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A DOUBLE LARGE PRIME VARIATION
FOR SMALL GENUS HYPERELLIPTIC INDEX CALCULUS

P. GAUDRY, E. THOMÉ, N. THÉRIAULT, AND C. DIEM

Abstract. In this article, we examine how the index calculus approach for
computing discrete logarithms in small genus hyperelliptic curves can be im-
proved by introducing a double large prime variation. Two algorithms are
presented. The first algorithm is a rather natural adaptation of the double
large prime variation to the intended context. On heuristic and experimen-
tal grounds, it seems to perform quite well but lacks a complete and precise
analysis. Our second algorithm is a considerably simplified variant, which can
be analyzed easily. The resulting complexity improves on the fastest known
algorithms. Computer experiments show that for hyperelliptic curves of genus
three, our first algorithm surpasses Pollard’s Rho method even for rather small
field sizes.

1. Introduction

The discrete logarithm problem in the Jacobian group of a curve is known to
be solvable in subexponential time if the genus is large compared to the base field
size [1, 20, 8, 9, 14, 6]. The corresponding index calculus algorithm also works for
small fixed genus, and although the running time becomes exponential it can still be
better than Pollard’s Rho algorithm [11]. Introducing a large prime variation [23],
it is possible to obtain an index calculus algorithm that is asymptotically faster
than Pollard’s Rho algorithm for genus 3 curves.

In the present work, we go one step further in this direction and introduce a
double large prime variation for the small genus index calculus. Our algorithm is
a simple extension to the single large prime algorithm of [23]. However, making
a rigorous analysis is not that easy: double large prime variations are commonly
used in factorization algorithms and analyzed empirically. In order to obtain a
proven complexity result, we introduce a simplified algorithm for the double large
prime variation which lends itself much better to a rigorous complexity analysis.
The analysis is made for fixed genus and growing field size. Our proof is valid for
the restricted context of hyperelliptic curves in imaginary Weierstrass form with a
cyclic Jacobian group, and the complexity result is stated as follows.

Theorem 1. Let g ≥ 3 be fixed. Let C be a hyperelliptic curve of genus g over Fq

given by an imaginary Weierstrass equation, such that the Jacobian group JacC(Fq)
is cyclic. Then the discrete logarithm problem in JacC(Fq) can be solved in expected
time

Õ
(
q2− 2

g
)
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as q tends to infinity.

The Õ-notation captures logarithmic factors. This complexity improves on the
previous best bound Õ(q2− 2

g+1/2 ). The presented algorithm also applies to general
curves of genus g ≥ 3, not necessarily hyperelliptic and not necessarily with a cyclic
Jacobian group (but provided that the Jacobian arithmetic can be performed in
polynomial time). Heuristically, the complexity result still holds.

The improvement is negligible for curves of large genus and therefore the case
of genus 3 curves is given special consideration. For genus 3 curves, Pollard’s Rho
method has a running time in Õ(q1.5), whereas the single large prime algorithm is
in Õ(q1.428...) and our new method is in Õ(q1.333...). We did practical experiments
that demonstrate that even when the Jacobian group has relatively small size, our
algorithm is much faster than Pollard’s Rho algorithm. In these comparisons, we
consider only curves whose Jacobian group is of almost prime order, so that splitting
the discrete problem into smaller problems in subgroups [22] is not possible. This
is the case for instances that occur in the context of cryptography. Therefore, when
designing a cryptosystem based on a genus 3 curve [16], it is necessary to take into
account our attack, and not only Pollard’s Rho attack. The sizes of the parameters
should then be enlarged by about 12.5% to maintain the same security level.

The article is organized as follows: in Section 2, we fix the general setting and
recall previous work. Our double large prime variation is introduced in Section 3,
together with our simplified variant. This simplified variant is analyzed in Section 4.
In Section 5, we describe our computer experiments that validate our approach and
show that it outperforms Pollard’s Rho method rather early. Section 6 explores the
relationship between our “full” and “simplified” algorithms, as well as the relevance
of our algorithm beyond the restricted context of hyperelliptic curves with cyclic
Jacobian group.

The order of the authors is chronological. The first two authors found the al-
gorithm and gave a heuristic analysis. A complete proof was obtained by the first
three authors. The fourth author then gave a much simpler proof, and the proof of
Theorem 1 presented in this work follows the ideas of the fourth author.

2. Setting and previous work

2.1. Setting. Let C be a hyperelliptic curve of genus g ≥ 3 over a finite field Fq

with q elements, given by an imaginary Weierstrass equation. The elements of the
Jacobian group JacC(Fq) of C over Fq are handled via their Mumford representa-
tion [19]: a divisor class contains a unique reduced divisor that is represented by
a pair of polynomials 〈u(x), v(x)〉. The degree of u(x) is called the weight of the
reduced divisor, and a reduced divisor is called prime if u(x) is irreducible.

A discrete logarithm problem in JacC(Fq) is to be solved. Namely, we work
in a cyclic subgroup G of JacC(Fq). A generating reduced divisor D1 of G and
another reduced divisor D2 ∈ G are given. The goal is to compute the integer λ
in [0, #G − 1] such that D2 = λD1 in JacC(Fq). The group order is also supposed
to be part of the input; in our case, since the genus is fixed, it can be computed in
polynomial time [21].

