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A POSTERIORI ERROR ANALYSIS
FOR LOCALLY CONSERVATIVE MIXED METHODS

KWANG Y. KIM

Abstract. In this work we present a theoretical analysis for a residual-type
error estimator for locally conservative mixed methods. This estimator was
first introduced by Braess and Verfürth for the Raviart–Thomas mixed finite
element method working in mesh-dependent norms. We improve and extend
their results to cover any locally conservative mixed method under minimal
assumptions, in particular, avoiding the saturation assumption made by Braess
and Verfürth. Our analysis also takes into account discontinuous coefficients
with possibly large jumps across interelement boundaries. The main results
are applied to the P1 nonconforming finite element method and the interior
penalty discontinuous Galerkin method as well as the mixed finite element
method.

1. Introduction

In this paper we concern ourselves with a posteriori error analysis for locally
conservative mixed methods of the second order elliptic boundary value problem.
Over the last decades many locally conservative mixed methods for this problem
have been developed and extensively utilized in practical applications due to their
desirable properties such as good approximation of the velocity and the local mass
conservation. The most popular one among such mixed methods is the mixed finite
element method; see, for example, [8, 18] for an extensive discussion on this topic
(and the references therein). There are also finite volume type methods such as
mixed covolume methods [10, 12] and mixed finite volume methods on nonstaggered
grids [13, 16].

On the other hand, it is now well recognized that a posteriori error estimators
are an indispensable tool for assessing numerical solutions of partial differential
equations. They can provide a systematic way for controlling numerical errors
locally and thus performing adaptive mesh refinements, which leads to more efficient
numerical computations. For a survey on various types of error estimators and their
analysis, we refer to the books of Ainsworth and Oden [1] and Verfürth [20].

In recent years there have been several attempts to develop a posteriori error
estimators for mixed finite element methods. For residual-type error estimators
the first result was obtained by Braess and Verfürth [7]. They could circumvent
some technical difficulties in applying the conventional strategy for the standard
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primal finite element methods by utilizing the mesh-dependent norms which are
similar to the H(div)-norm for the vector and the H1-like norm for the scalar but
at the expense of a saturation assumption. In [2, 9] the Helmholtz decomposition
was used to develop an error estimator for the vector in the natural H(div)-norm,
without any saturation assumption. In particular, the duality argument was used
in [9] to derive an error estimator for the L2-norm of the scalar error, which requires
a certain regularity on the given problem. For other types of error estimators and
their comparison we refer to [22].

The aim of this paper is to improve and extend the results of [6, 7] to cover
any locally conservative mixed method which produce H(div)-conforming vector
approximations. Although the same mesh-dependent norm of [6, 7] is employed
for the scalar, our approach is quite different from that of previous works and has
the advantage of being independent of any particular discretization, as long as the
vector approximation satisfies the local conservation law. Moreover, our analysis is
based on minimal assumptions, without requiring additional regularity of the true
solution nor any kind of saturation assumption.

Our results are applied to three locally conservative methods, namely, the mixed
finite element method, the P1 nonconforming finite element method and the interior
penalty discontinuous Galerkin method. For the first method, let us point out that
the scalar error in the mesh-dependent H1-like norm was overestimated in [7], and
it does not converge at all in the lowest order case. We resolve this difficulty by
following the idea proposed in [6] which employs a higher order scalar approximation
computed through a suitable postprocessing scheme.

Our analysis also takes into account discontinuous coefficients with possibly large
jumps across interelement boundaries. By incorporating the proper weights for
element and edge residuals, as in [5], we show that the error estimator is robust
with respect to the jumps under a suitable hypothesis (like Hypothesis 2.7 in [5]).

The rest of the paper is organized as follows. In the next section we introduce
some notation and function spaces. In Section 3 the model problem is stated with
the main assumption on its coefficient, and the locally conservative discretization is
introduced. In Section 4 we perform a rigorous analysis to establish the reliability
and efficiency of the Braess–Verfürth error estimator (up to higher order terms) in a
general setting. In Section 5 we discuss the application to the mixed finite element
method the P1 nonconforming finite element method, and the interior penalty
discontinuous Galerkin method. Finally in Section 6 numerical experiments are
carried out to illustrate our results.

2. Preliminaries

Let Ω be a bounded polygonal domain in R2 with ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅.
Suppose that {Th}h>0 is a family of regular triangulations of Ω into triangular
elements such that the intersection of any two elements is either empty, a vertex or
a complete edge. We define the usual mesh parameters

h = max
T∈Th

hT , hT = diam(T ), |T | = meas(T ).

Let Eh be the collection of all edges of Th which is split into three disjoint parts EI ,
ED, and EN , according to whether the edge belongs to Ω, ΓD, or ΓN , respectively.
The notation ET is used to denote the set of edges of an element T . With each
edge E ∈ Eh we associate a fixed unit normal nE which is taken outward to Ω for
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E ∈ ED ∪ EN . For E ∈ EI shared by two elements T+ and T− with nE being
directed from T+ to T−, we define the average and the jump of v on E by

{v} =
v+ + v−

2
, [[v]] = v+ − v−,

where v+ (resp. v−) denotes the trace of v|T+ (resp. v|T−). For the boundary edge
E ∈ ED ∩ ET , we set {v} = [[v]] = v|T .

Let Pr(T ) be the standard space of all polynomials on T whose degrees are less
than or equal to r. There are many well-known spaces for the vector approximation
(cf. [8, 18]), for example, the Raviart–Thomas (RT) space defined by

RT r(T ) = (Pr(T ))2 + xPr(T ) (x = (x, y)),

or the Brezzi–Douglas–Marini (BDM) space defined by

BDMr(T ) = (Pr(T ))2.

The global finite element spaces are then defined to be

Pr(Th) = {v ∈ L2(Ω) : v|T ∈ Pr(T ) ∀T ∈ Th},
RT r(Th) = {τ ∈ H(div; Ω) : τ |T ∈ RT r(T ) ∀T ∈ Th},

BDMr(Th) = {τ ∈ H(div; Ω) : τ |T ∈ BDMr(T ) ∀T ∈ Th},
where

H(div; Ω) = {τ ∈ (L2(Ω))2 : div τ ∈ L2(Ω)}.
We also need the finite element space on interelement boundaries defined by

Pr(Eh) = {v ∈ L2(
⋃

∂T ) : v|E ∈ Pr(E) ∀E ∈ Eh}.

The L2-projections onto Pr(Th) and Pr(Eh) are denoted by P r
h and Qr

h, respectively.
Similar definitions can be made for subsets of Th or Eh as well.

The standard notation H l(G) is adopted for the Sobolev space on a domain
G ⊂ R2, with its norm and seminorm denoted by ‖ · ‖l,G and | · |l,G (simply written
as ‖ · ‖l and | · |l if G = Ω), and we set

H1
D(Ω) = {v ∈ H1(Ω) : v|ΓD

= 0}.
It will also be convenient to define the broken Sobolev spaces for l ≥ 0 as

H l(Th) = {v ∈ L2(Ω) : v|T ∈ H l(T ) ∀T ∈ Th},
H l(ED) = {v ∈ L2(ΓD) : v|E ∈ H l(E) ∀E ∈ ED},
H l(EN ) = {v ∈ L2(ΓN ) : v|E ∈ H l(E) ∀E ∈ EN}.

