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A GENERALIZED BPX MULTIGRID FRAMEWORK
COVERING NONNESTED V-CYCLE METHODS

HUO-YUAN DUAN, SHAO-QIN GAO, ROGER C. E. TAN, AND SHANGYOU ZHANG

Abstract. More than a decade ago, Bramble, Pasciak and Xu developed a
framework in analyzing the multigrid methods with nonnested spaces or non-
inherited quadratic forms. It was subsequently known as the BPX multigrid
framework, which was widely used in the analysis of multigrid and domain
decomposition methods. However, the framework has an apparent limit in the
analysis of nonnested V-cycle methods, and it produces a variable V-cycle, or
nonuniform convergence rate V-cycle methods, or other nonoptimal results in
analysis thus far.

This paper completes a long-time effort in extending the BPX multigrid
framework so that it truly covers the nonnested V-cycle. We will apply the
extended BPX framework to the analysis of many V-cycle nonnested multigrid
methods. Some of them were proven previously only for two-level and W-cycle
iterations. Some numerical results are presented to support the theoretical
analysis of this paper.

1. Introduction

The multigrid method, consisting of the fine-level smoothing and the coarse-level
correction, is an effective iterative method for solving the linear system arising from,
e.g., the finite element discretization of boundary-value problems. The multigrid
method provides the optimal-order computation in such a case, in the sense that
the number of arithmetic operations is proportional to the number of unknowns
in the system of linear equations; cf. [1], [5], [28], [31], [33]. The constant rate of
W-cycle multigrid iterations was proved in several early papers, one of them is [1],
which is generalized to many nonnested cases, for example, [13], [15], [42], [43].

The multigrid method is often nonnested because the multilevel discrete spaces
may not be nested, or discrete bilinear forms may be different on different levels.
For example, the nonnestedness may be caused by bubble elements [43], composite
elements [18], nonconforming elements [4], [13], nonnested meshes [42], the mortar
method [2], [25], numerical integrations [24], or other situations (cf. [11]), such
as finite difference equations. The multigrid methods with noninherited forms but
nested spaces, other than the cases in [11], are studied in [26], [27], [30] for the
discontinuous Galerkin method and the edge element. Many earlier two-level and
W-cycle nonnested multigrid iterations were analyzed by extending the method of
[1]. However, a generalized framework [11], referred as the BPX multigrid frame-
work, is widely used in the analysis of multigrid iterations; e.g., [5], [6], [8], [9], [10],
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[12], [23], [25], [27], [32], [34], [39], [40], [37]. The framework is rooted in [7] and
[38].

Although the convergence theory for the W-cycle was established [1], [11], [15],
[4], the problem of how to establish the convergence rate for the V-cycle nonnested
multigrid method is subtle, and is still an active research subject; see [3], [11],
[10], [9], [7], [16], [28], [20], [21], [29], [6], [12], etc. The BPX framework [11]
was generalized to allow nonsymmetric smoothings and can be applied to some
nonnested multigrid methods. In particular, it provides a constant convergence
rate for the nonnested V-cycle under the assumption that

(1) Ak(Iku, Iku) ≤ Ak−1(u, u) ∀u ∈ Uk−1, ∀k,

where Ik : Uk−1 → Uk is the coarse-to-fine intergrid transfer operator and Ak is
the bilinear form on Uk. However, (1) does not hold for most nonnested multi-
grid methods. Thus the BPX framework produces some nonoptimal mathematics
results, such as the variable V-cycle, nonuniform convergence rate, and multigrid
preconditioners, (cf. [11], [37]) though most of these methods provide the optimal
order of computation. The question has remained open for a long time whether
one can lift this obvious limit, the inequality (1), from the BPX framework.

This question will be answered in this paper. We will extend the BPX framework
so that the number of smoothings can play its important role in the V-cycle analysis
so that the BPX framework can provide a uniform convergence rate without the
nearly nested bound (1). We will then apply the extended BPX framework to show
the uniform convergence rates of several common nonnested multigrid methods.
Some of them were proven previously for two-level and W-cycle iterations only.

So far, we still require the full elliptic regularity assumption in our applications of
the BPX framework. Brenner recently gave a proof in [17] for the nonconforming
V-cycle multigrid method applied to the second-order elliptic problem, under a
lower regularity requirement. It is a better result. In addition, the analysis [17]
can be extended to some other nonnested multigrid methods; cf. [44]. However,
it is not straightforward to apply Brenner’s analysis to different cases in general,
due to its lengthy analysis and its long list of approximation properties and inverse
estimates. For example, the standard inverse estimate fails to hold on the combined
space of finite element functions on two nonnested grids such as the ones in Figure
1. In contrast to [17], our extended BPX framework is simple in analysis and can
be applied to all common nonnested cases.

