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ON THE CONVERGENCE OF RATIONAL APPROXIMATIONS
OF SEMIGROUPS ON INTERMEDIATE SPACES

MIHÁLY KOVÁCS

Abstract. We generalize a result by Brenner and Thomée on the rate of
convergence of rational approximation schemes for semigroups. Using abstract
interpolation techniques we obtain convergence on a continuum of intermediate
spaces between the Banach space X and the domain of a certain power of the
generator of the semigroup. The sharpness of the results is also discussed.

1. Introduction

At the core of this paper is the study of time-discretization methods for differ-
ential equations u̇(t) = Au(t), where A : X ⊃ D(A) → X is a linear operator with
domain D(A) in a Banach space X. Throughout the paper it is assumed that A
generates a strongly continuous semigroup (C0-semigroup) T (·) of type M ; that
is, there exists M ≥ 1 such that ||T (t)|| ≤ M for all t ≥ 0.1 Many of the basic
methods used to analyse time-discretization schemes in a Banach-space setting go
back to Lax and Richtmyer [18] (see also [17], [21]). Often, the semigroup T (t)
is approximated by a product of operators

∏n
i=1 r(τiA),

∑n
i=1 τi = t, where r is

a rational approximation method of order q ≥ 1; that is, r approximates the expo-
nential function to order q ≥ 1; that is, r(z) = ez + O(zq+1) as z → 0 and r is
A-stable; that is, |r(z)| ≤ 1 for Re z ≤ 0. For example, the Backward Euler ap-
proximation method rBE(z) = 1

1−z is of order 1 and, for every C0-semigroup T (·),
T (t)x = limn→∞ rBE( t

nA)nx = limn→∞(I − t
nA)−nx for all x ∈ X. The basis for

our investigations are the papers by Hersh and Kato [11] as well as by Brenner and
Thomée [3], where the following result is proved.

Theorem 1.1. If r is a rational approximation method of order q ≥ 1, then there
is a constant K > 0 such that for k = 0, 1, . . . , q + 1, k �= q+1

2 , we have2

||rn( t
nA)x − T (t)x|| ≤ KMtk−ηq(k)

(
t
n

)ηq(k)||Akx||, t ≥ 0, n ∈ N, x ∈ D(Ak),

where ηq(k) is defined as

ηq(k) :=

{
k − 1

2 if 0 ≤ k < q+1
2 ,

k q
q+1 if q+1

2 ≤ k ≤ q + 1.
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If k = q+1
2 , then ||rn( t

nA)x−T (t)x|| ≤ KMtk−ηq(k)
(

t
n

)ηq(k) ln(n+1)||Akx|| for all
n ∈ N and t ≥ 0. �

Since ηq(0) = −1
2 , Theorem 1.1 suggests that for general x ∈ X one cannot

expect convergence (rather a growth proportional to
√

n) and that for x ∈ D(Aq+1)
the order of convergence is optimal (and proportional to 1

nq since ηq(q + 1) = q).
In [2] and [4, Chapter 5] it is shown that for k �= q+1

2 the above rates are sharp for
the left-translation semigroup on L1(R) which means that the convergence rates in
Theorem 1.1 cannot be improved in general. However, the set of initial data that
corresponds to a certain speed of convergence in Theorem 1.1 is not optimal. In
Theorem 3.2 we will show that the estimates in Theorem 1.1 remain valid if the
initial data is taken from the Favard space of order k instead of D(Ak) and if ||Akx||
is replaced by the appropriate Favard norm of x. If X is not reflexive, then the
Favard spaces are usually significantly larger than D(Ak).