3. Model problem and locally conservative discretization

Throughout the paper we are concerned with the following second order elliptic
problem with mixed boundary conditions

(3.1)

{
σ = κ∇u, div σ + f = 0 in Ω,

u|ΓD
= uD and σ · n|ΓN

= gN ,

where f ∈ L2(Ω), uD ∈ H
1
2 (ΓD) ∩ C0(ΓD), and gN ∈ L2(ΓN ) are the given

data, and n is the outward unit normal to ∂Ω. The SPD matrix-valued coeffi-
cient κ = κ(x) may be discontinuous with possibly large jumps across interelement
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boundaries, but is assumed to be smooth within each element T ∈ Th. This means
that there exist positive constants λT and ΛT such that for all x ∈ T and ξ ∈ R2,

λT ‖ξ‖2
R2 ≤ (κ(x)ξ, ξ)R2 ≤ ΛT ‖ξ‖2

R2 ,

with the ratio ΛT /λT being uniformly bounded over the whole family {Th}h>0.
For the error analysis in the next section, we need to impose some restriction on

the distribution of κ. For a vertex z of Th, let ωz be the collection of all elements
sharing z. Obviously, given a pair of elements T, T ′ in ωz, there is always at least
one connected path from T to T ′ through adjacent elements in ωz. We denote by
Tz a fixed element of ωz for which ΛT is maximal, that is,

ΛTz
= max

T∈ωz

ΛT ,

and we make the following assumption for every vertex z.

Main Assumption. For every element T in ωz, there exists a connected path
{Tj}J

j=0 ⊂ ωz from T to Tz with

(3.2) T0 = T, TJ = Tz, and ∂Tj ∩ ∂Tj+1 �= ∅,
such that

(3.3) ΛT ≤ C min
0≤j≤J

ΛTj
,

with C depending only on the minimum angle of {Th}h>0.

This assumption is satisfied; e.g., if ΛT increases monotonically along the path
{Tj}J

j=0 (Hypothesis 2.7 in [5]). From now on C will denote a generic positive
constant depending only on the minimum angle of {Th}h>0. Further dependence
of C on the polynomial degree (to be specified later) will be stated if necessary.

Suppose that we are given a locally conservative method of the mixed system
(3.1) which produces the H(div)-conforming vector approximation σh in Vh and
the possibly discontinuous scalar approximation uh in Wh. By locally conservative
we mean that σh should satisfy

(3.4)
∫

T

(div σh + f) dx = 0 and
∫

E

(σh · n − gN ) ds = 0

for all T ∈ Th and E ∈ EN . In fact, (σh, uh) is not necessarily the exact solution of
the given mixed method, as long as it satisfies the local conservation law (3.4).

The error measure used in this paper is given by

(3.5) ‖κ−1/2(σ − σh)‖0 + |||u − uh|||,
where we define for w ∈ H1(Th)

|||w|||2 =
∑

T∈Th

‖κ1/2∇w‖2
0,T +

∑
E∈EI∪ED

WEh−1
E ‖[[w]]‖2

0,E .

The mesh-dependent norm ||| · ||| is the energy norm typically encountered in the
analysis of discontinuous Galerkin methods (cf. [3, 15, 17]). The weight factor WE

is taken to be the simple or the harmonic average

(3.6) WE =
ΛT + ΛT ′

2
or

2ΛT ΛT ′

ΛT + ΛT ′

for an interior edge E ∈ ET ∩ ET ′ . For a boundary edge E ∈ ET , we simply set

(3.7) WE = ΛT .
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We will frequently use the following inequalities for these averages:
1
2

max{ΛT , ΛT ′} ≤ ΛT + ΛT ′

2
≤ max{ΛT , ΛT ′}

and
min{ΛT , ΛT ′} ≤ 2ΛT ΛT ′

ΛT + ΛT ′
≤ 2 min{ΛT , ΛT ′}.

For the optimality of the error (3.5) for smooth σ and u, it is natural to seek uh

in a finite element space of one order higher than that of σh; that is,

(Pk(T ))2 ⊆ Vh(T ) � (Pk+1(T ))2, Pk+1(T ) ⊆ Wh(T ) � Pk+2(T ),

where Vh(T ) and Wh(T ) are the local spaces. We can then expect the following
optimal a priori error estimate for 1 ≤ s ≤ k + 1:

(3.8) ‖κ−1/2(σ − σh)‖0 + |||u − uh||| ≤ Chs(‖σ‖s + ‖u‖s+1).

4. Braess–Verfürth error estimator

The residual-type error estimator of Braess and Verfürth [7] is defined by

η2 = η2
c + η2

nc,

where

η2
c :=

∑
T∈Th

(
‖κ−1/2(σh − κ∇uh)‖2

0,T + Λ−1
T h2

T ‖ div σh + f‖2
0,T

)
(4.1)

+
∑

E∈EN

W−1
E hE‖σh · n − gN‖2

0,E ,

η2
nc :=

∑
E∈EI

WEh−1
E ‖[[uh]]‖2

0,E +
∑

E∈ED

WEh−1
E ‖uh − uD‖2

0,E .(4.2)

Remark 4.1. The first component ηc can be viewed as the residuals of the equations
of (3.1) and the Neumann boundary condition, while the second component ηnc

represent the nonconformity of uh �∈ H1(Ω) and uh �= uD.

4.1. Reliability of η. The following theorem is the first part of the main results
of this paper which establishes the reliability of the estimator η.

Theorem 4.2. There exists a constant C > 0 depending only on the minimum
angle of {Th}h>0 and the polynomial degree k such that

(4.3) ‖κ−1/2(σ − σh)‖0 + |||u − uh||| ≤ C(η + ηhot),

where ηhot is defined by

η2
hot :=

∑
E∈ED

WE

(
h−1

E ‖uD − ũD‖2
0,E + hE |uD − ũD|21,E

)
.

Here ũD is the standard Lagrange interpolant of uD from Pk+1(ED) ∩ C0(ΓD).

Remark 4.3. As the subscript indicates, the extra term ηhot is of higher order than
η for uD ∈ Hk+2(ED)

ηhot ≤ C

( ∑
E∈ED

WEh2k+3
E ‖uD‖2

k+2,E

)1/2

,

and is thus negligible.
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In order to prove Theorem 4.2, it is crucial to note that

‖κ−1/2(σ − σh)‖0 ≤
( ∑

T∈Th

‖κ1/2∇(u − uh)‖2
0,T

)1/2

+
( ∑

T∈Th

‖κ−1/2(κ∇uh − σh)‖2
0,T

)1/2

and that ( ∑
E∈EI∪ED

WEh−1
E ‖[[u − uh]]‖2

0,E

)1/2

= ηnc,

since [[u]] = 0 on E ∈ EI and u|ΓD
= uD. Thus the proof of Theorem 4.2 is reduced

to showing that

(4.4)
( ∑

T∈Th

‖κ1/2∇(u − uh)‖2
0,T

)1/2

≤ C(η + ηhot).