The algorithms we are dealing with have a complexity which is exponential in
log q. Since any task that takes a time which is polynomial in log q is considered
easy, we shall often use the Õ()-notation for complexity estimates: a function in
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Õ(f(q)) is a function that is bounded by f(q) times a polynomial in log f(q) for
large enough q.

2.2. Basic index calculus. The general index calculus algorithm proceeds as fol-
lows: a factor base B that consists of prime divisors of low weight is formed. Then
random linear combinations of D1 and D2 are computed using, for instance, Can-
tor’s algorithm [3]. For each combination, one checks whether it can be written as
a sum of elements of the factor base by factoring the u-polynomial of its Mumford
representation. If this is the case, then we have a useful relation and the corre-
sponding data is put in a row of a matrix. After enough relations have been found,
there exists a nontrivial combination of the rows that sums to zero; this is a simple
linear algebra problem. Since each row represents a linear combination of D1 and
D2, any combination of rows also represents a linear combination of D1 and D2

that can be computed. We can then find α and β such that αD1 + βD2 = 0.
This gives the solution to the discrete logarithm problem as long as β is invertible
modulo #G, which will be the case with large probability.

For (small) fixed genus, the prime divisors considered for the factor base are
divisors of weight 1. This “basic index calculus” algorithm has therefore complexity
Õ(q2), split in Õ(q) for the relation search and Õ(q2) for the linear algebra.

An optimized variant of the basic index calculus algorithm, due to Harley, con-
sists in balancing the relation search and linear algebra steps by restricting the fac-
tor base size to qr elements, with 0 < r < 1. With the best value of r = 1−1/(g+1),
the complexity becomes Õ(q2− 2

g+1 ).
We shall not give more details on the basic technique of index calculus and refer

the reader to [23] for a complete description.

2.3. Single large prime variation. Extending the idea of the “balanced” index
calculus approach, a single large prime variation has been presented in [23]. The
factor base is again chosen with size qr, with 0 < r < 1. The Θ(q) reduced divisors
of weight one which are outside the factor base are called “large primes”.

The algorithm proceeds like any index calculus algorithm with a large prime
variation. Random linear combinations of D1 and D2 are computed. Only combi-
nations which involve at most one large prime in the sum of their prime reduced
divisors are considered.

At the heart of the analysis is the birthday paradox which says that after hav-
ing collected k relations involving large primes, they can be combined to form an
expected number of k2

2q relations involving only elements of the factor base. Then,
estimating the probability of getting a relation with one large prime and balancing
everything with the linear algebra step, the optimal value for r is 1− 1

g+1/2
, and the

overall complexity is Õ(q2− 2
g+1/2 ).

From this, the following result is obtained in [23].

Theorem (Thériault). Let g ≥ 3 be fixed. Let C be a hyperelliptic curve of genus g
over Fq given by an imaginary Weierstrass equation, such that the Jacobian group
JacC(Fq) is cyclic. Then the discrete logarithm problem in JacC(Fq) can be solved
in expected time

Õ
(
q
2− 2

g+1/2

)
as q tends to infinity.
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3. A double large prime variation

We now present the context of our double large prime variant, which comes as
the natural extension of the previous single large prime algorithm. As before, we
define a factor base and a set of large primes, which are sets of reduced divisors of
weight 1. In other words, they can be interpreted as rational points of the curve.
Since computing the hyperelliptic involution can be done almost for free with our
representation, we use it to reduce the cardinalities of these sets.

Definition 2. Let r be a constant real number such that 0 < r < 1.
The factor base B is a set of representatives of � 1

2qr� arbitrary orbits of C(Fq)
under the hyperelliptic involution ι.

The set of large primes L is a set of representatives of the remaining orbits
under ι.

Due to Weil’s theorem, #C(Fq) = q+O(
√

q). Therefore it is possible to construct
a suitable factor base B, and we have #L = q

2 + O(
√

q).
As before, we form random linear combinations of D1 and D2, and to each such

combination R we apply the following procedure for the smoothness test.
• Compute the Mumford representation 〈u(x), v(x)〉 of R.
• Discard R if u(x) has a nonlinear irreducible factor. Otherwise, write R =∑r

i=1 niPi, where Pi is a reduced divisor of weight 1 and ni ≥ 1.
• For all i such that Pi /∈ B ∪ L, replace Pi with ι(Pi) and negate ni.

At the end of this procedure, we have obtained an expression of the following
form which we call a “relation”:

(1) αD1 + βD2 =
r∑

i=1

niPi,

where the equality holds in the Jacobian group and the Pi are elements of the factor
base or of the set of large primes (we say that the relation involves these factor base
elements and large primes).

Definition 3. A relation is said to be Full if it involves only elements of the factor
base B. A relation is said to be FP if it involves elements of B and exactly one
large prime. A relation is said to be PP if it involves elements of B and exactly
two large primes.

Clearly, PP relations can be found much more quickly than FP relations, but the
problem is to combine all these relations in order to obtain more Full relations. This
can be done by looking for cycles in a graph where vertices are large primes and
edges are relations involving them. For this purpose, an adaptation of the union-
find algorithm is used, making it possible to solve this question in time almost
linear in the number of PP relations found.

This relation collection terminates when as many as #B + 1 Full or recombined
relations have been obtained. Afterwards, the algorithm proceeds with the linear
algebra step as in the classical index calculus situation described in Section 2.2.