As proposed in [3] and [11], we use the Hille–Phillips (H-P) functional calculus
in our analysis (for the original approach to the H-P functional calculus via regular
Borel measures, see [12]; for the reformulation in terms of functions of bounded
variation, see [14]). We recall the following basic facts about the H-P functional
calculus.3 A function α : [0, R] → C is in NBV [0, R] if it is of bounded variation
and normalized; i.e., α(0) = 0, and α(u) = α(u+)+α(u−)

2 for all u ∈ (0, R). The
space NBV := {α ∈

⋂
R>0 NBV [0, R] : supt>0 Vα(t) < +∞} is a commutative

Banach algebra with multiplication defined by the Stieltjes convolution (α∗β)(t) :=∫ t

0
α(t − u) dβ(u) and norm ||α||TV := supt>0 Vα(t), where Vα(t) denotes the total

variation of α on [0, t]. Let C0 := {z ∈ C : Re z ≤ 0} and G := {fα : fα(z) =∫ ∞
0

ezt dα(t), z ∈ C0, α ∈ NBV }. Then the operator Φ : NBV → G defined
by Φ(α) := fα is an algebra isomorphism, and if we set ||fα|| := ||α||TV , then G
becomes a Banach algebra. If a rational function r satisfies |r(z)| ≤ M (z ∈ C0) for
some M > 0 (in particular, if r is A-stable), then r ∈ G. Indeed, constant functions
and functions z → 1

a−z belong to the algebra G for Re a > 0. By developing r into
partial fractions, we see that r ∈ G. Another important example of a function in G
is z 
→ ezt for fixed t ≥ 0 since ezt =

∫ ∞
0

ezs dHt(s), where the normalized Heaviside
function Ht for t > 0 is defined as

Ht(s) :=

⎧⎪⎨
⎪⎩

0 if 0 ≤ s < t,
1
2 if s = t,

1 if t < s,

and, similarly, H0(s) := 0 for s = 0 and H0(s) := 1 for s > 0. Now let A generate
a C0-semigroup T (·) of type M on a Banach space X. For f ∈ G with f(z) :=∫ ∞
0

ezt dα(t) (z ∈ C0), let f(A)x :=
∫ ∞
0

T (t)x dα(t). Then the map Ψ : G → B(X)
defined by Ψ(f) := f(A) is an algebra homomorphism and ||f(A)|| ≤ M ||α||TV .
This is, in essence, the H-P functional calculus.

In addition to the H-P functional calculus, the proof of the error estimates for
time-discretization schemes on integer order Favard spaces given in Section 3 relies
on the study of the following Laplace-Stieltjes transform problem which is discussed
in [16] and [15, Chapter 2].

3We recall the H-P functional calculus for bounded semigroups only, since the general version
of it is not needed in this paper.
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Assume that the functions rn(z) :=
∫ ∞
0

ezs dαn(s), αn ∈ NBV , converge point-
wise to v(z) :=

∫ ∞
0

ezs dα(s), α ∈ NBV , as n → ∞. Does this imply the con-
vergence of αn to α and, if yes, in what sense? If we assume that the speed of
convergence of rn to v is known pointwise, can we say something about the speed
of convergence of αn to α in various norms? Answers to these questions are given in
Sections 2 and 3 for cases in which rn(z) := rn( z

n ) and r is a rational approximation
method of order q ≥ 1.

In Section 4, the Brenner–Thomée estimates are extended to standard intermedi-
ate spaces between X and D(Aq+1). Using abstract interpolation techniques, opti-
mal order of convergence is obtained for almost all Favard spaces Fα, 0 ≤ α ≤ q+1.
A similar procedure was carried out in [2] and [4] for interpolation spaces based on
Lp(R). The latter studies inspired us to use the K-method when constructing the
various intermediate spaces, since when X = Lp(R) a family of them coincides with
the appropriate Besov spaces considered in [2] and [4]. In Corollary 4.3 we prove a
new stability result for the discrete orbits rn( t

nA)x if x is taken from an intermedi-
ate space of order 1

2 between X and D(A). We also show how interpolation results
can be applied to obtain optimal error estimates for stable schemes. In the latter
case our result improves the estimate in [3, Thm. 4] on D(A

q+1
2 ) and generalizes

[9, Thm. 1.7]. The sharpness of the estimates is discussed at the end of Section 4.
Finally, we mention that in a recent paper by Hausenblas [10] interpolation theory
and intermediate spaces are used to obtain various convergence results for spatial
discretizations of anlytic semigroups.

