilization” parameters α. We end our nu-
merical experiments by displaying the performance of the LDG method with β = 0
and a negative stabilization parameter α = −2 (2 p+1)

h . This DG method is well
defined since the condition α < −3 (2 p+1)

2h is satisfied; see [16]. In Table 13, we dis-
play the history of convergence of the method. We see that the method converges
with order p in the ||| (·, ·) |||c,Ωh

-norm and that its numerical traces converge with
order 2 p; this behavior agrees with Theorem 2.1. In Table 14, we compare the
errors of the method to those obtained with the positive stabilization parameter
α = 2 (2 p+1)

h . We see that they are not significantly different, although it is clear
that those with a positive stabilization parameter are better, especially for coarser

Table 13. History of convergence of the LDG method with β = 0
and α = −2 (2 p+1)

h .

||| (eu, eq) |||c,Ωh
‖êu

ε‖∞ ‖êq − cêu
c‖∞

p mesh error order error order error order

4 3.37E-01 1.25 1.71E-03 2.23 2.94E-03 2.05
1 5 1.53E-01 1.14 3.94E-04 2.12 7.29E-04 2.01

6 7.28E-02 1.07 9.45E-05 2.06 1.81E-04 2.00
7 3.55E-02 1.04 2.31E-05 2.03 4.54E-05 2.00

4 1.24E-02 2.05 5.55E-07 4.12 1.25E-06 4.09
2 5 2.97E-03 2.06 3.24E-08 4.10 7.68E-08 4.02

6 7.19E-04 2.05 1.93E-09 4.06 4.78E-09 4.00
7 1.76E-04 2.03 1.18E-10 4.04 2.99E-10 4.00

4 1.86E-04 3.32 4.73E-11 6.28 2.36E-11 6.05
3 5 1.99E-05 3.22 6.67E-13 6.15 3.66E-13 6.01

6 2.26E-06 3.14 9.88E-15 6.08 5.70E-15 6.00
7 2.67E-07 3.08 1.50E-16 6.04 8.91E-17 6.00

4 2.82E-06 4.04 1.13E-15 7.83 7.3743E-15 8.10
4 5 1.76E-07 4.00 4.54E-18 7.95 2.8274E-17 8.03

6 1.10E-08 4.00 1.79E-20 7.99 1.0990E-19 8.01
7 6.87E-10 4.00 7.02E-23 8.00 4.3038E-22 8.00
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Table 14. The LDG method with β = 0: Ratio of the errors with
α = −2 (2 p+1)

h to the errors with α = +2 (2 p+1)
h .

||| (eu, eq) |||c,Ωh
‖êu

ε‖∞ ‖êq − cêu
c‖∞

p mesh ratio ratio ratio

4 1.24 1.24 1.01
1 5 1.12 1.12 1.00

6 1.05 1.06 0.99
7 1.03 1.03 1.00

4 3.40 3.65 3.07
2 5 3.25 3.35 3.01

6 3.14 3.17 3.01
7 3.08 3.09 3.01

4 1.55 1.33 1.01
3 5 1.28 1.15 1.00

6 1.14 1.08 1.00
7 1.07 1.04 1.00

4 2.98 2.84 3.08
4 5 2.99 2.95 3.02

6 3.00 2.98 3.00
7 3.00 3.00 3.00

meshes and even values of p. In other words, this means that “stabilizing” with a
negative parameter can have the same effect as “stabilizing” with a positive one.

4.5. An exact solution with a singularity. We end our numerical experiments
by exploring a situation not covered by our main result. In Table 15, we dis-
play the approximation properties of the md-LDG method for the exact solution
u(x) = x7/2. Due to the lack of smoothness of the exact solution, the error
||| (eu, eq) |||c,Ωh

converges only with order min{p+1, 3} (strictly speaking, with order
min{p + 1, 3 − δ}, for all δ > 0), no matter how high the polynomial degree
is. Theorem 2.1 predicts that the numerical traces should converge with order
min{p+1, 3}+p. This actually happens for p = 1 and p = 2, but for not for p ≥ 3.
In the latter case, we see convergence of order min{p + 1, 3} + p + 1/2.