3.1. Description of the LP-graph and its evolution. Double large prime vari-
ations of all kinds use a graph of large prime relations. Within the context of an
index calculus algorithm, the relations involve multiplicities, so squares cannot be
canceled out as is done in the classical case of integer factorization. For this reason,
the description of the graph of large prime relations is more technical.
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The graph of large prime relations (LP-graph, for short) is an undirected
acyclic graph with 1 + #L vertices, corresponding to the elements of L and the
special vertex 1. All edges of the LP-graph are labeled with a relation.

At the beginning of the algorithm there are no edges in the LP-graph, and a
counter C is set to zero. The algorithm stops when C reaches the prescribed value
Cmax = #B + 1. Recall that #B 	 #L. The counter C must first be regarded as
the number of independent cycles that would appear in the LP-graph in the course
of its evolution even though no cycle is actually created.

We start our relation search. Each time we find a relation R, the LP-graph is
modified according to the following procedure:

• If R is Full, the LP-graph is unchanged and the counter C is incremented.
• If R involves two large primes or less, we consider a new edge E, labeled by

R, for potential inclusion into the LP-graph. If R is FP, the vertices of E
are 1 and p1 (the large prime appearing in R), while if R is PP, the vertices
of E are the two large primes p1 and p2 appearing in R.

We consider the following exclusive cases:
– If adding E would not create any cycle, E is added to the LP-graph.
– If adding E would create a cycle Γ, we are led to a technical distinc-

tion. Let k = #Γ be the number of edges that form Γ, V (Γ) their
vertices, and R(Γ) their attached relations. V (Γ) has cardinality k,
and depending on whether 1 ∈ V (Γ) or not, the relations in R(Γ)
involve k − 1 or k large primes, respectively. By linear algebra, we
can obtain a linear combination of the relations in R(Γ) which has the
contribution of at least k − 1 large primes canceled. Hence:

∗ If 1 ∈ V (Γ), a Full relation can be obtained. C is increased, and
the LP-graph is unchanged (note that a Full relation may also
be obtained in lucky cases even when 1 /∈ V (Γ); this “luck” is
automatic in the classical case of the factorization of integers by
the quadratic or number field sieve, because the linear algebra
involved takes place over F2).

∗ Otherwise, an FP relation can be obtained. The counter C is
unchanged and the procedure described is now applied to this
FP relation.

It is now apparent that the counter C in fact represents the number of indepen-
dent Full relations that are obtained from the input relations (this is the reason
for having chosen Cmax = #B + 1). While this is clearly linked to the number of
cycles, the last sub-case states the distinction between the two.

Implementing the LP-graph as described here, together with its evolution pro-
cess, is efficiently done with the so-called union-find algorithm, presented and ana-
lyzed for example in [2]. The processing time obtained is then essentially constant,
and tiny (bounded by the inverse Ackermann function), for each relation. As a
result, the complexity of the relation collection step is the average time to build a
relation times the number of relations to build before the counter C reaches #B+1.

3.2. A simplified algorithm. We propose a simplified algorithm which will be
easier to analyze. The setting is slightly restricted, and the processing of the LP-
graph is changed.
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3.2.1. Restricted setting. First, we restrict our setting and redefine the large primes
and factor base as follows:

• We restrict ourselves to the situation where the Jacobian group of the curve
is cyclic. Without loss of generality we can then assume that D1 generates
the whole Jacobian group.

• B and L are restricted to the orbits of size 2 (we avoid ramification points).
• When testing for smoothness, relations involving ramification points and

relations that involve less than g distinct weight 1 reduced divisors are
discarded.

Recall that at most 2g + 1 orbits under ι have size 1 (these correspond to the
ramification points) and that reduced divisors having multiplicities are an order of
magnitude less numerous than general reduced divisors; therefore these restrictions
have little impact. Note that B ∪ L and ι(B ∪ L) now form a partition of the
nonramification points of #C(Fq).

This restricted setting is mostly for convenience of the exposition. The hypothe-
sis of the first statement can be replaced by the assumption that the group structure
is known (see Section 6.4), and the two other statements are there to simplify the
probability estimates.

3.2.2. Simplified LP-graph. The relation search of the simplified algorithm resem-
bles the original one, with the following radical changes. First, no edge is added to
the LP-graph that is not connected to 1. Therefore the LP-graph can be seen as
a tree with root 1. The technical discussion with cycles yielding or not yielding a
Full relation can therefore be skipped: if including some edge would create a cycle,
this cycle would be linked to 1 by construction, so it can always be extended to
include 1. Second, we do not consider all relations: Full relations are never taken
into account, and only one FP relation is ever considered during the construction
of the graph. Third, we split the growth of the LP-graph and the production of
recombined relation into different phases.

The relation search now operates with the following three phases. In each of them
relations are drawn uniformly at random, that is to say, α and β in expression (1)
on page 478 are drawn uniformly at random.

Phase 0 – Relations are discarded until one FP relation involving
some large prime p is encountered. The edge 1—p is included in
the LP-graph.

We will see that the duration of Phase 0 is negligible, and the switch point
between Phase 1 and Phase 2 will be discussed later. During Phase 1, we associate
with each incoming PP relation an edge E (candidate for inclusion in the LP-graph)
whose vertices are the large primes p1 and p2 appearing in the relation.

Phase 1 – All relations except PP relations are discarded.
• If E would not be connected to the special vertex 1, do nothing.
• If E is already present or would create a cycle, do nothing.
• Otherwise the edge E is added to the LP-graph (thus enlarging

the connected component of 1).
Phase 2 – Relations with arbitrarily many large primes are con-
sidered.