2. Stability

In this section we discuss a basic stability result due to Brenner and Thomée [3].
For a proof of the next theorem, see [15, Thms. 2.2.2, 2.2.5] or [16].

Theorem 2.1. Let r(z) :=
∫ ∞
0

ezs dα(s), z ∈ C0, be an A-stable rational function
with α ∈ NBV . Then there is a constant K > 0 such that ||αn∗||TV ≤ K

√
n

for all n ∈ N, where αn∗ denotes the n-times Stieltjes convolution of α with itself.
Moreover, if |r(is)| = 1 for all s ∈ R, then there is a constant L > 0 such that
||αn∗||TV ≥ L

√
n for all n ∈ N. �

The first statement of the following theorem, due to Brenner and Thomée [3,
Thm. 1], is an immediate consequence of Theorem 2.1 (for the variable step-size
version, see [1]). The second statement is proved in [7] using Fourier multipliers.
Here, a simple and more elementary proof is presented. In the following we denote
by C(R), (C0(R), Cb(R)) the space of all continuous (continuous vanishing at ±∞,
continuous and bounded) functions f : R → C.

Theorem 2.2. If r is an A-stable rational function, then there is a constant K > 0
such that for all τ > 0 and n ∈ N we have ||rn(τA)|| ≤ KM

√
n. If A is the

derivative operator on C0(R) with maximal domain and |r(is)| = 1 for all s ∈ R,
then there is a constant L > 0 such that ||rn(τA)|| ≥ L

√
n for all τ > 0 and n ∈ N.

Proof. Since r is A-stable it follows that r(z) =
∫ ∞
0

ezsdα(s), z ∈ C0, for some
α ∈ NBV and therefore rn(z) =

∫ ∞
0

ezs dαn∗(s), n ∈ N, z ∈ C0. By the H-P
functional calculus and Theorem 2.1,

||rn(τA)x|| ≤
∫ ∞

0

||T (τs)x|| dVαn∗(s) ≤ M ||αn∗||TV ||x|| ≤ KM
√

n||x||.
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To prove the second statement, let A be the derivative operator on C0(R) with
maximal domain and let |r(is)| = 1 for all s ∈ R. Define

α̃n(t) :=

⎧⎪⎨
⎪⎩

αn∗(t) if t > 0,
αn∗(0+)

2 if t = 0,

0 if t < 0.

Then

(rn(τA)f)(s) =
[∫ ∞

0

T (τt)f dαn∗(t)
]

(s) =
∫ ∞

0

f(s + τt) dαn∗(t)

=
∫ ∞

−∞
f(s + τt) dα̃n(t).

The Riesz representation theorem for C0(R) asserts that4 C0(R)∗ = NBV (R).
Therefore, ||α̃||C0(R)∗ = V ∞

−∞(α̃n) = ||αn∗||TV . Since the total variation of a func-
tion on R is independent of shifting and positive scaling,

||rn(τA)|| = sup
f∈C0(R)
||f ||≤1

sup
s∈R

|
∫ ∞

−∞
f(s + τt) dα̃n(t)| = sup

f∈C0(R)
||f ||≤1

sup
s∈R

|
∫ ∞

−∞
f(v) dα̃n(

v − s

τ
)|

= sup
s∈R

sup
f∈C0(R)
||f ||≤1

|
∫ ∞

−∞
f(v) dα̃n(

v − s

τ
)| = sup

s∈R

sup
f∈C0(R)
||f ||≤1

|〈f, α̃n(
(·) − s

τ
)〉|

= sup
s∈R

||α̃n(
(·) − s

τ
)||C0(R)∗ = sup

s∈R

V ∞
−∞(α̃n(

(·) − s

τ
)) = sup

s∈R

V ∞
−∞(α̃n) = ||αn∗||TV .