Table 15. History of convergence of the md-LDG method for
u(x) = x7/2.

||| (eu, eq) |||c,Ωh
‖êu

ε‖∞ ‖êq − cêu
c‖∞

p mesh error order error order error order

4 3.19E-03 1.96 4.38E-06 2.99 2.61E-05 2.97
1 5 8.06E-04 1.99 5.48E-07 3.00 3.30E-06 2.99

6 2.02E-04 1.99 6.86E-08 3.00 4.15E-07 2.99
7 5.07E-05 2.00 8.57E-09 3.00 5.20E-08 3.00

4 2.90E-05 2.93 3.90E-10 4.87 1.93E-09 4.95
2 5 3.77E-06 2.94 1.28E-11 4.93 6.17E-11 4.97

6 4.89E-07 2.95 4.12E-13 4.96 1.95E-12 4.98
7 6.31E-08 2.95 1.31E-14 4.97 6.16E-14 4.99

4 1.12E-06 3.07 1.59E-13 6.27 3.18E-13 6.39
3 5 1.36E-07 3.04 1.95E-15 6.35 3.69E-15 6.43

6 1.67E-08 3.02 2.32E-17 6.40 4.22E-17 6.45
7 2.07E-09 3.01 2.69E-19 6.43 4.77E-19 6.47

4 2.25E-07 3.02 1.33E-16 7.38 2.28E-16 7.44
4 5 2.80E-08 3.01 7.70E-19 7.43 1.29E-18 7.47

6 3.49E-09 3.00 4.38E-21 7.46 7.17E-21 7.49
7 4.35E-10 3.00 2.46E-23 7.48 3.98E-23 7.49
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An explanation of the appearance of the additional term 1/2 can be obtained
by a simple modification of the proof of Theorem 2.1. The idea is as follows: since
the main part of the error is concentrated around the singularity, that is, around
x = 0, it suffices to estimate the error in that region in a different way. Let us
briefly sketch how to do this for êu(xi). We assume, of course, that p ≥ 3.

Our starting point is again the error representation formula for êu(xi) of Lemma
3.1, which for the md-LDG method can take the particular form given by Lemma
3.3. We only show how to estimate one of the terms in such a formula, namely,
T := (q − π+q, (π+ϕxi

−ϕxi
)′)Ωh

. We estimate it as follows. First, we rewrite it as
T = T1 + T2, where

T1 = (q − π+q, (π+ϕxi
− ϕxi

)′)I1 .

Then,

|T1 | ≤‖ q − π+q‖0,I1 ‖ (π+ϕxi
− ϕxi

)′‖0,I1

≤‖ q − π+q‖0,I1 ‖ (π+ϕxi
− ϕxi

)′‖L∞(I1) h1/2

≤Cδ h3−δ+p+1/2 ‖ϕ(p+1)
xi

‖L∞(I1),

since q = 7
2 ε x5/2, and

|T2 | ≤‖ q − π+q‖0,Ωh\I1 ‖ (π+ϕxi
− ϕxi

)′‖0,Ωh\I1

≤‖ q − π+q‖0,Ωh\I1 hp+1 |ϕxi
|p+1,Ωh

.

Exploiting the form of the singularity for q, we get

|T2 | ≤ Cδ h3−δ+p+1/2 |ϕxi
|p+1,Ωh

.

This completes our sketch of the explanation of the extra term 1/2.

Figure 3. Nonuniform meshes.
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Table 16. History of convergence of the md-LDG method with
nonuniform meshes.