The outline of this paper is as follows. In Section 2 we recall the V-cycle multigrid
method. The convergence analysis is given in Section 3. In Section 4 we provide a
proof for the regularity-approximation assumption for various nonnested methods.
Some numerical results will be provided in Section 5 to support the theoretical
analysis in this paper.

2. The V-cycle multigrid method

For k ≥ 0, let Uk be a sequence of finite-dimensional vector spaces, along with
coarse-to-fine intergrid transfer operators Ik : Uk−1 → Uk. Let Ak(·, ·) and (·, ·)k

be symmetric positive definite discrete bilinear forms on Uk × Uk. We solve the
following linear system of equations. Given f ∈ Uk, find v ∈ Uk satisfying

(2) Ak(v, φ) = (f, φ)k ∀φ ∈ Uk.
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To define a V-cycle multigrid method for (2), following the notations in [11], we
introduce operators Ak : Uk → Uk, Pk−1 : Uk → Uk−1 and P 0

k−1 : Uk → Uk−1 as:

(Akw, φ)k = Ak(w, φ) ∀φ ∈ Uk,

Ak−1(Pk−1w, φ) = Ak(w, Ikφ) ∀φ ∈ Uk−1,

(P 0
k−1w, φ)k−1 = (w, Ikφ)k ∀φ ∈ Uk−1.

We also introduce linear smoothing operators Rk : Uk → Uk, along with the adjoint
operators Rt

k with respect to the inner product (·, ·)k. We define

R
(l)
k =

{
Rk if l is odd,
Rt

k if l is even.

Now we define the standard (symmetric) V-cycle multigrid method [11].
Let m be a positive integer, the number of fine-level smoothings. The multigrid

operator Bk : Uk → Uk is defined by induction as follows. Set B0 = A−1
0 . Assume

that Bk−1 has been defined, and define Bkg ∈ Uk for g ∈ Uk as follows.
(i) Set x0 = 0.
(ii) Define xl for l = 1, 2, . . . , m by

xl = xl−1 + R
(l+m)
k (g − Akxl−1).

(iii) Define ym = xm + Ikq1, where q1 is defined by

q1 = Bk−1P
0
k−1(g − Akxm).

(iv) Define yl for l = m + 1, m + 2, . . . , 2m by

yl = yl−1 + R
(l+m)
k (g − Akyl−1).

(v) Set Bkg = y2m.

3. The convergence analysis

To analyze the convergence, we set Jk = I − RkAk and J∗
k = I − Rt

kAk, where
J∗

k denotes the adjoint of Jk with respect to Ak(·, ·) and I is the identity operator.
Set

J̃
(m)
k =

{
(J∗

kJk)m/2 if m is even,
(J∗

kJk)(m−1)/2J∗
k if m is odd.

We then have the following recursive relation among the multigrid operators (cf.
[11])

I − BkAk = (J̃ (m)
k )∗[(I − IkPk−1) + Ik(I − Bk−1Ak−1)Pk−1]J̃

(m)
k .

We make two standard hypotheses (cf. [11]) as follows:
(C1) Regularity-approximation assumption

|Ak((I − IkPk−1)u, u)| ≤ C1
||Aku||2k

λk
∀u ∈ Uk,

where λk is the largest eigenvalue of Ak, C1 is independent of k, and || · ||k is the
norm corresponding to (·, ·)k. In addition, we require that (see remarks below)

(3) (Ak((I − IkPk−1)u, (I − IkPk−1)u))1/2 ≤ CQ (Ak(u, u))1/2 ∀u ∈ Uk,

where CQ is independent of k.
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(C2)
||u||2k
λk

≤ CR(R̃ku, u)k ∀u ∈ Uk,

where R̃k = (I − J∗
kJk)A−1

k and CR is independent of k.

Remark 3.1. The smoothing hypothesis (C2) can be easily verified for point, line,
and block versions of the Jacobi and Gauss–Seidel iterations (cf. [8], for example).
The verification of the regularity-approximation hypothesis (C1) will be carried out
in the next section for many examples. The requirement (3) can be verified easily
for all practical cases. Inequality (3) is a simple corollary (cf. [43] for example) of
the stability estimate (see (1))

(4) Ak(Iku, Iku) ≤ C Ak−1(u, u) ∀u ∈ Uk−1.