Now, Theorem 2.1 gives the desired estimate from below. �

3. Convergence on integer order Favard spaces

For α > 0, α = l + β, β ∈ (0, 1], l ∈ N ∪ {0}, the space

(3.1) Fα := {x ∈ D(Al) : sup
t>0

∣∣∣∣
∣∣∣∣ (T (t) − I)Alx)

tβ

∣∣∣∣
∣∣∣∣ < +∞}

is called the Favard space of order α (see, for example, [8]). An easy application
of the uniform boundedness principle shows that, for bounded semigroups, the
Favard space Fk (k ∈ N) consists of x ∈ D(Ak−1) for which t 
→ 〈T (t)Ak−1x, x∗〉
is Lipschitz continuous for all x∗ ∈ X∗. From the definition it is also clear that
D(Ak) ⊂ Fk for k ∈ N. If X is reflexive, then D(Ak) = Fk (see, for example, [8,
Cor. 5.21] and [5, Cor. 3.4.11]). However, if X is not reflexive, then D(A) might
be significantly smaller than F1. An example is the left-translation semigroup on
X := C0(R). In this case A = d

dx , D(A) = {f ∈ C0(R) : f ′ ∈ C0(R)} and
F1 = {f ∈ C0(R) : f is of bounded total variation on R}. Similarly, if X = L1(R),
then D(A) = {f ∈ L1(R) : f is absolutely continuous on R and f ′ ∈ L1(R)}, while
F1 = {f ∈ L1(R) : f is uniformly Lipschitz continuous on R}. Another example is
the multiplication operator (Mq,D(Mq)) on X := C0(R) defined by (Mqf)(s) =
q(s)f(s), where q ∈ C(R) with 1

q ∈ Cb(R). In this case it is shown in [20, Prop.

4We say that a function α is a normalized function of bounded variation on R (α ∈ NBV (R))
if the total variation V ∞

−∞(α) of α on R is finite and α is normalized; i.e., α(−∞) = 0 and

α(t) = α(t+)+α(t−)
2

for t ∈ (−∞,∞) (see [6, p. 10]).
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3.1] that D(Mq) := {f ∈ C0(R) : fq ∈ C0(R)} and F1 = {f ∈ C0(R) : fq ∈ Cb(R)}.
For further concrete examples we refer to [20].

If x is in an integer order Favard space Fk, (k ∈ N), then

(3.2) Mk
x := lim sup

t→0+

∣∣∣∣
∣∣∣∣ (T (t) − I)Ak−1x

t

∣∣∣∣
∣∣∣∣ .

Observe that Mk
x = ||Akx|| if x ∈ D(Ak). Also, if x∗ ∈ X∗ and x ∈ Fk, then t 
→

〈T (t)Ak−1x, x∗〉 is differentiable a.e. and |〈T (t)Ak−1x, x∗〉′| ≤ MMk
x ||x∗||. If A has

a bounded inverse on X, then Fk is a Banach space with norm Mk
x and D(Ak) ↪→

Fk ↪→ D(Ak−1) ↪→ X where the symbol ↪→ stands for continuous embedding and
where D(Ak) is endowed with the graph norm ||x||D(Ak) := ||x|| + ||Akx|| (see [15,
Thm. 3.2.3] and [13]). We note that Fk (k ∈ N) is also a Banach space under the
norms

(3.3) ||x||Fk
:= ||x||D(Ak−1) + sup

t∈(0,∞)

∣∣∣∣
∣∣∣∣ (T (t) − I)Ak−1x

t

∣∣∣∣
∣∣∣∣ ,

or, if A has a bounded inverse, |||x|||Fk
:= supt∈(0,∞)