||| (eu, eq) |||c,Ωh
‖êu

ε‖∞ ‖êq − cêu
c‖∞

p mesh error order error order error order

4 6.60E-02 2.34 4.27E-04 3.90 1.26E-03 3.86
1 5 2.40E-02 2.49 9.41E-05 3.73 2.73E-04 3.77

6 9.02E-03 2.42 2.02E-05 3.79 5.72E-05 3.86
7 3.31E-03 2.47 4.32E-06 3.80 1.21E-05 3.82

4 1.32E-03 3.58 5.27E-08 7.62 7.52E-08 7.94
2 5 3.20E-04 3.51 5.73E-09 5.47 4.38E-09 7.01

6 7.75E-05 3.49 4.32E-10 6.37 4.75E-10 5.48
7 1.87E-05 3.50 3.00E-11 6.58 5.06E-11 7.01

4 1.19E-04 4.22 3.61E-10 7.80 9.63E-10 7.81
3 5 1.81E-05 4.66 1.52E-11 7.81 3.70E-11 8.03

6 3.07E-06 4.38 6.47E-13 7.79 1.50E-12 7.92
7 4.81E-07 4.57 2.51E-14 8.01 5.81E-14 8.01

4 3.13E-06 5.68 7.96E-14 10.52 2.08E-13 10.52
4 5 3.56E-07 5.36 1.76E-15 9.40 4.17E-15 9.64

6 3.69E-08 5.59 2.86E-17 10.16 6.56E-17 10.24
7 4.07E-09 5.44 5.31E-19 9.83 1.21E-18 9.84

4.6. Nonuniform meshes. For simplicity, we have used uniform meshes in all the
previous experiments. Similar results, however do hold for nonuniform meshes. To
illustrate this, we present some numerical results where the approximate solution
is obtained by employing a nonuniform mesh. Again f is chosen so that the exact
solution is u = ex sin(πx). A sequence of nonuniform meshes are formed in the
following way. We start with a mesh with two elements I1 = [0, 2/3] and I2 =
[2/3, 1]. The next mesh is a refinement of this one where we divide I1 into two
parts with ratio one-to-two, and I2 with ratio of two-to-one, hence the second mesh
consists of the following elements: I1 = [0, 2/9], I2 = [2/9, 6/9], I3 = [6/9, 8/9], and
I4 = [8/9, 1]. Each consequent mesh is obtained by refining every element in this
manner, that is, dividing odd numbered elements in a ratio of one-to-two and the
even numbered elements in a ratio of two-to-one. A picture of the first six of these
meshes is shown in Figure 3.

Table 17. History of convergence of the h-R.T. method with
nonuniform meshes.

||| (eu, eq) |||c,Ωh
‖êu

ε‖∞ ‖êq − cêu
c‖∞

p mesh error order error order error order

4 1.51E-01 2.74 4.06E-04 4.96 2.50E-04 4.88
1 5 6.09E-02 2.25 1.05E-04 3.34 3.33E-05 4.97

6 2.02E-02 2.72 1.32E-05 5.11 4.56E-06 4.90
7 7.87E-03 2.33 3.57E-06 3.22 5.99E-07 5.01

4 3.15E-03 2.21 1.92E-07 5.65 3.13E-07 6.85
2 5 8.41E-04 3.26 2.30E-08 5.23 5.23E-08 4.41

6 2.99E-04 2.55 2.50E-09 5.47 4.83E-09 5.88
7 9.45E-05 2.84 2.85E-10 5.36 6.04E-10 5.13

4 5.22E-04 3.98 4.22E-10 7.96 6.98E-10 8.00
3 5 9.25E-05 4.27 1.81E-11 7.76 2.37E-11 8.34

6 1.77E-05 4.08 6.69E-13 8.14 8.65E-13 8.17
7 3.20E-06 4.22 2.81E-14 7.82 2.96E-14 8.33

4 1.03E-05 5.40 9.99E-14 9.74 2.67E-13 10.28
4 5 1.60E-06 4.60 2.08E-15 9.55 5.56E-15 9.55

6 2.01E-07 5.12 4.10E-17 9.69 9.52E-17 10.03
7 7.01E-09 4.84 6.12E-20 9.39 1.38E-19 9.43
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In Tables 16 and 17 we display the history of convergence for the md-LDG
method and the h-R.T. method, respectively. We see that for both methods, both
numerical traces converge with order 2p + 1.