Theorem 3.1. Assume that (C1) and (C2) hold. Then, for all k ≥ 0,

(5) |Ak((I − BkAk)u, u)| ≤ δ Ak(u, u) ∀u ∈ Uk,

where

(6) δ =
C1CR

m − C1CR

with m > 2 C1CR.

Proof. The method here is motivated by [11],[7], reasoning by mathematical induc-
tion. For k = 0, we have a zero on the left-hand side of (5), and (5) holds. It is
assumed that (5) and (6) hold for k − 1. In what follows, we show that (5) and (6)
hold for k too.

In view of (C1), we have

(7) |Ak((I − IkPk−1)J̃
(m)
k u, J̃

(m)
k u)| ≤ C1

||AkJ̃
(m)
k u||2k
λk

.

Define

J̄k =

{
J∗

kJk if m is even,
JkJ∗

k if m is odd.

By (C2) we have

(8)
||AkJ̃

(m)
k u||2k
λk

≤ CR Ak((I − J̄k)J̄m
k u, u).

Since the spectrum of J̄k is in [0, 1], as shown in [11],[7], we have

(9) Ak((I−J̄k)J̄m
k u, u) ≤ 1

m

m−1∑
i=0

Ak((I−J̄k)J̄ i
ku, u) =

1
m
{Ak(u, u)−Ak(J̄m

k u, u)}.

Note that Ak(J̄m
k u, u) = Ak(J̃ (m)

k u, J̃
(m)
k u). We then get, by (7)–(9), that

(10) |Ak((I − IkPk−1)J̃
(m)
k u, J̃

(m)
k u)| ≤ C1 CR

m
{Ak(u, u) − Ak(J̃ (m)

k u, J̃
(m)
k u)}.

Set

(11) t :=
Ak(J̃ (m)

k u, J̃
(m)
k u)

Ak(u, u)
∀u �= 0, u ∈ Uk,
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or t := 0 for u = 0. Clearly, t ∈ [0, 1]. We now rewrite (10) as

(12) |Ak((I − IkPk−1)J̃
(m)
k u, J̃

(m)
k u)| ≤ C1 CR(1 − t)

m
Ak(u, u).

On the other hand, from the Cauchy–Schwarz inequality and (3) we have

(13)

|Ak((I − IkPk−1)J̃
(m)
k u, J̃

(m)
k u)|

≤{Ak((I − IkPk−1)J̃
(m)
k u, (I − IkPk−1)J̃

(m)
k u)} 1

2 {Ak(J̃ (m)
k u, J̃

(m)
k u)} 1

2

≤CQ Ak(J̃ (m)
k u, J̃

(m)
k u) = CQ t Ak(u, u).

Combining (12) and (13), we get

(14) |Ak((I − IkPk−1)J̃
(m)
k u, J̃

(m)
k u)| ≤ min{CQ t,

C1CR

m
(1 − t)}Ak(u, u).

By the relation

Ak−1(Pk−1J̃
(m)
k u, Pk−1J̃

(m)
k u) = Ak(J̃ (m)

k u, J̃
(m)
k u)−Ak(J̃ (m)

k u, (I−IkPk−1)J̃
(m)
k u),

the induction hypothesis and the symmetry of Ak, we get

|Ak((I − BkAk)u, u)|

≤ |Ak((I − IkPk−1)J̃
(m)
k u, J̃

(m)
k u)|

+ |Ak−1((I − Bk−1Ak−1)Pk−1J̃
(m)
k u, Pk−1J̃

(m)
k u)|

≤ (1 + δ)|Ak((I − IkPk−1)J̃
(m)
k u, J̃

(m)
k u)| + δAk(J̃ (m)

k u, J̃
(m)
k u)

≤ (1 + δ) min{CQ t,
C1CR

m
(1 − t)}Ak(u, u) + δ t Ak(u, u).

Now, to show that (5) and (6) for k, we only need to verify

(15) (1 + δ) min{CQ t,
C1 CR

m
(1 − t)} + δ t ≤ C1CR

m − C1CR
∀t ∈ [0, 1].

When t = 0, the left-hand side of (15) is zero. When t = 1, (15) is the induction
hypothesis. Next, we consider the case of t ∈ (0, 1). To show (15), by the hypothesis
(6) on level k − 1, it suffices to show that

(16) (1 + δ) CQ min(
t

1 − t
,
C1 CR

CQ m
) ≤ δ.

We consider two cases. First,

C1CR

CQ m + C1CR
≤ t < 1,

i.e.,
t

1 − t
≥ C1CR

CQ m
.