• If the large primes involved all belong to the LP-graph, C is
incremented.
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• Otherwise do nothing (thus the LP-graph does not change).
During Phase 1, the simplified algorithm disregards many relations that would

have been considered by the full algorithm. Furthermore, the LP-graph no longer
changes during Phase 2, while it can always keep growing in the original algorithm.
Phase 2 runs until the counter C reaches the prescribed value Cmax = #B + 1.

In Phase 2 we consider relations with possibly more than 2 large primes. Restrict-
ing to 2 large primes as in the full algorithm would yield the same time complexity
but a slightly worse space complexity.

4. Complexity analysis of the simplified algorithm

In this section, we intend to give an upper bound for the running time of the
simplified algorithm. Let us recall that we analyze the situation where the genus is
fixed and q grows to infinity. Throughout the analysis, the quantities we mention
depend on q and on the particular curve C under consideration. We shall write
α ∼ β when α and β are functions such that α/β tends to 1 when q tends to
infinity (for any family of curves over Fq). Extending this notation, we also write
α

κ∼ β when α/β tends to some nonzero constant. The o(), O(), and Õ() notations
also refer to asymptotic behaviors when q tends to infinity.

4.1. Probabilities and uniformity of pairs of large primes. The relation
collection forms many random linear combinations. By construction, these linear
combinations span the whole subgroup generated by D1. Since we have assumed in
Subsection 3.2.1 that JacC(Fq) is cyclic and that D1 is a generator, this equals the
whole Jacobian group. The subset of elements of the Jacobian group which meet
the restrictions stated in Subsection 3.2.1 has cardinality exactly 2g

(
#(B∪L)

g

)
. The

random linear combinations which are considered are uniformly distributed within
this set.

The uniformity of the large primes is obtained by counting arguments: choose
arbitrarily a set of k large primes. The number of relations which involve these large
primes and no others is exactly 2g

(
#B
g−k

)
. This implies in particular that all possible

pairs of two distinct large primes are met with equal probability. The probabilities
to get a Full, FP, or PP relation follow.

Proposition 4. Let k be an integer in [1, g− 1] and let P1, P2, . . . , Pk be k distinct
elements of L. The number of reduced divisors in the restricted setting that have
exactly P1, P2, . . . , Pk as large primes is 2g

(
#B
g−k

)
. The probabilities a, b, c for a

uniformly random reduced divisor to yield a Full, FP, or PP relation are

a ∼ qg(r−1)/g! , b ∼ q(g−1)(r−1)/(g − 1)! , c ∼ q(g−2)(r−1)/(2(g − 2)!) .

Hence, for large enough q, we have a 	 b 	 c and #B 	 #L. To be more
precise, we have

#B
#L

κ∼ b

c

κ∼ a

b

κ∼ qr−1 = o(1).

4.2. Expected running time of relation collection. We arbitrarily set our
unit of time for the analysis of the relation collection to be the time required to
compute a random relation and factor it. The actual complexity of this unit of
time is polynomial in log q (corresponding to operations in the Jacobian group and
smoothness tests). Relative to this time scale, only integer time values are relevant
to a given run of the algorithm.
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For our analysis, it is important to study the expected time until the graph has
reached a certain size. Let t(N) be the random variable describing the time needed
until the number of edges of the LP-graph equals N . We are interested in the
expected value of t(N), denoted t(N) = E [t(N)]. In general a bold font is used for
a random variable and the corresponding italic symbol for its expected value.

Initially, there are no edges in the LP-graph and t(0) = 0. Each random trial
yields an FP relation with probability b. Hence the expected duration of Phase 0
is given by

t(1) =
1
b
.

For any integer N ≥ 1, we have

E [t(N + 1)] = E [t(N)] + E [t(N + 1) − t(N)] ,

and we now have to analyze the quantity t(N+1)−t(N), which is the time before we
encounter a PP relation involving exactly one large prime that meets the LP-graph.

By Proposition 4, the conditional probability for having such a PP relation
depends only on the size of the LP-graph at this time, and not on its actual com-
position. Denoting by u the ratio N

#L , a PP relation has 0, 1, or 2 of its large
primes meeting the LP-graph with respective probabilities (1 − u)2, 2u(1 − u), or
u2. Therefore we have

E [t(N + 1) − t(N)] = δ(N), where δ(x) def=
1

2c x
#L

(
1 − x

#L

) .

Note that δ is a decreasing function on the interval
[
0, #L

2

]
. We let the integer

Nmax ∈ [1, #L
2 ] be the target number of connected large primes in the LP-graph

before we switch from Phase 1 to Phase 2. We have

t(Nmax) =
1
b

+
Nmax−1∑

N=1

δ(N)

=
1
b

+
∫ Nmax

1

δ(x) dx + e, where e is an error term studied below

=
1
b

+
#L
2c

(
log

(
Nmax
#L

1 − Nmax
#L

)
− log

(
1

#L

1 − 1
#L

))
+ e

=
1
b

+
#L
2c

(
log Nmax − log

(
1 − Nmax − 1

#L − 1

))
+ e

=
#L
2c

(log Nmax + O(1)) + e, because Nmax ≤ #L
2 .