5. Extensions and concluding remarks

In this paper, the unsuspected relevance of the conservativity of the numerical
traces for its superconvergence has been uncovered. Perhaps the most striking
illustration of this fact is the comparison of the behavior of the B.Z. method and
that of its slight modification, the m-B.Z. method. Indeed, we have shown that
the numerical traces of the m-B.Z. method with polynomial approximations of
degree p converge with order p when the penalization parameter α is equal to p/h;
this happens even though the numerical trace q̂h is not consistent. In contrast, the
numerical traces of the closely related B.Z. method, whose numerical trace û ε

h is not
conservative, do not even converge for the same choice of spaces and penalization
parameter.

Let us recall that, in [4], it was established that DG methods with conservative
numerical traces are adjoint consistent. A direct consequence of this fact is that
error representation formulas for linear functionals can be obtained with which
their superconvergence can be established. Those formulas are similar to the ones
obtained in Lemma 3.1 for the errors in the quantities u and flx. Moreover, the fact
that the conservativity of the numerical traces û ε

h and (−q̂h + c û c
h) implies that

u = û ε
h and flx = (−q̂h + c û c

h)

is certainly not a coincidence, since in such a case, the method is adjoint consistent.
To end, let us point out that, although we worked with a very simple convection-

diffusion equation, our main result, Theorem 2.1, can be extended to general
convection-diffusion equations in a straightforward way. Moreover, Neumann and
Robin boundary conditions can be easily dealt with. The approach can also be
applied to other types of equations. In particular, it has been applied to the study
of discontinuous Galerkin methods for Timoshenko beams [16].

Appendix: An analysis of the md-LDG and md-DG methods

In this appendix, we prove the following result.

Proposition 5.1. For the md-LDG and md-DG methods, we have
√

ε|(π+eq, π
−eu)|Ah

≤
(∥∥π+q − q

∥∥2

0,Ωh
+ 〈ε γ , [[π+q n]]2〉E ◦

h
+

ε

α
|(π+q − q)(1)|2

)1/2

.

To prove this result, we need to introduce some notation. First, note that the
approximate solution given by the md-LDG method satisfies

Ah(qh, uh; v, w) := bh(v, w) ∀v, w ∈ Xp
h,

where
Ah(qh, uh; v, w) :=(qh, v)Ωh

+ (ε uh, v′)Ωh
− 〈ε û ε

h , v n〉∂Ωh\∂Ω

+ (qh − c uh, w′)Ωh
− 〈q̂h − cû c

h , w n〉∂Ωh\∂Ω

+ qh(0+)w(0+) − (qh(1−) − c uh(1−) − αuh(1−)) w(1−)

and

bh(v, w) := (f, w)Ωh
− εu0v(0+) + εu1v(1−) + αu1w(1−) + cu0w(0+).
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As a simple consequence of the consistency of the numerical traces we obtain the
so-called Galerkin orthogonality property,

Ah(eq, eu; v, w) = 0 ∀v, w ∈ V p
h .

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. By the Galerkin orthogonality property,

|(π+eq, π
−eu)|2Ah

= Ah(π+eq, π
−eu;

1
ε
π+eq, π

−eu)

= Ah(π+q − q, π−u − u;
1
ε
π+eq, π

−eu),

and by the properties of the projections π± and the definition of the bilinear form
Ah(·, ·),

|(π+eq, π
−eu)|2Ah

=
1
ε
(π+q − q, π+eq)Ωh

+ 〈ε γ [[π+q n]] ,
1
ε

[[π+eq n]]〉E ◦
h

− (π+q − q)(1−)π−eu(1).

Since, by definition of the seminorm | · |Ah
, (2.10),

|(π+eq, π
−eu)|2Ah

=
1
ε

∥∥π+eq

∥∥2

0,Ωh
+

1
2
〈c , [[π−eu n]]2〉Eh

+ 〈γ , [[π+eq n]]2〉E ◦
h

+ απ−e2
u(1−),

a simple application of Cauchy’s inequality gives

|(π+eq, π
−eu)|2Ah

≤ |(π+eq, π
−eu)|Ah

Θ,

where

Θ =
1√
ε

(∥∥π+q − q
∥∥2

0,Ωh
+ 〈ε γ , [[π+eq n]]2〉E ◦

h
+

ε

α
|(π+q − q)(1)|2

)1/2

.

This completes the proof of Proposition 5.1. �
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