∣∣∣∣∣∣ (T (t)−I)Ak−1x
t

∣∣∣∣∣∣ (see [5], [8]).
Let r be a rational approximation method of order q ≥ 1. Then r is given by

r(z) =
∫ ∞
0

ezs dα(s) for some α ∈ NBV, z ∈ C0, and if t > 0, then

(3.4) rn( t
nz) =

∫ ∞

0

ezs dαn(s), z ∈ C0, n ∈ N,

where αn(s) := αn∗(n
t s). Note that αn depends on t. Since rn( t

nz) → etz as n → ∞
and etz =

∫ ∞
0

ezs dHt(s), one may suspect that αn converges to Ht in some sense.
Let I(k)[αn − Ht] denote the kth antiderivative of αn − Ht; that is,

(3.5) I(k)[αn − Ht](s) :=
∫ s

0

· · ·
∫ s3

0

∫ s2

0

(αn − Ht)(s1) ds1 ds2 · · · dsk, k ∈ N.

We set I(0)[αn − Ht] := αn − Ht and define

η̃q(k) := ηq(k + 1) =

{
k + 1

2 if k < q−1
2 ,

(k + 1) q
q+1 if q−1

2 ≤ k.

The following theorem shows the convergence of αn and its antiderivatives to Ht

and its antiderivatives in L1(R+); see [15, Cor. 2.3.2, Thm. 2.3.4] and [16].

Theorem 3.1. Let r be a rational approximation method of order q ≥ 1 given by
(3.4). If k = 0, 1, . . . , q, k �= q−1

2 , then there is a constant K > 0 such that

(3.6) ||I(k)[αn − Ht]||L1(R+) ≤ Ktk+1−η̃q(k)
(

t
n

)η̃q(k)
, n ∈ N, t > 0.

If k = q−1
2 , then

(3.7) ||I(k)[αn − Ht]||L1(R+) ≤ Ktk+1−η̃q(k)
(

t
n

)η̃q(k) ln(n + 1), n ∈ N, t > 0.

Moreover, for k = 0, 1, . . . , q, we have lims→∞ I(k)[αn − Ht](s) = 0. �
Theorem 3.1 provides the core of the proof of Theorem 3.2 below which is our

first extension of Theorem 1.1. In Theorem 3.2 the same speed of convergence is
obtained on Fk as Theorem 1.1 predicts on D(Ak). In particular, we obtain optimal
order of convergence on Fq+1 instead of on D(Aq+1) and a convergence rate of 1√

n

on F1 instead of on D(A). The basic difference between our approach (which leads
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to convergence estimates on Favard spaces Fk ) and the one of Brenner and Thomée
in [3] (leading to convergence estimates on D(Ak)) is that we use the convergence
of αn (and its antiderivatives) to Ht (and its antiderivatives) in L1(R+), while
Brenner and Thomée prove and use that the inverse Laplace–Stieltjes transforms
of the functions

z 
→
rn( t

nz) − etz

zk+1

converge to 0 in the total variation norm.
Before we proceed, recall that if f ∈ C[a, b] and α(s) =

∫ s

c
φ(t) dt (a ≤ c ≤ b)

with φ ∈ L1[a, b], then
∫ b

a
f(s) dα(s) =

∫ b

a
f(s)φ(s) ds (see, for example, [23, Thm.

I-6a]). More general, if 0 ≤ si < ∞, ci ∈ R for i = 1, . . . , N, and f = g+
∑N

i=1 ciHsi

with g ∈ Cb(R+) and α(s) =
∫ s

c
φ(t) dt (0 ≤ c < ∞) with φ ∈ L1(R+), then

(3.8)
∫ ∞

0

f(s) dα(s) =
∫ ∞

0

f(s)φ(s) ds.

Indeed, for R > 0,
∫ R

0
g(s) dα(t) =

∫ R

0
g(s)φ(s) ds and hence

∫ ∞
0

g(s) dα(t) =∫ ∞
0

g(s)φ(s) ds, since g is bounded and α is of bounded variation on [0,∞). Finally,

∫ ∞

0

Hsi
(s) dα(s) = α(∞) −

∫ ∞

0

α(s) dHsi
(s)

= α(∞) − α(si) =
∫ ∞

si

φ(s) ds =
∫ ∞

0

Hsi
(s)φ(s) ds.