The term 1
b is absorbed by the larger quantity #L

2c . The error term is

e =
Nmax−1∑

N=1

(
δ(N) −

∫ N+1

N

δ(x) dx

)
,

0 ≤ e ≤
Nmax−1∑

N=1

(δ(N) − δ(N + 1)) since δ is decreasing,

0 ≤ e ≤ δ(1) =
#L
2c

(1 + o(1)).
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This bound and the formula above yield the expected duration of Phases 0 and 1:

(2) tPhases 0, 1 = t(Nmax) ∼
#L
2c

log Nmax.

During Phase 2, all trials are independent, and each entails an increase of the
counter C with probability equivalent to 1

g!

(
#B+Nmax
#B+#L

)g

(this is easily verified).
Therefore the expected duration of Phase 2 is

(3) tPhase 2 ∼ #Bg!
(

#B + #L
#B + Nmax

)g

.

Calculus yields that the total expected running time of Phases 1 and 2 is mini-
mized by setting

Nmax ∼
(
2cg#Bg!#Lg−1

) 1
g κ∼

(
c#B#Lg−1

) 1
g κ∼ q

1+r(g−1)
g .

We will see in the next two sections that the running time of the linear algebra
grows like log(Nmax), so that we are not too far from the optimal by tuning Nmax

only with respect to the relation collection.
Substituting inside formulae (2) and (3) this value for Nmax as well as the values

for c, #B, #L, we obtain the following asymptotic equivalent for the expected
running time of the relation collection:

trel. collec.
κ∼ q1−(g−2)(r−1) log q

∈ O
(
q1−(g−2)(r−1) log q

)
.(4)

This represents the expected number of random linear combinations to explore
before finding enough relations with the simplified algorithm. Note that this hides
the complexity for arithmetic operations in the Jacobian group and smoothness
tests, since these operations represent a unit of time.

4.3. Linear algebra. The next step of the discrete logarithm computation is a
linear algebra problem: finding a nontrivial vector in the kernel of a sparse matrix
of size #B using Lanczos or Wiedemann algorithm. This step has to be done
modulo the group size. However, if this is not a prime (and especially if this is
not a square-free number), some complications arise for which we refer to [9]. This
linear algebra step has a complexity proportional to (#B)2 times the row weight
of the matrix. The rows of the matrix correspond either to Full relations or to
recombined relations created by the large prime matching process.

The recombined relations are computed during Phase 2 of the algorithm, when
all large primes involved belong to the LP-graph. Let us denote by � the expected
average depth of the LP-graph during Phase 2 (in this phase the LP-graph does
not evolve). The expected weight of a recombined relation involving k large primes
is at most g − k + k�g factor base elements, therefore O(�). This implies that the
linear algebra step requires

O
(
�q2r

)
operations modulo the group order.
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4.4. Analysis of the LP-graph depth. For any integer N representing the size
of the LP-graph at a given time during Phase 1, and for any integer i ≥ 0, let
the random variable di(N) denote the number of vertices (excluding 1) belonging
to the graph and linked to the special vertex 1 by a path of length i. We have
d0(N) = 0, and di(N) = 0 for all i > N . Furthermore we have

∑∞
i=0 di(N) = N .

Let w(N) def=
∑∞

i=0 idi(N), so that w(N)
N is the average depth of the LP-graph.

We have

E [w(N + 1) (di(N))i] = w(N) +
∞∑

i=0

(i + 1)
di(N)

N

= w(N) + 1 +
w(N)

N
.

We infer an easy recurrence formula for w(N) def= E [w(N)]:

w(N + 1) − w(N) = 1 +
w(N)

N
.

The expected average graph depth during Phase 2 is w(Nmax)
Nmax

. In order to bound
this value, we introduce the auxiliary function f defined by f(x) = x + x log x.
This function is a solution of the differential equation analogous to the recurrence
formula above. Since f ′ is an increasing function, we have for any integer N :

f(N + 1) − f(N) ≥ f ′(N) = 1 +
f(N)

N
.

Since we also have f(1) = w(1) = 1, this implies by induction that w(N) ≤ f(N)
and

� =
w(Nmax)

Nmax
≤ f(Nmax)

Nmax
= 1 + log Nmax.

Given that Nmax ≤ #L
2 and #L

2 < q for q 
 1, we finally reach a bound for the
complexity of the linear algebra step:

(5) tlin. alg. ∈ O
(
q2r log q

)
.

The “unit of time” corresponding to this equation is the time of operations modulo
the group order. As for the relation collection case, this hides a complexity involving
logarithmic factors in q.

4.5. Computing the discrete logarithm. The dependency obtained from the
linear algebra step has the form AD1+BD2 = 0, where the coefficients A and B are
obtained as the sums of the corresponding terms in the different relations involved
in the dependency. We must show that from the dependency, the logarithm of D2

to base D1 can be obtained with high probability, i.e., that B is invertible modulo
#G.

After the first phase, each connected large prime in the LP-graph corresponds
to a weight 1 reduced divisor that can be rewritten as a sum of elements in the
factor base plus a linear combination of D1 and D2. Let us now consider what
happens in the second phase when a linear combination D = αD1 + βD2 produces
a row in the matrix. The reduced divisor D can be obtained in as many as #G
different ways from combinations of D1 and D2, and all these combinations have
equal probability (any value for β is possible, and for each β only one value of
α gives a sum equal to D). If D contains some large primes, they have to be
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Table 1.

g 3 4 5 6
Pollard’s algorithm q3/2 q2 q5/2 q3

Basic index calculus q2 q2 q2 q2

Balanced index calculus q3/2 q8/5 q5/3 q12/7

Single large prime q10/7 q14/9 q18/11 q22/13

Double large prime q4/3 q3/2 q8/5 q5/3

rewritten using the LP-graph. Hence the row will correspond to the reduced divisor
D′ = D +α′D1 +β′D2 = (α+α′)D1 +(β +β′)D2, where α′ and β′ depend only on
the large primes and the data in the LP-graph. The perturbation due to the use of
large primes is therefore independent of the choice of α and β that give D. We have
thus obtained that each row corresponds to as many as #G different combinations
of D1 and D2, and all these combinations have equal probability.