For the proof of (4.4), we make use of the following decomposition of u− uh which
is similar to the Helmholtz decomposition of κ∇(u − uh).

Lemma 4.4. Let φ be the function in H1(Ω) such that φ|ΓD
= uD and

(4.5)
∫

Ω

κ∇φ · ∇v dx =
∑

T∈Th

∫
T

κ∇uh · ∇v dx ∀v ∈ H1
D(Ω).

Then the decomposition

u − uh = (u − φ) + (φ − uh)

satisfies the Pythagorean identity∑
T∈Th

‖κ1/2∇(u − uh)‖2
0,T = ‖κ1/2∇(u − φ)‖2

0 +
∑

T∈Th

‖κ1/2∇(φ − uh)‖2
0,T .

Proof. This is an immediate consequence of the orthogonality relation∑
T∈Th

∫
T

κ∇(u − φ) · ∇(φ − uh) dx = 0,

which is obtained by taking v = u − φ. �

Remark 4.5. It is easy to see that the second term
∑

T∈Th
‖κ1/2∇(φ − uh)‖2

0,T

measures the nonconformity of uh �∈ H1(Ω) and uh �= uD, as it will vanish if uh

belongs to H1(Ω) and uh|ΓD
= uD.

The next two lemmas establish the upper bound of the “conforming part”
‖κ1/2∇(u − φ)‖0 and the “nonconforming part”

( ∑
T∈Th

‖κ1/2∇(φ − uh)‖2
0,T

)1/2,
respectively, from which the estimate (4.4) follows directly.

Lemma 4.6. There exists a constant C > 0 depending only on the minimum angle
of {Th}h>0 such that

(4.6) ‖κ1/2∇(u − φ)‖0 ≤ Cηc.
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Proof. The left-hand side of (4.6) can be written as

‖κ1/2∇(u − φ)‖2
0 =

∑
T∈Th

∫
T

κ∇(u − uh) · ∇(u − φ) dx = I1 + I2,

where

I1 :=
∫

Ω

(σ − σh) · ∇(u − φ) dx,

I2 :=
∑

T∈Th

∫
T

(σh − κ∇uh) · ∇(u − φ) dx.

Since u − φ ∈ H1
D(Ω), we get, via the integration by parts,

I1 =
∑

T∈Th

( ∫
T

(f + div σh)(u − φ) dx +
∫

ΓN∩∂T

(gN − σh · n)(u − φ) ds

)
.

By using a constant approximation cT of u − φ on T such that

‖(u − φ) − cT ‖0,T + h
1/2
T ‖(u − φ) − cT ‖0,∂T ≤ ChT ‖∇(u − φ)‖0,T

and the local conservation law (3.4), one can deduce that

I1 ≤ C

( ∑
T∈Th

Λ−1
T h2

T ‖ div σh + f‖2
0,T +

∑
E∈EN

W−1
E hE‖σh · n − gN‖2

0,E

)1/2

× ‖κ1/2∇(u − φ)‖0.

The other term I2 can be bounded in a trivial way:

I2 ≤
( ∑

T∈Th

‖κ−1/2(σh − κ∇uh)‖2
0,T

)1/2

‖κ1/2∇(u − φ)‖0.

Combining these two results, we obtain the desired estimate (4.6). �

Lemma 4.7. There exists a constant C > 0 depending only on the minimum angle
of {Th}h>0 and the polynomial degree k such that

(4.7)
( ∑

T∈Th

‖κ1/2∇(φ − uh)‖2
0,T

)1/2

≤ C(ηnc + ηhot).

Proof. By the definition (4.5) of φ, it is easy to verify that∑
T∈Th

‖κ1/2∇(φ − uh)‖2
0,T = min

χ∈H1(Ω),
χ|ΓD

=uD

∑
T∈Th

‖κ1/2∇(χ − uh)‖2
0,T ,

which gives a further splitting of the left-hand side of (4.7) as( ∑
T∈Th

‖κ1/2∇(φ − uh)‖2
0,T

)1/2

≤ min
χ∈H1(Ω),
χ|ΓD

=uD

‖κ1/2∇(χ − ũh)‖0

+
( ∑

T∈Th

‖κ1/2∇(ũh − uh)‖2
0,T

)1/2

for every choice of ũh ∈ H1(Ω).
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The next step is to construct an appropriate function ũh ∈ H1(Ω) from uh and
adapt the argument of [15] (cf. Theorem 2.2), taking into account the large jumps
of κ across interelement boundaries. For this sake, we denote by N (S) the set of all
Lagrangian nodes associated with the space Pk+1(Th)∩C0(Ω) which are contained
in a domain S. The definitions of ωz and Tz immediately carry over to z ∈ N (Ω).
We now define ũh to be the unique function in Pk+1(Th) ∩ C0(Ω) interpolating

ũh(z) =

{
uD(z) for z ∈ N (ΓD),

uh|Tz
(z) for z ∈ N (Ω) \ N (ΓD).

It then suffices to establish the estimates

(4.8) min
χ∈H1(Ω),
χ|ΓD

=uD

‖κ1/2∇(χ − ũh)‖0 = min
χ∈H1(Ω),

χ|ΓD
=uD−ũD

‖κ1/2∇χ‖0 ≤ Cηhot

and

(4.9)
( ∑

T∈Th

‖κ1/2∇(ũh − uh)‖2
0,T

)1/2

≤ C(ηnc + ηhot).

To prove (4.8), we define χT ∈ H1(T ) on those elements T with ∂T ∩ΓD �= ∅ to
be the harmonic extension of the boundary values

χT =

{
uD − ũD on ∂T ∩ ΓD,

0 on ∂T \ ΓD.

Noting that uD − ũD vanishes at the endpoints of each edge E ∈ ED, we obtain

‖κ1/2∇χT ‖2
0,T ≤ C

∑
E∈ET ∩ED

WE‖uD − ũD‖2

H
1
2
00(E)

≤ C
∑

E∈ET ∩ED

WE‖uD − ũD‖0,E |uD − ũD|1,E

≤ C
∑

E∈ET ∩ED

WE

(
h−1

E ‖uD − ũD‖2
0,E + hE |uD − ũD|21,E

)
,

where the interpolation result was used in the second inequality. Hence, if we set

χ =

{
χT for those elements T with ∂T ∩ ΓD �= ∅,
0 elsewhere,

we get χ ∈ H1(Ω), χ|ΓD
= uD − ũD and ‖κ1/2∇χ‖0 ≤ Cηhot.