Thus

min(
t

1 − t
,
C1CR

CQ m
) =

C1CR

CQ m
,

and

(17) (1 + δ) CQ min(
t

1 − t
,
C1 CR

CQ m
) =

C1CR

m − C1CR
.
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For the second case,

0 < t ≤ C1CR

CQ m + C1CR
,

i.e.,
t

1 − t
≤ C1CR

CQ m
,

we have

min(
t

1 − t
,
C1CR

CQ m
) =

t

1 − t
,

and

(18) (1 + δ) CQ min(
t

1 − t
,
C1 CR

CQ m
) =

m CQ

m − C1 CR

t

1 − t
≤ C1 CR

m − C1CR
.

Thus, equation (16) holds for both cases (17) and (18). �

Remark 3.2. Note that from (14) we can get

(19) |Ak((I − IkPk−1)J̃
(m)
k u, J̃

(m)
k u)| ≤ C1CR

m + C1CR

CQ

Ak(u, u),

which indicates that the number of smoothings, m, has to be large enough for the
convergence rate in the interval (0, 1) in general, even for the two-level method.

On the other hand, if CQ = 1, we get a convergence rate in (0, 1) by (19), for
the two-level method, for any m ≥ 1. Note that if

(20) Ak(IkPk−1v, IkPk−1v) ≤ 2 Ak−1(Pk−1v, Pk−1v) ∀v ∈ Uk, ∀k,

then CQ = 1. In some cases, (20) holds (see [11] and [22]). Note that (20) is a
generalization of (1).

Remark 3.3. The key step in our proof is the introduction of a variable t in (11).
By it, we extend the BPX framework from the very limited case (1) to the general
case (3), or just (4).

4. Verification of (C1)

In this section, we provide a proof for the regularity-approximation assumption
(C1) in solving the symmetric and positive definite second-order elliptic problems
by various nonnested methods.

Let Ω be a bounded, connected domain in R
n, n = 2 or 3, with Lipschitz

continuous boundary ∂Ω. We will use the Sobolev space H l(Ω), l ≥ 0, with the
norm and seminorm || · ||Hl(Ω) and | · |Hl(Ω). The L2(Ω)(= H0(Ω)) inner product is
denoted by (·, ·)L2(Ω).

We set U = H1
0 (Ω) and A(u, v) =

∑
|α|,|β|≤1

∫
Ω

aαβ(x)∂αu ∂βv, where α, β are
n-indexes and aαβ(x) ∈ L∞(Ω). Let Jk, k ≥ 0 denote a sequence of shape-regular
triangulations of Ω, with the mesh-size hk; cf. [19]. On Jk, let Uk be a finite-
dimensional space and Ak(·, ·) a discrete form on Uk × Uk.

We first list some general hypotheses.
H1) We require that A(·, ·) is symmetric and positive definite, and that for any

given f ∈ L2(Ω) there is a unique solution u ∈ U such that

A(u, v) = (f, v)L2(Ω) ∀v ∈ U,



BPX MULTIGRID FRAMEWORK 143

and that u ∈ H2(Ω) satisfies

||u||H2(Ω) ≤ C ||f ||L2(Ω).

H2) For all k, we require that Ak(·, ·) is a symmetric, positive definite and
bounded bilinear form. We set

|||v|||1,k :=
√

Ak(v, v) ∀v ∈ Uk, ∀k.

H3) Let Πju ∈ Uj denote the standard interpolant to u ∈ H2(Ω). For all k, we
require that

||u − Πju||L2(Ω) + hk |||u − Πju|||1,j ≤ C h2
k ||u||H2(Ω), j = k − 1, k.

H4) Let Ik : Uk−1 → Uk denote the coarse-to-fine intergrid transfer operator.
For all k, we require that

||Ikv||L2(Ω) ≤ C ||v||L2(Ω) ∀v ∈ Uk−1.

H5) For all k, we require that

C−1 ||v||L2(Ω) ≤ ||v||k ≤ C ||v||L2(Ω) ∀v ∈ Uk.

H6) For all k, we require that the following inverse inequality holds,

|||v|||1,k ≤ C h−1
k ||v||L2(Ω) ∀v ∈ Uk.

H7) Let uj ∈ Uj be a finite-element approximation to u, the exact solution for
a given f ∈ L2(Ω), i.e.

A(u, v) = (f, v)L2(Ω) ∀v ∈ U, Aj(uj , v) = (f, v)L2(Ω) ∀v ∈ Uj .