Looking at the final result, we use the same kind of argument: the result of
the linear algebra computation does not depend on the particular way the reduced
divisor corresponding to each row is represented as a sum of D1 and D2. Therefore
the resulting linear combination between D1 and D2 that annihilates is uniformly
random among all the possible choices. The probability that B is not invertible
modulo #G is no more than 1− φ(#G)

#G . In that unlucky case, we can add a row to

the matrix, thus yielding another dependency to try. Since lim inf φ(n)
n = e−γ

log log n ,
this means that in worst cases (namely if #G is a smooth integer) we have to add
an expected number of O(log log #G) rows to the matrix, which does not change
the complexity. In these special cases, however, since #G is smooth, one should
also consider the Pohlig-Hellman algorithm [22].

4.6. Proof of Theorem 1. The times trel. collec. and tlin. alg. are relative to dif-
ferent units, both hiding arithmetic complexities which are polynomial in log q.
Ignoring such logarithmic factors which are of negligible importance to the overall
complexity, we can balance the relation search (see (4)) with the linear algebra (see
(5)) by taking r = 1− 1

g . Finally, we obtain Theorem 1 stated in the Introduction.
For small genera the complexities for groups of almost prime orders are as shown

in Table 1.
Obviously, when the genus gets large, the improvement is marginal, not to say

invisible. On the other hand, for genus 3 curves, the Õ(q2) complexity of the basic
index calculus becomes Õ(q1.5) in its balanced variant and drops to Õ(q1.428...) with
the single large prime algorithm of [23] and to Õ(q1.333...) with our double large
prime variant. The constants involved are small enough so that even for small sizes
our algorithm is expected to be faster than Pollard’s Rho algorithm. The crossover
is examined in Section 5.2.

5. Computer experiments

We have implemented the full algorithm with two goals in mind. First we want
to assert that the upper bound obtained for the running time of the simplified
algorithm is not too far from the running time of the full algorithm. In particular,
we need to check that the cycle length is not too bad, since there is no easy argument
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to relate it to the cycle length we analyzed in the simplified algorithm. The second
objective is to compare our algorithm with Pollard’s Rho algorithm.

Our implementation is in C/C++ and covers only hyperelliptic curves of genus
3, since this is the most important case. We programmed the arithmetic in the
Jacobian group using explicit formulae, based on the work of [27]. On a Pentium-
M processor clocked at 1.7 GHz, our implementation performs 200 000 additions or
doublings in the Jacobian group per second (i.e., 5 microseconds each), for a prime
base field of size up to 227. A step of the algorithm, corresponding to the unit of
time chosen in the analysis above, is performed in 20 microseconds. This includes
the time for the smoothness test.

5.1. Relation search in the full algorithm. The series of experiments shown in
Table 2 gives an idea of how the full algorithm performs. The final values of t for
several experiment sizes are listed. We recall that t represents the number of trial
relations to test for smoothness before sufficiently many recombined relations are
obtained. The running time of the relation search is t times a polynomial expression
in log q accounting for arithmetic in the Jacobian group and smoothness tests.

The comparison of t with q4/3 is given in the third column. Since the LP-graph
has #L ≈ q/2 vertices and that on average every ≈ 2q1/3 steps one produces either
an edge or an increment of C, then the running time of the first phase of the full
algorithm is bounded by a constant times q4/3. Hence a log q factor is saved in this
phase compared to the analysis of the simplified algorithm.

For the average cycle length, given in the fifth column, it seems to be slightly
worse than log q, but it is not possible to make a guess for the real asymptotic
behavior from these experimental values.

Table 2. Final value of t for the full algorithm.

q final t t/q4/3 #B cyc. len.
log q

≈ 215 815473 0.78 512 1.29
≈ 216 1811672 0.69 812 1.19
≈ 217 4705192 0.71 1290 1.41
≈ 218 11253002 0.67 2047 1.42
≈ 219 27776102 0.66 3250 1.44
≈ 220 66834647 0.63 5160 1.47
≈ 221 170327927 0.63 8191 1.59
≈ 222 417044579 0.62 13003 1.70
≈ 223 1036566361 0.61 20642 1.80
≈ 224 2576921045 0.60 32767 1.92
≈ 225 6430349490 0.59 52015 2.02
≈ 226 15899195912 0.58 82570 2.18
≈ 227 39993810485 0.58 131071 2.32
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Table 3. Total time for our algorithm and Pollard’s Rho.

q Relation search Linear algebra Total Pollard Rho (estim.)
224 0.6 days 0.2 days 0.8 days 3.5 days
227 9 days 5.8 days 14.8 days 79 days

5.2. Comparison with Pollard Rho. The Pollard Rho algorithm is known to
have Õ(

√
#G ) complexity. More precisely, in the case of a prime order Jacobian

group of a hyperelliptic curve of genus three, the number of Jacobian operations
required is equivalent to

√
π#G/2 (we take advantage of the hyperelliptic invo-

lution). Instantiated with the parameters for a genus three curve over Fq, where
q ≈ 227, this yields 1.37 · 1012 operations in the Jacobian group, or, at the pace
quoted above, 79 days of computation on a Pentium-M processor.