To derive the remaining estimate (4.9), we observe that (ũh − uh)(z) = 0 for all
z ∈ N (T ◦) (T ◦ denotes the interior of T ), and thus

‖κ1/2∇(ũh − uh)‖2
0,T ≤ CΛT h−2

T ‖ũh − uh‖2
0,T ≤ C

∑
z∈N (∂T )

ΛT |(ũh − uh|T )(z)|2,

with C depending on the polynomial degree k. Now fix z ∈ N (∂T ). If z ∈ N (ΓD),
then

|(ũh − uh)(z)| = |(ũD − uh|T )(z)|.
If z �∈ N (ΓD), we consider three different cases.

(i) If Tz = T , then
|(ũh − uh|T )(z)| = 0.
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(ii) If Tz �= T and z ∈ N (E◦) for some E ∈ ET , then Tz is adjacent to T and
so we obtain

ΛT |(ũh − uh|T )(z)|2 ≤ WE |[[uh]]|E(z)|2.
for either choice of WE in (3.6).

(iii) If Tz �= T and z is a vertex of T , then we choose a path {Tj}J
j=0 ⊂ ωz from

T to Tz satisfying the Main Assumption (3.2)–(3.3) to obtain

ΛT |(ũh − uh|T )(z)|2 = ΛT |(uh|Tz
− uh|T )(z)|2

≤ C
J−1∑
j=0

ΛT |(uh|Tj
− uh|Tj+1)(z)|2

≤ C
J−1∑
j=0

WEj
|[[uh]]|Ej

(z)|2,

where Ej = ∂Tj ∩ ∂Tj+1.
Note that for z ∈ N (ΓN ), we have either case (i) in which there is no contribution
at all or case (iii) in which the jumps across only some interior edges are involved.
By collecting the above results and summing over T ∈ Th, it follows that∑

T∈Th

‖κ1/2∇(ũh − uh)‖2
0,T ≤ C

( ∑
E∈EI

WE

∑
z∈N (E)

|[[uh]]|E(z)|2

+
∑

E∈ED

WE

∑
z∈N (E)

|(uh − ũD)(z)|2
)

≤ C

( ∑
E∈EI

WEh−1
E ‖[[uh]]‖2

0,E

+
∑

E∈ED

WEh−1
E ‖uh − ũD‖2

0,E

)

≤ C(η2
nc + η2

hot),

with C depending on the polynomial degree k. This completes the proof. �

4.2. Efficiency of η. To establish the converse result of Theorem 4.2, we follow
closely the argument of Verfürth [20] which is based on the weighted norms by
the bubble functions and the inverse inequalities. For this sake let us introduce
the cubic bubble function bT on T ∈ Th and the quadratic bubble function bE

associated with E ∈ EN satisfying

0 ≤ bT ≤ 1 = max bT , 0 ≤ bE ≤ 1 = max bE .

Then there exists a constant C > 0 depending only on the minimum angle of
{Th}h>0 and the polynomial degree r such that

‖v‖0,T ≤ C‖b1/2
T v‖0,T ∀v ∈ Pr(T ),(4.10)

‖v‖0,E ≤ C‖b1/2
E v‖0,E ∀v ∈ Pr(E).(4.11)

Also, there exists an operator PE that extends any function defined on E ∈ ET to
the element T and satisfies

(4.12) C1h
1/2
E ‖v‖0,E ≤ ‖bEPEv‖0,T ≤ C2h

1/2
E ‖v‖0,E ∀v ∈ Pr(E).
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Now we are ready to prove the efficiency of the estimator η. To avoid unnecessary
technical details, the data f and gN are assumed to be piecewise polynomials of
degree r. This restriction can be relaxed, which causes some extra higher order
approximation error for piecewise smooth data.

Theorem 4.8. There exists a constant C > 0 depending only on the minimum
angle of {Th}h>0 and the polynomial degrees k, r such that

(4.13) η ≤ C(‖κ−1/2(σ − σh)‖0 + |||u − uh|||).

Proof. From the identity

σh − κ∇uh = (σh − σ) + κ∇(u − uh),

it follows immediately that

‖κ−1/2(σh − κ∇uh)‖0 + ηnc ≤ C(‖κ−1/2(σ − σh)‖0 + |||u − uh|||).

To deal with the remaining terms of ηc, we note that for all w ∈ H1
D(Ω),∫

Ω

(σ − σh) · ∇w dx =
∫

Ω

(f + div σh)w dx +
∫

ΓN

(gN − σh · n)w ds.

Fix T ∈ Th and set w = bT (f + div σh). Then, by (4.10) and the inverse inequality,
we obtain

‖f + div σh‖2
0,T ≤ C‖κ−1/2(σ − σh)‖0,T ‖κ1/2∇w‖0,T

≤ C‖κ−1/2(σ − σh)‖0,T Λ1/2
T h−1

T ‖w‖0,T ,

which yields

(4.14) Λ−1/2
T hT ‖f + div σh‖0,T ≤ C‖κ−1/2(σ − σh)‖0,T .

Similarly, fixing E ∈ EN ∩ ET and setting w = bEPE(gN − σh · n), we obtain by
(4.11), (4.14) and the inverse inequality

‖gN − σh · n‖2
0,E ≤ C(‖κ−1/2(σ − σh)‖0,T ‖κ1/2∇w‖0,T + ‖f + div σh‖0,T ‖w‖0,T )

≤ C‖κ−1/2(σ − σh)‖0,T W
1/2
E h−1

T ‖w‖0,T ,

which yields by (4.12)

W
−1/2
E h

1/2
E ‖gN − σh · n‖0,E ≤ C‖κ−1/2(σ − σh)‖0,T .

Collecting all results together proves the desired assertion. �

5. Applications

In this section we apply the main results established in the previous section to
three locally conservative mixed methods, namely, the mixed finite element method,
the P1 nonconforming finite element method, and the interior penalty discontinuous
Galerkin method. The latter two methods can be considered to be mixed methods
since we can recover the H(div)-conforming vector approximations from the scalar
solution in a local and inexpensive way.



A POSTERIORI ERROR ANALYSIS FOR MIXED METHODS 53

5.1. Mixed finite element methods. Given a pair of finite element subspaces
Vh×Wh ⊂ H(div; Ω)×L2(Ω) satisfying the LBB stability condition, the mixed finite
element method for problem (3.1) is defined as follows: find (σh, uh) ∈ Vh × Wh

such that σh · n|ΓN
= Qk

hgN and∫
Ω

κ−1σh · τ dx +
∫

Ω

uh div τ dx =
∫

ΓD

uD τ · n ds ∀τ ∈ V 0
h ,(5.1) ∫

Ω

div σh w dx = −
∫

Ω

fw dx ∀w ∈ Wh,(5.2)

where
V 0

h = {τ ∈ Vh : τ · n|ΓN
= 0}.

For clarity of exposition, we restrict ourselves to the Raviart–Thomas space

Vh = RT k(Th), Wh = Pk(Th).

It is clear that the local conservation law (3.4) holds for this method. We also
have the following optimal a priori error estimate in the L2-norm for 1 ≤ s ≤ k + 1

‖κ−1/2(σ − σh)‖0 + ‖u − uh‖0 ≤ Chs(‖σ‖s + ‖u‖s).