For all k, we require that

||u − uj ||L2(Ω) + hk |||u − uj |||1,j ≤ C h2
k ||f ||L2(Ω), j = k − 1, k.

Remark 4.1. For C0 conforming elements and nonconforming elements such as the
Crouzeix–Raviart element, usually H7) results from H1)-H3) (cf. [19], [35] and
[18]).

Theorem 4.1. Assume H2), H5) and H6). If the following assumption,
(C1)’

||(I − IkPk−1)v||k ≤ C h2
k ||Akv||k ∀v ∈ Uk

holds, then (C1) holds.

Proof. By H2), the eigenvalues λk,i and eigenvectors ψk,i, 1 ≤ i ≤ Nk, satisfy

Ak(ψk,i, v) = λk,i(ψk,i, v)k ∀v ∈ Uk,

0 < λk,1 ≤ λk,2 ≤ · · · ≤ λk,Nk
,

(ψk,i, ψk,j)0,k = δij , Ak(ψk,i, ψk,j) = λk,iδij ,

where δij is the Kronecker symbol. It can be easily seen that

||A1/2
k w||2k = (Akw, w)k ≤ λk,Nk

(w, w)k ∀w ∈ Uk.

Set λk := λk,Nk
. From H5) and H6) we see that

λk ≤ C h−2
k .

By (C1)’ we can conclude that (C1) holds, since

|Ak((I − IkPk−1)v, v)| ≤ ||(I − IkPk−1)v||k ||Akv||k ≤ C h2
k ||Akv||2k ≤ C1

||Akv||2k
λk
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and
(Ak((I − IkPk−1)v, (I − IkPk−1)v))1/2 = |||(I − IkPk−1)v|||1,k

≤ C h−1
k ||(I − IkPk−1)v||k

≤ C hk ||Akv||k = C hk ||A1/2
k A

1/2
k v||k

≤ C hk λ
1/2
k (Ak(v, v))1/2

≤ CQ (Ak(v, v))1/2. �

Theorem 4.2. Let hypotheses H1)–H5) and H7) hold. If

(21) ||wk − Ikwk−1||L2(Ω) ≤ C h2
k ||g||L2(Ω)

holds, then (C.1)’ holds. Here wj ∈ Uj denotes the finite-element solution on the
j-th level for a given g ∈ L2(Ω); i.e.

Aj(wj , q) = (g, q)L2(Ω) ∀q ∈ Uj .

Proof. The proof is divided into two steps. In the first step, we show that (21)
implies

(22) ||wk−1 − Pk−1wk||L2(Ω) ≤ C h2
k ||g||L2(Ω).

To do so, we consider a dual problem: Find z ∈ U such that

(23) A(z, q) = (wk−1 − Pk−1wk, q)L2(Ω) ∀q ∈ U.

Denote by zj ∈ Uj the finite element solution to (23); i.e.

Aj(zj , q) = (wk−1 − Pk−1wk, q)L2(Ω) ∀q ∈ Uj .

Applying (21) with a right-hand side function wk−1 − Pk−1wk ∈ L2(Ω), by H7)
and the triangle inequality, we have

||zk−1 − Ikzk−1||L2(Ω)

≤ ||zk−1 − zk||L2(Ω) + ||zk − Ikzk−1||L2(Ω)

≤ ||zk−1 − z||L2(Ω) + ||z − zk||L2(Ω) + ||zk − Ikzk−1||L2(Ω)

≤ C h2
k ||wk−1 − Pk−1wk||L2(Ω).

Therefore,

||wk−1 − Pk−1wk||2L2(Ω) = Ak−1(zk−1, wk−1 − Pk−1wk)

= Ak−1(zk−1, wk−1) − Ak−1(zk−1, Pk−1wk)

= Ak−1(zk−1, wk−1) − Ak(Ikzk−1, wk)

= (g, zk−1 − Ikzk−1)L2(Ω)

≤ C h2
k ||g||L2(Ω) ||wk−1 − Pk−1wk||L2(Ω).

It follows that (22) holds.
Now we take the second step, showing (C1)’. To do so, set Ek := I − IkPk−1.

Again, we consider a dual problem: Find z ∈ U such that

A(z, q) = (Ekv, q)L2(Ω) ∀q ∈ U.

Let zj ∈ Uj be the finite-element solution, approximating z; i.e.,

Aj(zj , q) = (Ekv, q)L2(Ω) ∀q ∈ Uj .