In comparison, the index calculus algorithm described here, with the double large
prime variation, requires only 4 · 1010 Jacobian group operations and smoothness
tests on the same curve as above. This corresponds to nine days of computation.
We performed the corresponding linear algebra computation, using as a linear sys-
tem solver the block Wiedemann implementation described in [5, 24, 25]. This
linear algebra computation required 5.8 days of computation on the same proces-
sor. Therefore, the algorithm presented here induces a speed-up of 5.3 compared to
Pollard Rho for this problem size. For a curve defined over a field of size 224, the
corresponding speed-up is already of 4.4 (see Table 3). Using our implementation, a
definition field of size 227 would correspond roughly to the crossover point between
Pollard Rho and the single large prime algorithm.

Note that because of the linear algebra step, the index calculus approach can-
not enjoy the same amount of parallelization as Pollard’s algorithm and its vari-
ants. Partial distribution of the linear algebra is possible through the use of multi-
processor machines and by taking advantage of the distribution capabilities of the
block Wiedemann algorithm. For the largest experiment, we have been able to
reduce the linear algebra wall-clock time to 1.9 days this way, with room for fur-
ther improvement since we have not yet ported the asymptotically fast algorithm
presented in [24].

6. Qualitative comments

6.1. Growth of the LP-graph. We digress here to comment briefly on the growth
of the LP-graph in the context of the simplified algorithm. Previous works deal-
ing with double large prime variants [17, 18] have coined terms such as “explosive
growth” or “phase transition” for describing the growth of this graph. Such be-
haviour is indeed shown by the equations obtained. We can obtain a graphical view
of the evolution of the LP-graph as time goes by expressing the size N of the graph
as a function of the expected time t. Figures 1 and 2 represent the ratio u(t) def= N

#L
for arbitrary values of the relevant constants. On a large scale, i.e., when #L 
 1
as in Figure 2, the slope close to t = 0 looks horizontal.

The curve has an inflexion point at time T ∗ = (T + O(1)) log #L with T = #L
2c .

The time T ∗ can be viewed as a transition point, since it is around this time that
u(t) varies the most and jumps from 0 to 1. Indeed, for #L 
 1, for t = T ∗ − 2T ,
we have u(t) ≈ 0.12, whereas for t = T ∗ + 2T , we have u(t) ≈ 0.88.
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t

u(t)

0 T ∗ t

u(t)

0 T ∗

Figure 1. General form of u(t). Figure 2. u(t) when #L 
 1.

We note however that by the choice of Nmax, the construction of the LP-graph
already terminates at a time of ∼ (1− 1

g + 1
g2 ) ·T ∗, i.e., before the phase transition

is reached.

6.2. Full algorithm and random graphs. We used experiments in order to get
an idea of the behaviour of the cycle lengths in the full algorithm, but, as we said
before, it is hard to guess an asymptotic behaviour from these. Another approach
to make conjectures is to consider the LP-graph as a random graph perturbed by
the special vertex 1 and the numerous edges attached to it due to FP relations.
At the end of the computation we expect as many as O(b q2− 2

g ) = O(q1− 1
g ) such

edges, so this perturbation is more important for high genera.
We mention two theoretical results from the literature on random graphs. The

first suggests the cycle length might be exponential, but is probably too pessimistic.
The second suggests polynomial cycle length, but is probably too optimistic.

In [10], it is proven that the first cycle in a random graph appears with high
probability once #L/2 edges are included and the length of the first cycle is of
order Θ((#L)1/6). It is also proven that for any constant k, the length of the kth
cycle is of order Θ((#L)1/6 log(#L)k−1). These lengths would be too large in our
context. This result does not capture our situation for two reasons: first, we need
to estimate the length of a large quantity of cycles, and the analysis of [10] is valid
only for the first few cycles. In particular, it assumes that the cycles are in disjoint
components, which is not the case in the end of the relation search. Second, the
presence of the FP relations is enough to make the first cycle appear earlier than
would be expected otherwise.

In [4], sparse binomial graphs are studied. The results in this work suggest that
the diameter of a random graph is O(log(#L)) if the number of edges is larger than
#L/2. This estimate for the diameter would be perfect for our analysis. However
in the full algorithm the relations are built on the fly as soon as cycles appear, so
that we cannot deduce a useful bound for the cycle lengths, except maybe at the
very end of the relation search. It is also not clear that the algorithm stops at a
point where the graph is dense enough to have the appropriate diameter.

6.3. Memory requirement. For the simplified algorithm, the memory require-
ment during the linear algebra step is in Õ(q1− 1

g ). In the full algorithm this might
be larger if the cycle length cannot be bounded by a polynomial in log q.

For the relation collection, the estimate of the memory requirement is in Õ(q)
if a näıve implementation is used for the LP-graph. Indeed, there are #L = O(q)
vertices in the graph, and since no edge that would create a cycle is ever stored in
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the LP-graph, there are at most O(q) edges, so we need O(q) memory to store the
LP-graph information.

In the case of the full algorithm we cannot hope for a better storage requirement,
since the experiments suggest that Θ(q) edges are indeed needed before having
enough relations.