However, it is not difficult to see that the error bound for u − uh in the norm ||| · |||
is suboptimal:

|||u − uh||| ≤ Chs−1(‖σ‖s + ‖u‖s).

This leads us to conclude that the following combination of norms chosen by Braess
and Verfürth [7],

‖κ−1/2(σ − σh)‖0 + |||u − uh|||,
is inappropriate as the second component would give an overestimated estimator.
As was proposed in [6], this incompatibility can be resolved by employing a higher
order scalar approximation computed through a suitable postprocessing scheme.
Our choice is the postprocessing scheme due to Stenberg [19] which is general
enough to cover all existing mixed finite elements, and moreover, does not require
the use of Lagrange multipliers.

Stenberg’s Postprocessing Scheme. Compute u∗
h ∈ Pk+1(Th) on each element

T ∈ Th as the solution of the local Neumann problem∫
T

κ∇u∗
h · ∇vh dx =

∫
T

fvh dx +
∫

∂T

σh · nT vh ds ∀vh ∈ Pk+1(T ),(5.3) ∫
T

u∗
h dx =

∫
T

uh dx.(5.4)

Now we apply the results of the previous section to the approximation (σh, u∗
h).

Since we have
div σh = −P k

h f, σh · n|ΓN
= Qk

hgN ,

it follows that for f ∈ Hk+1(Th) and gN ∈ Hk+1(EN ),

hT ‖ div σh + f‖0,T ≤ Chk+2
T ‖f‖k+1,T ∀T ∈ Th,

h
1/2
E ‖σh · n − gN‖0,E ≤ Ch

k+3/2
E ‖gN‖k+1,E ∀E ∈ EN ,
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which are of higher order than the remaining terms in η. This leads to the following
simpler error estimator than η:

(5.5) η̂2 = η̂2
c + η2

nc where η̂2
c :=

∑
T∈Th

‖κ−1/2(σh − κ∇u∗
h)‖2

0,T .

The following proposition states that Stenberg’s scheme possesses the property
of minimizing the component η̂c up to a higher order term.

Proposition 5.1. Let u∗
h ∈ Pk+1(Th) be defined by Stenberg’s scheme (5.3)–(5.4).

Then there exists a constant C > 0 depending only on the minimum angle of
{Th}h>0 such that for all T ∈ Th,

‖κ−1/2(σh − κ∇u∗
h)‖0,T ≤ min

vh∈Pk+1(T )
‖κ−1/2(σh − κ∇vh)‖0,T

+ CΛ−1/2
T hT ‖ div σh + f‖0,T .

Proof. Note that for vh ∈ Pk+1(T ),

‖κ−1/2(σh − κ∇vh)‖2
0,T = ‖κ−1/2(σh − κ∇u∗

h)‖2
0,T + ‖κ1/2∇(u∗

h − vh)‖2
0,T

+ 2
∫

T

(σh − κ∇u∗
h) · ∇(u∗

h − vh) dx

and ∫
T

(σh − κ∇u∗
h) · ∇(u∗

h − vh) dx = −
∫

T

(div σh + f)(u∗
h − vh) dx.

The latter equality follows directly from the definition of u∗
h. By using (3.4) and

then Young’s inequality ab ≤ εa2 + 1
4εb

2 (a, b ∈ R, ε > 0), we obtain∫
T

(σh − κ∇u∗
h) · ∇(u∗

h − vh) dx ≤ C‖ div σh + f‖0,T λ
−1/2
T hT ‖κ1/2∇(u∗

h − vh)‖0,T

≤ CΛ−1
T h2

T ‖ div σh + f‖2
0,T +

1
4
‖κ1/2∇(u∗

h − vh)‖0,T ,

from which the desired result follows immediately. �
Remark 5.2. The above proposition shows that one may define η̂c equivalently by
the minimization quantity

η̂2
c := min

vh∈Pk+1(Th)

∑
T∈Th

‖κ−1/2(σh − κ∇vh)‖2
0,T

without losing reliability and efficiency. A similar statement was given in [9], where
the estimator involves the minimization

min
vh∈Pk(Th)

∑
T∈Th

h2
T ‖κ−1/2(σh − κ∇vh)‖2

0,T .

Remark 5.3. For the lowest order case k = 0, it is possible to further simplify η̂c.
Suppose, for simplicity, that κ is piecewise constant. It is easy to see that σh can
be written as

σh|T = σ̄h|T − f̄

2
(x − xT ),

where f̄ = P 0
hf , and xT is the barycenter of T . Taking vh = x−xT , y−yT in (5.3),

one can verify that

σ̄h|T = κ∇u∗
h|T − 1

|T |

∫
T

(div σh + f)(x − xT ) dx.
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Hence it follows that

‖κ−1/2(σh − κ∇u∗)‖0,T ≤
∥∥∥∥κ−1/2 f̄

2
(x − xT )

∥∥∥∥
0,T

+
1
|T |

∥∥∥∥κ−1/2

∫
T

(div σh + f)(x − xT ) dx

∥∥∥∥
0,T

.

Since the second term can be bounded in a trivial way,
1
|T |

∥∥∥∥κ−1/2

∫
T

(div σh + f)(x − xT ) dx

∥∥∥∥
0,T

≤ CΛ−1/2
T hT ‖ div σh + f‖0,T ,

we obtain the estimator

(5.6) η̂2 = η̂2
c + η2

nc where η̂2
c :=

∑
T∈Th

∥∥∥∥κ−1/2 f̄

2
(x − xT )

∥∥∥∥
2

0,T

.

Note that this η̂c can be computed in a priori way without knowing (σh, u∗
h).

Remark 5.4. No specific choice for WE was made, and thus all the results obtained
above are valid for both the simple and the harmonic averages. We believe, however,
that the harmonic average would be the proper choice because we have no explicit
control of [[u∗

h]] in the discrete formulation, unlike the interior penalty discontinuous
Galerkin method. This point is further illustrated for the P1 nonconforming finite
element method in the next subsection.

5.2. P1 nonconforming finite element method. The P1 nonconforming space
of Crouzeix and Raviart [14] is defined to be

Pnc
1 (Th) :=

{
vh ∈ P1(Th) :

∫
E

[[vh]] ds = 0 ∀E ∈ EI

}
.

The P1 nonconforming finite element method then consists of finding uh ∈ Pnc
1 (Th)

such that Q0
huh|ΓD

= Q0
huD and

(5.7)
∑

T∈Th

∫
T

κ∇uh · ∇vh dx =
∫

Ω

fvh dx +
∫

ΓN

gNvh ds

for all vh ∈ Pnc
1 (Th) with Q0

hvh|ΓD
= 0.