From (21) and (22) we have

||zk − Ikzk−1||L2(Ω) + ||zk−1 − Pk−1zk||L2(Ω) ≤ C h2
k ||Ekv||L2(Ω).
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Therefore, in view of H4) and H5),

||Ekv||2L2(Ω) = Ak(Ekv, zk)

= Ak(v, zk) − Ak−1(Pk−1v, Pk−1zk)

= Ak(v, zk − Ikzk−1) + Ak(v, Ik(zk−1 − Pk−1zk))

≤ ||Akv||k ||zk − Ikzk−1||k + ||Akv||k ||Ik(zk−1 − Pk−1zk)||k
≤ C ||Akv||k {||zk − Ikzk−1||L2(Ω) + ||Ik(zk−1 − Pk−1zk)||L2(Ω)}
≤ C ||Akv||k {||zk − Ikzk−1||L2(Ω) + ||zk−1 − Pk−1zk||L2(Ω)}
≤ C h2

k ||Akv||k ||Ekv||L2(Ω),

The proof is completed. �

Proposition 4.1. Assume H1)–H4) and H7). If the following estimate holds,

(24) ||Πkw − IkΠk−1w||L2(Ω ≤ C h2
k ||w||H2(Ω) ∀w ∈ H2(Ω),

then (21) holds.

Proof. With a right-hand side function g ∈ L2(Ω), let w ∈ H2(Ω) be the solution
to

(25) A(w, q) = (g, q)L2(Ω) ∀q ∈ U.

Let wj ∈ Uj be the finite-element solution to w. From H7) we know that

(26) ||w − wj ||L2(Ω) ≤ C h2
k ||g||L2(Ω), j = k − 1, k.

Rewriting

wk − Ikwk−1 = wk −w +w−Πkw +Πkw− IkΠk−1w + Ik(Πk−1w−w +w−wk−1),

by (26), (24), H3) and H4), we get (21). �

Proposition 4.2. Assume H1)–H4) and H7). If there exists a finite-dimensional
space Σk−1 ⊆ Uk ∩Uk−1, which has the same order of approximation as that of Uk

and Uk−1, such that

(27) Ikw ≡ w ∀w ∈ Σk−1,

or, if the following estimate holds,

(28) ||z − Ikq||L2(Ω) ≤ C ||z − q||L2(Ω) ∀z ∈ Uk, ∀q ∈ Uk−1,

then (21) holds.

Proof. Inequality (21) trivially results from (28), the triangle inequality and H7).
Let us assume (27). Let wj ∈ Uj , j = k, k − 1 and qk−1 ∈ Σk−1 be the finite-

element solutions to w, for g ∈ L2(Ω); cf. (25) and (26).
wk − Ikwk−1 = wk − qk−1 + qk−1 − Ikwk−1

= wk − w + w − qk−1 + Ik(qk−1 − w + w − wk−1).

Inequality (21) follows. �

Remark 4.2. For P1 and Wilson’s nonconforming elements, (27) is obviously true,
with Σk−1 being the conforming P1 and Q1 elements, respectively; see [13] and [41].

For C0 elements with nonnested triangulations, (28) was shown in [42]. For
other nonnested C0 elements such as a bubble-enriching element and a composed
element, (28) was shown in [23].
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For nonconforming elements such as Qrot
1 element and a discretely divergence-

free P1 element, (24) was shown in [36], [4] and [14].
For the Mortar element, (C1)’ was shown in [25].
Note that for all these nonnested cases there are different assumptions on the

triangulations.
To avoid proliferation, here we leave out more detailed description and verifi-

cation of assumptions (23), (26) and (27), associated with the assumption (20)
for (C1)’, for various nonnested V-cycle methods. Readers can refer to the cited
references for details.

Remark 4.3. To our best knowledge, all the existing intergrid transfer operators
satisfy H4); cf. [43], [11], [4], [2], [14], [13], [41] and [23]. Other hypotheses H1)–
H3) and H5)–H7) are often trivial and standard. We therefore do not insist on
details here.

5. Numerical results

In our numerical tests, we studied P1 linear triangles and P1 nonconforming
linear elements, where the nodal values are defined at the vertices or the midedge
points, respectively. We tested both nested and nonnested, but uniform grids, (see
Figure 1), on the unit square domain Ω = (0, 1)2.