Theorem 3.2. If r is a rational approximation method of order q ≥ 1, then there
is a constant K > 0 such that for k = 0, 1, . . . , q + 1, k �= q+1

2 , we have

||rn( t
nA)x − T (t)x|| ≤ KMtk−ηq(k)

(
t
n

)ηq(k)
Mk

x , t ≥ 0, n ∈ N, x ∈ Fk.

If k = q+1
2 , then

||rn( t
nA)x − T (t)x|| ≤ KMtk−ηq(k)

(
t
n

)ηq(k) ln(n + 1)Mk
x , t ≥ 0, n ∈ N, x ∈ Fk.

Proof. For t = 0 the statement is obvious. For k = 0 the estimate follows from
Theorem 2.2. Let k ≥ 1 and fix t > 0. The H-P functional calculus and (3.4) yields

〈rn( t
nA)x − T (t)x, x∗〉 =

∫ ∞

0

〈T (s)x, x∗〉 d[αn(s) − Ht(s)].

Since 〈T (·)x, x∗〉 ∈ Cb(R+) and αn(∞) = rn(0−) = 1, it follows that

〈rn( t
nA)x − T (t)x, x∗〉 =

∫ ∞

0

〈T (s)x, x∗〉 d[αn(s) − Ht(s)]

= 〈T (s)x, x∗〉[αn(s) − Ht(s)]
∣∣∞
0

−
∫ ∞

0

(αn(s) − Ht(s)) d〈T (s)x, x∗〉

= −
∫ ∞

0

(αn(s) − Ht(s)) d〈T (s)x, x∗〉.
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Since r(z) =
∫ ∞
0

eztdα(t) is an A-stable rational function, the partial fraction de-
composition of r shows that rn(z) =

∫ ∞
0

ezs dαn∗(s), where αn∗(s) = rn(∞)H0(s)+
βn(s) and βn(s) =

∑
cjs

nj e−λjs. Therefore, by (3.8),

〈rn( t
nA)x − T (t)x, x∗〉 =

∫ ∞

0

(αn(s) − Ht(s)) d〈T (s)x, x∗〉

=
∫ ∞

0

(αn(s) − Ht(s))
d

ds

(
〈T (s)x, x∗〉

)
ds

=
∫ ∞

0

I(0)[αn − Ht](s)
d

ds

(
〈T (s)x, x∗〉

)
ds.

If x ∈ Fk, then one can integrate by parts (k − 1)-times. By Theorem 3.1,

|〈rn( t
nA)x − T (t)x, x∗〉| =

∣∣∣∣
∫ ∞

0

I(k−1)[αn − Ht](s)
dk

dsk
(〈T (s)x, x∗〉) ds

∣∣∣∣
=

∣∣∣∣
∫ ∞

0

I(k−1)[αn − Ht](s)
d

ds

(
〈T (s)Ak−1x, x∗〉

)
ds

∣∣∣∣
≤ ||I(k−1)[αn − Ht]||L1(R+)ess sups>0

∣∣∣∣ d

ds

(
〈T (s)Ak−1x, x∗〉

)∣∣∣∣
≤ ||I(k−1)[αn − Ht]||L1(R+)MMk

x ||x∗||

≤ KMtk−η̃q(k−1)
(

t
n

)η̃q(k−1)
Mk

x ||x∗|| = Mtk−ηq(k)
(

t
n

)ηq(k)
Mk

x ||x∗||,

where the last inequality holds if k �= q+1
2 . If k = q+1

2 , then Theorem 3.1 shows

that |〈rn( t
nA)x− T (t)x, x∗〉| ≤ KMtk−ηq(k)

(
t
n

)ηq(k) ln(n + 1)Mk
x ||x∗||. Finally, the

desired results follow from the Hahn–Banach theorem. �

As shown in [13, Prop. 1], one can derive Theorem 3.2 from Theorem 1.1 directly.
However, the above proof of Theorem 3.2 includes a simple and transparent proof
of Theorem 1.1 and does not require additional arguments.