Recently, it was revealed in [13] that the discretization (5.7) can be interpreted as
a mixed finite volume method if we replace f and gN by f̄ and Q0

hgN , respectively.
More specifically, the modified method of (5.7)

(5.8)
∑

T∈Th

∫
T

κ∇uh · ∇vh dx =
∫

Ω

f̄ vh dx +
∫

ΓN

Q0
h(gN )vh ds

along with the explicit formula

(5.9) σh|T = κ̄∇uh|T − f̄

2
(x − xT )

is equivalent to the following mixed finite volume method on nonstaggered grids:
find (σh, uh) ∈ RT 0(Th)×Pnc

1 (Th) such that σh ·n|ΓN
= Q0

hgN , Q0
huh|ΓD

= Q0
huD,

and

(5.10)
∫

T

(σh − κ∇uh) dx = 0,

∫
T

(div σh + f) dx = 0

for all T ∈ Th.
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It is a simple matter to derive the same simple error estimator as obtained for
the lowest order Raviart–Thomas mixed finite element method. Suppose again that
κ is piecewise constant on Th. Then it follows obviously from (5.9) that

‖κ−1/2(σh − κ∇uh)‖0,T =
∥∥∥∥κ−1/2 f̄

2
(x − xT )

∥∥∥∥
0,T

,

which gives exactly the simple error estimator (5.6). Moreover, we can even prove
that the local contribution η̂T defined by

(5.11) η̂2
T :=

∥∥∥∥κ−1/2 f̄

2
(x − xT )

∥∥∥∥
2

0,T

+
1
2

∑
E∈ET ∩EI

WEh−1
E ‖[[uh]]‖2

0,E

+
∑

E∈ET ∩ED

WEh−1
E ‖uh − uD‖2

0,E

provides a local lower bound for the energy norm of the scalar error only, if we
choose the harmonic average for WE .

Theorem 5.5. Suppose that κ is piecewise constant on Th, and η̂T is given by
(5.11) with the weight factor

WE =
2ΛT ΛT ′

ΛT + ΛT ′
(E ∈ ET ∩ ET ′).

Then there exists a constant C > 0 depending only on the minimum angle of
{Th}h>0 such that for all T ∈ Th,

(5.12) η̂T ≤ C

( ∑
T ′∈ωT

‖κ1/2∇(u − uh)‖2
0,T ′ + Λ−1

T h2
T ‖f − f̄‖2

0,T

)1/2

,

where ωT denotes the set of all elements sharing an edge with T .

Proof. The first term of η̂T can be treated in a standard way. From the identity∫
T

κ∇(u − uh) · ∇v dx =
∫

T

fv dx ∀v ∈ H1
0 (T ),

we obtain by setting v = bT f̄∫
T

bT |f̄ |2 dx =
∫

T

κ∇(u − uh) · ∇v dx −
∫

T

(f − f̄)v dx

≤ (‖κ1/2∇(u − uh)‖0,T · CΛ1/2
T h−1

T + ‖f − f̄‖0,T )‖v‖0,T ,

which gives by (4.10)

Λ−1/2
T hT ‖f̄‖0,T ≤ C(‖κ1/2∇(u − uh)‖0,T + Λ−1/2

T hT ‖f − f̄‖0,T ).

For the second term of η̂T , we get for E ∈ ET ∩ ET ′

WEh−1
E ‖[[uh]]‖2

0,E = WEh−1
E ‖[[u − uh]] − Q0

h([[u − uh]])‖2
0,E

≤ CWE(‖∇(u − uh)‖2
0,T + ‖∇(u − uh)‖2

0,T ′)

≤ C(ΛT ‖∇(u − uh)‖2
0,T + ΛT ′‖∇(u − uh)‖2

0,T ′)

≤ C(‖κ1/2∇(u − uh)‖2
0,T + ‖κ1/2∇(u − uh)‖2

0,T ′).

The third term of η̂T can be bounded in the same way. The proof is completed by
combining all the results above. �
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Remark 5.6. An error estimator similar to (5.11) was also derived in [21], where
the simple average WE = ΛT +ΛT ′

2 was chosen. This choice is not a proper one for
highly discontinuous coefficients, as we can only show that

WEh−1
E ‖[[uh]]‖2

0,E ≤ max{ΛT , ΛT ′}h−1
E ‖[[uh]]‖2

0,E

≤ C
max{ΛT , ΛT ′}
min{ΛT , ΛT ′} (‖κ1/2∇(u − uh)‖2

0,T + ‖κ1/2∇(u − uh)‖2
0,T ′).

This bound is sharp, as illustrated by a simple example in the appendix.

5.3. Interior penalty discontinuous Galerkin method. The discontinuous
Galerkin method is a class of numerical methods based on discontinuous finite
elements for the trial and the test spaces. Very often, the interior penalty terms are
added in order to take explicit control of the jumps of the discontinuous solution.

The interior penalty discontinuous Galerkin method considered in this subsection
is a slight modification of the usual formulation which is presented as follows: find
uh ∈ Pk+1(Th) such that for all vh ∈ Pk+1(Th),∑

T∈Th

∫
T

κ∇uh · ∇vh dx −
∑

E∈EI∪ED

∫
E

{κ∇uh · nE}Qk
h([[vh]]) ds(5.13)

− α
∑

E∈EI∪ED

∫
E

{κ∇vh · nE}Qk
h([[uh]]) ds

+
∑

E∈EI∪ED

γWEh−1
E

∫
E

Qk
h([[uh]])Qk

h([[vh]]) ds

=
∫

Ω

fvh dx +
∫

ΓN

gNvh ds − α
∑

E∈ED

∫
E

κ∇vh · nE Qk
h(uD) ds

+
∑

E∈ED

γWEh−1
E

∫
E

Qk
h(uD)Qk

h(vh) ds.

Here α = −1, 0, or 1, and γ > 0 is a stabilization parameter to ensure the coercivity
of the discrete system (5.13). Note that the jump terms are projected by the L2-
projection Qk

h onto the finite element space Pk(Eh). It can be shown that this does
not affect the optimal order of convergence in the energy norm (cf. [16]).

The choice α = 1 corresponds to the symmetric formulation studied in [3], while
the choice α = −1 was introduced and analyzed in [17]. The choice α = 0 is less
well understood, but it was shown in [16] that this choice is closely related to mixed
finite volume methods on nonstaggered grids, especially when the data f and gN

are projected onto suitable finite element spaces.
One can easily see that for α = −1, the method (5.13) yields a coercive system

for all γ > 0 and WE > 0. For α = 0 or 1, we need to choose γ sufficiently large,
and moreover, take WE to be the simple average in order to ensure the coercivity
of (5.13). This is shown in the following proposition.

Proposition 5.7. For α = 0 or 1, let WE be given by the simple average

WE =
ΛT + ΛT ′

2
(E ∈ ET ∩ ET ′).

Then there exists a constant C > 0 depending only on the minimum angle of
{Th}h>0 and the polynomial degree k such that the method (5.13) yields a coer-
cive system for all γ > C.
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Proof. It suffices to prove that for all vh ∈ Pk+1(Th),

(1 + α)
∑

E∈EI∪ED

∫
E

{κ∇vh · nE}Qk
h([[vh]]) ds

≤ 1
2

∑
T∈Th

‖κ1/2∇vh‖2
0,T + C

∑
E∈EI∪ED

WEh−1
E ‖[[vh]]‖2

0,E .