The bilinear form is the semi-H1 product Ak(u, v) =
∫
Ω

uxvx + uyvy. The
discrete L2 inner product is (u, v)k = h2

∑
uivi where the summation is over all

nodal points and h is the grid size.
In Table 1 below, we listed the constants computed numerically for the P1 con-

forming elements on nonnested grids, where C1 and CQ are used in the regularity-
approximation assumption (C.1), the constant CR is from the smoothing hypothesis
(C.2), δk (less than the theoretic constant δ in (5)) is the error reduction factor of
the V-cycle nonnested multigrid method, and δ′k is the two-level error reduction
factor. Here we solve the coarse-level correction problem exactly in the two-level
multigrid method and δ′k is the the spectral radius of such a multigrid operator:

δ′k = ρ
(
(J̃ (m)

k )∗(I − IkPk−1)J̃
(m)
k

)
.

We note in particular that all constants are computed by Matlab as they are the
maximum or the minimum of certain eigenvalues. Here the number of the smoothing
parameter m is set to 8 and the Richardson iteration is used for the presmoothing
and the postsmoothing. The same constants for the P1 nonconforming elements on
nonnested grids are listed in Table 2. Because of the nonnested grids, the intergrid
transfer operator Ik is simply the nodal value interpolation operator Πk as all fine-
level nodal points are in the interior of some coarse-level triangles. This avoids
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Figure 1. Nonnested grids. (h = 1/3 and h = 1/5)
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Table 1. Constants for P1 conforming elements on nonnested grids.

level k grid C1 CQ CR δk δ′k
2 3 × 3 1.7676 5.3645 1.0000 0.0008 0.0000
3 5 × 5 3.3794 7.0620 1.0000 0.0470 0.0468
4 9 × 9 4.8324 7.7069 1.0000 0.0923 0.0787
5 17 × 17 6.0642 7.9184 1.0000 0.1289 0.1132
6 33 × 33 6.9498 7.9785 1.0000 0.1554 0.1358
7 65 × 65 7.5868 7.9945 1.0000 0.1705 0.1485

Table 2. Constants for P1 nonconforming elements on nonnested grids.

level k grid C1 CQ CR δk δ′k
2 3 × 3 10.9296 31.6111 1.0000 0.0965 0.0261
3 5 × 5 10.5700 26.3688 1.0000 0.0751 0.0741
4 9 × 9 17.0298 38.4648 1.0000 0.1539 0.1521
5 17 × 17 20.8358 44.6080 1.0000 0.2421 0.2051
6 33 × 33 23.3766 52.3772 1.0000 0.2862 0.2422

the trouble of defining nodal (midedge) values of Ikvk−1, which is done usually by
averaging the values of vk−1 at nearby nodes; cf. [4], [13], [14], [20], and [22].

Comparing the data in Tables 1 and 2, we can see the constants C1 and CQ are
much worse for the nonconforming P1 elements. However, the V-cycle and the two-
level convergence rates δk and δ′k do not differ much between the conforming and
nonconforming elements. We note that here the grid size ratio of the fine-to-coarse
levels is more than 1/2—better than that in the nested multigrid method. So the
nonnested multigrid convergence rate is better than that of the standard nested
multigrid (shown in Table 3).

For Table 3, we have nested grids. We note that because we used one-sided
value interpolation operator (since the fine-level midedge points are no longer inside
coarse-level triangles) as the intergrid transfer operator, instead of some averaging
operators (cf. [13]), the rates of the nonconforming multigrid method (listed in
the last two columns) are much worse than that of the conforming method (listed
in the middle two columns in Table 3.) Otherwise, the difference in rates should
be small, as shown in the nonnested cases (listed in Tables 1 and 2). We further
remark that, due to the perturbation to the subspace Ak-projection, the two-level
nonconforming multigrid method is worse than its V-cycle multigrid version in
terms of the rate of convergence. In other words, a more accurate coarse-level
correction would produce a bigger error to the high-frequency components of the
iterative solution on the finer grid. Therefore, if the fine-level smoothing number
is not high enough, the multigrid iteration may even diverge. This phenomenon
shows up clearly in the last numerical example in this paper.

In Figure 2 we plot the estimated rate δk of the V-cycle multigrid method in
(6) and the estimated rate in (19) for the two-level multigrid method, against the
actual (computed) rates. Here the estimates C1CR

m−C1CR
and C1CR

m+C1CR/CQ
are both for

P1 conforming elements, and computed by numerical data C1 and CQ. The grid
level is k = 5 in Figure 2.
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Table 3. The convergence rate for nested-grid P1 conforming and
nonconforming elements.

level k grid δk(c) δ′k(c) δk(nc) δ′k(nc)
2 4 × 4 0.0844 0.0186 0.3211 0.1088
3 8 × 8 0.1619 0.1332 0.3989 0.3775
4 16 × 16 0.2143 0.1663 0.4091 0.4469
5 32 × 32 0.2404 0.1791 0.4359 0.4678
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Figure 2. The convergence rate of the V-cycle multigrid