On the other hand, in the simplified algorithm, at the end of Phase 2, the LP-
graph has only Nmax = O(q1− 1

g + 1
g2 ) edges. Therefore most of the vertices (i.e.,

large primes) are never used. Choosing an appropriate data structure the memory
requirement drops to Õ(Nmax) (with a possible loss of a log q factor in the time
complexity, in order to handle the data structure).

Hence the memory requirement of the simplified algorithm can be made smaller
than that of the full algorithm by an exponential factor. This should be kept
in mind for practical applications, when the memory might be problematic. A
reasonable approach might be to implement a mixture between the full and the
simplified algorithm, where we keep the memory low but still make use of the FP
relations.

6.4. Relevance to more general context. We now provide heuristic arguments
backing the validity of our approach to a broader context.

We have restricted our proof to the case of hyperelliptic curves of a cyclic Ja-
cobian group given by an imaginary Weierstrass equation. If the Jacobian group
is not cyclic, our analysis is not valid. However, as soon as the group structure
is known, we can follow the randomizing strategy of Section 7 in [9] to produce
uniformly random elements in the whole group.

Furthermore, the results are formulated only for the context of hyperelliptic
curves, but on a heuristic basis our algorithm should perform equally well for general
curves.

General setting. For any fixed genus g, we consider a family of curves over a finite
field Fq with q elements, where q grows to infinity. We assume that the curves are
given in the following representation, which is more suitable from the algorithmic
point of view. Let C be a curve in the family. Even if the practical models are affine
or singular, we actually consider a complete nonsingular curve associated to it, and
the notation C is reserved for this nonsingular model. The algorithmic assumptions
are the following:

• There exists a rational point P∞ ∈ C(Fq). This is true for any curve as long
as q is large enough.

• The group structure of JacC(Fq) is known. Namely we have an explicit set
of generators G1, . . . , Gk, of known orders such that JacC(Fq) = 〈G1〉 ⊕
· · · ⊕ 〈Gk〉.

• We have a probabilistic algorithm running in time polynomial in log q to
perform the group operations in JacC(Fq). The elements are represented
by divisors in the form E − wP∞, where E is an effective divisor of degree
w ≤ g and w is minimal. Such an E exists and is unique in each class, and
E − wP∞ is called a reduced divisor.

• We have a probabilistic algorithm running in time polynomial in log q to
decompose an effective divisor as the sum of its prime divisors.

Apart from the known group structure, these assumptions are verified in the clas-
sical case of hyperelliptic curves given by an imaginary Weierstrass equation (using
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Mumford representation), and for Cab curves. Also, if a curve is given by a plane
equation of bounded degree, there are algorithms available to perform the group
operations in polynomial time [26, 15, 13].

In this setting, it is possible to define the factor base and the large primes
by partitioning the set of effective divisors of degree 1 into sets of appropriate
cardinalities. The descriptions of the full and simplified algorithms for hyperelliptic
curves extend easily, with Cantor’s algorithm and Mumford representation replaced
with their generalized equivalent notions. However, the proof of the simplified
algorithm does not follow, since it relies heavily on the statistical properties of large
primes given in Proposition 4. In the case of hyperelliptic curves, it was simple to
estimate these statistics, based on the properties of the Mumford representation
with respect to the hyperelliptic involution. Heuristically, there seems to be no
reason why the statistics would behave differently for general curves, however a
proof in the most general setting is out of the scope of this work, and we keep to a
heuristic result for nonhyperelliptic curves.

7. Conclusion

We have described two algorithms for solving discrete logarithms in curves of
small genus at least 3. The first one is a traditional double large prime variant
of the algorithm of [23], and its complexity is heuristic. The second algorithm
is a simplified variant that can be rigorously analyzed in the context of cyclic
Jacobian groups of hyperelliptic curves. The complexity is better than previously
known methods, and experiments demonstrated that even for rather small sizes,
our method is faster than the Pollard Rho algorithm. On the other hand, the space
requirement is much larger and can become problematic.

The direct application to cryptography is that the security of a genus 3 cryp-
tosystem is overestimated if only Pollard’s Rho algorithm is taken into account.
Indeed, we have shown that the running time for solving a discrete logarithm prob-
lem in a genus 3 Jacobian group has a complexity similar to a discrete logarithm
computation in an elliptic curve for which the logarithm of the group order is 1/9th
smaller. We therefore recommend to enlarge the group-size by 12.5%.

The complexity of our attack, as for any index calculus method, depends only
on the size of the whole Jacobian group. Hence we are in a situation somewhat
similar to multiplicative groups of finite fields: it is possible to work in a subgroup
and with a private key whose sizes are large enough to counter Pollard Rho and
similar attacks, as long as the size of the whole group is large enough to prevent an
index calculus attack.

We note that our method also applies to the Weil descent algorithm of [12] that
attacks elliptic curves defined over small extension fields. Hence, this asymptotic
12.5% penalty also applies to elliptic curve cryptosystems defined over extension
finite fields whose degree is a multiple of 3.

Finally, we would like to point out that an alternative double large prime method
that uses smooth functions instead of divisors has recently been proposed [7] for
the nonhyperelliptic setting. A heuristic complexity analysis indicates that this
algorithm can solve the discrete logarithm problem in Jacobian groups of non-
hyperelliptic curves of genus 3 over Fq in time of Õ(q).
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