For an interior edge E ∈ ET ∩ ET ′ , we get∫
E

{κ∇vh · nE}Qk
h([[vh]]) ds ≤ 1

2
(ΛT ‖∇vh · n|T ‖0,E + ΛT ′‖∇vh · n|T ′‖0,E)‖[[vh]]‖0,E

≤ C(ΛT ‖∇vh‖0,T + ΛT ′‖∇vh‖0,T ′)h−1/2
E ‖[[vh]]‖0,E

≤ ε(‖κ1/2∇vh‖2
0,T + ‖κ1/2∇vh‖2

0,T ′) + CWEh−1
E ‖[[vh]]‖2

0,E ,

where we used the inverse inequality

‖wh‖0,∂T ≤ Ch
−1/2
T ‖wh‖0,T ∀wh ∈ Pk(T )

(with C depending on the polynomial degree k) and then Young’s inequality. Sim-
ilarly, for a boundary edge E ∈ ED ∩ ET , we get∫

E

κ∇vh · nE Qk
h(vh) ds ≤ ε‖κ1/2∇vh‖2

0,T + CWEh−1
E ‖vh‖2

0,E .

Summing over all E ∈ EI ∪ ED and taking ε = 1
6 , we obtain the desired result. �

A locally conservative vector approximation σh ∈ RT k(Th) can be constructed
on each element T ∈ Th from the scalar solution uh by specifying its degrees of
freedom as follows: (see, e.g., [4])

(5.14) σh · nE |E =

⎧⎪⎨
⎪⎩

Qk
h

(
{κ∇uh · nE} − γWEh−1

E [[uh]]
)

for E ∈ EI ,

Qk
h

(
κ∇uh · nE − γWEh−1

E (uh − uD)
)

for E ∈ ED,

Qk
hgN for E ∈ EN ,

and for k ≥ 1

(5.15)
∫

T

σh · τ dx =
∫

T

κ∇uh · τ dx ∀τ ∈ (Pk−1(T ))2.

It is clear that this construction can be done locally and that σh satisfies the local
conservation law (3.4). One remarkable thing is that, unlike the mixed finite element
method, the second and third terms of ηc( ∑

T∈Th

Λ−1
T h2

T ‖ div σh + f‖2
0,T

)1/2

and
( ∑

E∈EN

W−1
E hE‖σh · n − gN‖2

0,E

)1/2

are not higher order ones, and thus cannot be neglected, except for k = 0.
Let us now restrict ourselves to the lowest order k = 0, and suppose again that

κ is piecewise constant on Th. In this case σh ∈ RT 0(Th) is determined by

(5.16) σh · nE |E =

⎧⎪⎨
⎪⎩

{κ∇uh · nE} − γWEh−1
E Q0

h([[uh]]) for E ∈ EI ,

κ∇uh · nE − γWEh−1
E Q0

h(uh − uD) for E ∈ ED,

Q0
hgN for E ∈ EN ,
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where we used the fact that κ∇uh is piecewise constant. As previously, we can
write σh in the form

σh|T = σ̄h|T − f̄

2
(x − xT ).

To determine the constant part σ̄h|T , we note that for all vh ∈ P1(T ),∫
T

(κ∇uh − σh) · ∇vh dx =
∫

T

(f + div σh)vh dx +
∫

∂T∩ΓN

(gN − σh · n)vh ds

+ α
∑

E∈ET ∩EI

∫
E

1
2
κ∇vh · nT Q0

h([[uh]]) ds

+ α
∑

E∈ET ∩ED

∫
E

κ∇vh · nT Q0
h(uh − uD) ds.

By taking vh = x − xT , y − yT , we can obtain

σ̄h|T = κ∇uh|T − (I1 + I2),

where

I1 =
1
|T |

∫
T

(f + div σh)(x − xT ) dx +
1
|T |

∫
∂T∩ΓN

(gN − σh · n)(x − xT ) ds,

I2 =
α

|T |
∑

E∈ET ∩EI

∫
E

1
2
κnT Q0

h([[uh]]) ds +
α

|T |
∑

E∈ET ∩ED

∫
E

κnT Q0
h(uh − uD) ds.

These two terms can be bound in a straightforward way:

I1 ≤ C|T |−1/2(hT ‖ div σh + f‖0,T + h
1/2
T ‖σh · n − gN‖0,∂T∩ΓN

)

and

I2 ≤ C|T |−1/2ΛT

( ∑
E∈ET ∩EI

h−1
E ‖[[uh]]‖2

0,E +
∑

E∈ET ∩ED

h−1
E ‖uh − uD‖2

0,E

)1/2

.

Therefore it follows that

‖κ−1/2(σh − κ∇uh)‖0,T ≤ C(η̂T + Λ−1/2
T hT ‖ div σh + f‖0,T

+ Λ−1/2
T h

1/2
T ‖σh · n − gN‖0,∂T∩ΓN

),

where η̂T was defined by (5.11). Since the second and third terms are of higher
order for f ∈ H1(Th) and g ∈ H1(EN ), we conclude that the estimator η̂ given by
(5.6) or (5.11) is reliable for k = 0. The efficiency of η̂ for the scalar error only can
be established in a similar way to the P1 nonconforming finite element method:

η̂ ≤ C

(
|||u − uh|||2 +

∑
T∈Th

Λ−1
T h2

T ‖f − f̄‖2
0,T

)1/2

.

Remark 5.8. When compared with the result of [15], the above result shows that
for the lowest order k = 0, the contributions from the jumps of normal fluxes are
redundant, and thus can be excluded.
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6. Numerical results

In this section we present some numerical results to illustrate the performance of
our error estimator. The test problems are posed on the domain Ω = (−1, 1)2 with
the piecewise constant coefficient κ = R in the first and third quadrants and κ = 1
in the second and fourth quadrants for different values of R > 1. Note that this
choice of κ does not fulfill the Main Assumption of Section 3. Indeed, it is found in
the second example that the efficiency index tends to deteriorate for large values of
R. Nevertheless, the first example indicates that we can get robust results under
certain circumstances, e.g., for regular solutions.

Numerical experiments were carried out for all the three methods analyzed in
Section 5, namely, the lowest order Raviart–Thomas mixed finite element method,
the P1 nonconforming finite element method, and the lowest order interior penalty
discontinuous Galerkin method with the parameters α = 1 and γ = 5. The results
are, however, presented for the interior penalty discontinuous Galerkin method only,
as very similar behaviors were observed for the other two methods.

In each experiment below we report the scalar error measured in the broken
H1-norm given by

|u − uh|1,h,κ =
( ∑

T∈Th

‖κ1/2∇(u − uh)‖2
0,T

)1/2

and the error estimators ηsimple or ηharmonic =
(∑

T∈Th
η̂2

T

)1/2 whose local contri-
bution η̂T is given by (5.11) with the simple or harmonic average for WE .