Finally, we would show a counterexample where the number of smoothings m
must be sufficiently large, larger than one, depending on a parameter σ in the mesh
perturbation, in order for the V-cycle nonnested multigrid methods to converge. In
the example, we use the cubic Lagrange element to solve the Poisson equation with
a homogeneous boundary condition. The domain is the unit square. On the first
level, we have only two triangles. We then use the multigrid refinement to generate
the higher level meshes. On the fifth level, we perturb the mesh by moving all
internal nodes by the mapping (x, y)/(r/1.5)σ. In Figure 3, the fine grid is plotted
by solid lines and all the coarse grids are plotted (overlapped) by dash lines.

In Table 4, we list the number of V-cycle iterations needed for the P3-finite
element iterative solution to reach its approximation accuracy. For the nested case,
i.e., σ = 0 on the finest level, one smoothing is enough to make V-cycle iteration
converge, as predicted by the standard multigrid theory. However, when the meshes
are perturbed as shown in Figure 3, one smoothing is not enough for the nonnested
V-cycle iteration to converge. As shown in Table 4, the number of smoothings m
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Figure 3. The fifth grid is perturbed by (x, y)/(r/1.5)0.4.

must be larger than 4 (when σ = 0.36) or 7 (when σ = 0.4), respectively. Otherwise
the V-cycle iterations would diverge. From Table 4, it seems that the when m is
large, the converge rates of nested and nonnested V-cycles differ very little. We
remark that the reduction rate δ5 listed in Table 4 does not decrease monotonically
when m increases. This is caused by the way we average the error reduction factors
by the number of V-cycles:

δ5 =
1
nv

nv∑
i=1

|uh − ui|H1

|uh − ui−1|H1
,

where nv is the number of V-cycles.
In Figure 4, we plot the iterative error before doing a nonnested coarse-level cor-

rection and after doing such a correction. In the nonnested coarse-level correction,
the low-frequency components of the iterative error are usually reduced well. How-
ever, due to nonnestedness, some high-frequency errors would be amplified. This
can be seen by comparing the two graphs in Figure 4. Therefore, the fine-level
smoothing has to be performed enough times in order for the nonnested multigrid
method to converge.

We make a final remark on selecting the counterexample. The difficulty here
arises when we use the multigrid refinement to generate meaningful, or likely prac-
tical, grids. With reasonable perturbations of the grids, we could not find a case
where the P1 multigrid V-cycle diverges. After numerous successful tries, we turned
to P2, P3 and high-order elements where one fine-level smoothing is not power-
ful enough to smooth out the non–a(·, ·)-projection component of the coarse-level
correction.
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Table 4. The number of V-cycles and the error reduction rate for
for nonnested P3 elements.

m # V-cycle, δ5(σ = 0) # V-cycle, δ5(σ = .36) # V-cycle, δ5(σ = .4)

1 72 0.9035 ∞ 1.0266 ∞ 1.4101
2 36 0.8188 ∞ 1.2698 ∞ 1.7989
3 24 0.7481 ∞ 1.1905 ∞ 1.6841
4 18 0.6900 ∞ 1.0396 ∞ 1.4963
5 14 0.6215 > 40 0.9304 ∞ 1.3195
6 12 0.5848 > 40 0.8708 ∞ 1.1638
7 10 0.5247 13 0.6203 ∞ 1.0237
8 8 0.4374 11 0.5767 > 40 0.8833
9 7 0.3936 9 0.5107 > 40 0.8920

10 6 0.3358 8 0.4733 > 40 0.9015
11 6 0.3651 7 0.4251 10 0.5803

12 5 0.2767 7 0.4206 9 0.5615
13 5 0.3026 6 0.3673 7 0.4503
14 5 0.2821 6 0.3839 6 0.4033
15 4 0.2141 6 0.4006 5 0.2900
16 4 0.2315 5 0.2917 5 0.2966
17 4 0.2479 5 0.3013 5 0.3078
18 4 0.2699 5 0.3160 5 0.3148
19 4 0.2673 5 0.3341 5 0.3347
20 4 0.2690 5 0.3386 5 0.3743
21 4 0.2800 5 0.3608 4 0.2111
22 4 0.3340 5 0.3729 4 0.2143
23 3 0.1602 4 0.2117 4 0.2168
24 3 0.1645 4 0.2120 4 0.2217
25 3 0.1691 4 0.2159 4 0.2206

Figure 4. The iterative error before and after doing a coarse-level correction.
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