It should be noted that ηsimple and ηharmonic differ significantly when the jump
of the coefficient κ is large. This is the reason why we did not include the jump
terms in the scalar error, as these terms (with the simple average for WE) tend to
be dominant over the gradient error in such cases; see the results in the following

N
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10 1
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η

harmonic
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Figure 1. Scalar H1-error and error estimators on uniform
meshes for Example 6.1 with R = 5
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Figure 2. Scalar H1-error and error estimators on uniform
meshes for Example 6.1 with R = 100

examples. Moreover, the jump terms in the scalar error are unnecessary for the
P1 nonconforming method and for the mixed finite element methods as well in the
sense that we are more interested in the vector error (which was found to be slightly
better than the scalar error in our experiments).

Example 6.1. In the first test problem we choose the solution

u(x, y) =
1

κ(x, y)
sin(πx) sin(πy)

with the corresponding right-hand side given by f(x, y) = 2π2 sin(πx) sin(πy) and
the homogeneous Dirichlet boundary condition imposed on ∂Ω. Note that u and
κ∇ · n are continuous across the lines of discontinuity of κ.

Since u is piecewise regular, we only consider a sequence of uniformly refined
triangular meshes starting from the initial mesh composed of eight triangles gener-
ated by partitioning Ω into four equal squares and then dividing them by diagonals
of slope one.

The numerical results are plotted in Figures 1–3 for R = 5, 100 and 10000,
respectively, which display the optimal convergence behavior of the scalar errors
and the error estimators as functions of N , where N represents the total number of
degrees of freedom. The scalar errors are computed by using a high order Gaussian
quadrature on each element. It is clearly observed that ηharmonic performs very well
independently of the values of R (the efficiency index remaining close to one), while
the performance of ηsimple tends to deteriorate when R gets large. We remark that
exactly the opposite result would be obtained if the jump terms with the simple
average for WE are included in the scalar error (as is typically done in a priori error
analysis for discontinuous Galerkin methods).
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Figure 3. Scalar H1-error and error estimators on uniform
meshes for Example 6.1 with R = 10000

Example 6.2. The second test problem is the one from [11]. The exact solution
for f = 0 is given in polar coordinates by u(r, θ) = rβµ(θ), where

µ(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos((π/2 − σ)β) · cos((θ − π/2 + ρ)β) if 0 ≤ θ ≤ π/2,

cos(ρβ) · cos((θ − π + σ)β) if π/2 ≤ θ ≤ π,

cos(σβ) · cos((θ − π − ρ)β) if π ≤ θ ≤ 3π/2,

cos((π/2 − ρ)β) · cos((θ − 3π/2 − σ)β) if 3π/2 ≤ θ ≤ 2π,

N
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Figure 4. Scalar H1-error and error estimators on adaptive
meshes for Example 6.2 with β = 0.5 and R ≈ 5.83
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Figure 5. Scalar H1-error and error estimators on adaptive
meshes for Example 6.2 with β = 0.1 and R ≈ 161.45

and the numbers β, R, ρ, σ satisfy the nonlinear relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = − tan((π/2 − σ)β) · cot(ρβ),

1/R = − tan(ρβ) · cot(σβ),

R = − tan(σβ) · cot((π/2 − ρ)β),
0 < β < 2,

max(0, πβ − π) < 2βρ < min(πβ, π),

max(0, π − πβ) < −2βσ < min(π, 2π − πβ).
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Figure 6. Scalar H1-error and error estimators on adaptive
meshes for Example 6.2 with β = 0.02 and R ≈ 4052.18
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We consider the three values β = 0.5, 0.1, and 0.02, respectively, which produce
the following set of parameters R, ρ, σ:

β = 0.5, R ≈ 5.8284271247461907, ρ = π/4, σ ≈ −2.3561944901923448,

β = 0.1, R ≈ 161.4476387975881, ρ = π/4, σ ≈ −14.92256510455152,

β = 0.02, R ≈ 4052.1806954768103, ρ = π/4, σ ≈ −77.754418176347386.

Since u belongs to H1+δ(Ω) for δ < β and thus is very singular for small values
of β, we perform adaptive mesh refinement based on the error estimator ηharmonic

by following the simple maximum strategy (cf. [20]): mark the element T for
refinement if

ηT ≥ 1
2

max
T ′∈Th

ηT ′ ,

and further refine adjacent elements to avoid hanging nodes.
Numerical results are reported in Figures 4–6. The scalar errors are computed

by applying high order Gaussian quadratures to the formula

|u − uh|21,h,κ =
∫

∂Ω

κ∇u · n u ds − 2
∑

T∈Th

∫
∂T

κ∇uh · n u ds +
∑

T∈Th

‖κ1/2∇uh‖2
0,T ,

which is easily obtained via integration by parts. We see again that the performance
of ηsimple tends to deteriorate for large R or small β. The same phenomenon is
observed for ηharmonic on coarse meshes with approximately N � 103 for β = 0.1
and N � 104 for β = 0.02, although the efficiency index gets close to one as the
strong singularity at the origin is resolved by means of adaptive mesh refinement.
In summary, we can still say that the overall performance of ηharmonic is better than
that of ηsimple and the optimality of adaptive mesh refinement based on ηharmonic

is valid asymptotically.
Figure 7 presents an adaptive mesh for β = 0.1 which contains N/3 = 31172

elements. As expected, it is highly refined around the singularity at the origin, and
the smallest mesh size is found to be of the order of 10−26.

X
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-1 -0.5 0 0.5 1
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-0.5

0

0.5

1

Figure 7. Adaptive mesh of N = 93516 for Example 6.2 with
β = 0.1. The smallest mesh size is of the order of 10−26.
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7. Appendix

The purpose of this appendix is to illustrate by a simple example that the proper
weight factor WE for the P1 nonconforming finite element method is given by the
harmonic average (see Theorem 5.5).

We consider the problem

div(κ∇u) = 0 in (0, 1)2

with the discontinuous coefficient (α > 0)

κ =

{
1 on T1,

α−1 on T2,

and the Dirichlet boundary condition given by the true solution

u(x, y) =

{
3(x2 − y2) on T1,

3α(x2 − y2) on T2.

The triangulation consists of two elements, T1 and T2, as shown in Figure 8. Note
that both u and κ∇u · nE are continuous across the interface E = ∂T1 ∩ ∂T2.

Let φi be the P1 nonconforming basis function associated with the node xi.
Then it is rather straightforward to derive that the P1 nonconforming finite element
solution uh is given by

uh = φ1 + 2φ2 − 2αφ3 − αφ4.

This yields, by simple calculation,

h−1
E ‖[[uh]]‖2

0,E =
1
3
(1 + α)2

and
‖∇(u − uh)‖2

0,T1
+ α−1‖∇(u − uh)‖2

0,T2
= 2(1 + α).

Therefore we conclude that the harmonic average

WE =
2α−1

1 + α−1
=

2
1 + α

gives a correct weight factor independently of the value of α.

(0 ,0)

(1,1)

T2

T1

x1

x2

x3

x4 x5

Figure 8. Domain geometry and triangulation
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