4. Convergence on intermediate spaces

generated by the K-method

In this section we show that Theorem 3.2 extends to all Favard spaces Fα with
α ∈ [0, q + 1] (and not just α ∈ N). Let p ∈ [1,∞), k ∈ N, and α ∈ (0, k). As in [5,
Def. 3.1.1] define subspaces of X by

(4.1) Xα,k,p := {x : ||x||α,k,p := ||x|| +
[∫ ∞

0

(
1
tα

||[T (t) − I]kx||
)p

dt

t

] 1
p

< ∞}.

Similarly, for p = ∞ and α ∈ (0, k],

(4.2) Xα,k,∞ := {x : ||x||α,k,∞ := ||x|| + sup
t∈(0,∞)

(
1
tα

||[T (t) − I]kx||
)

< ∞}.

The spaces Xα,k,p are Banach spaces and D(Ak) ↪→ Xα,k,p ↪→ X (see [5, Prop.
3.1.3]). Moreover,

(4.3) D(Al) ↪→ Xl,k,∞ (l = 1, . . . , k),
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which can be seen as follows. For x ∈ X we have ||[T (t) − I]mx|| ≤ (M + 1)m||x||,
m ∈ N. If x ∈ D(Al), then

[T (t) − I]lx =
∫ t

0

∫ t

0

· · ·
∫ t

0

T (s1 + s2 + · · · + sl)Alx ds1 ds2 · · · dsl

and hence ||(T (t) − I)lx|| ≤ M ||Alx||tl. This implies that

||[T (t) − I]kx|| ≤ ||[T (t) − I]k−l|| ||[T (t) − I]lx|| ≤ (M + 1)k−lM ||Alx||tl

≤ (M + 1)k||Alx||tl, l = 1, . . . , k.

Therefore, by combining the estimates above,

||[T (t) − I]kx|| ≤ (M + 1)k(||x|| + ||Alx||) min(1, tl)

= (M + 1)k min(1, tl)||x||D(Al), x ∈ D(Al), l = 1, . . . , k.

Thus, the statement (4.3) follows from

||x||l,k,∞ = ||x|| + sup
t∈(0,∞)

(
1
tl
||[T (t) − l]kx||

≤ (1 + (M + 1)k)||x||D(Al), x ∈ D(Al), l = 1, . . . , k.

In order to be able to state our main result, we recall from [5] (see also [19])
some definitions and relevant facts from the theory of intermediate spaces and
interpolation.

If X1, X2 are Banach spaces continuously embedded in a Hausdorff topological
vector space X , then (X1, X2) is called an interpolation pair. Moreover, X1+X2 :=
{x = x1 + x2 : x1 ∈ X1, x2 ∈ X2} with the norm

||x||X1+X2 := inf
x1∈X1,x2∈X2

x1+x2=x

(||x1||1 + ||x2||2),

the intersection X1 ∩ X2 with the norm

||x||X1∩X2 = max(||x||1, ||x||2)
are Banach spaces (see [5, Prop. 3.2.1]), and X1 ∩ X2 ↪→ Xi ↪→ X1 + X2 ↪→ X
for i = 1, 2. Let X̃ ↪→ X be a Banach space satisfying X1 ∩ X2 ↪→ X̃ ↪→ X1 + X2.
Then X̃ is called an intermediate space (of X1 and X2). In most applications we
have X2 ↪→ X1 ↪→ X = X . In this case X1 ∩ X2 = X2 and X1 + X2 = X1 and an
intermediate space X̃ of X1 and X2 satisfies X2 ↪→ X̃ ↪→ X1.

There are several ways to construct intermediate spaces. One of them is the
K-method where K : R+ × (X1 + X2) → R+ ∪ {0} is defined by

K(t, x) := inf
x1∈X1,x2∈X2

x1+x2=x

(||x1||1 + t||x2||2).

Let θ ∈ (0, 1) and p ∈ [1,∞). Then

(X1, X2)θ,p,K := {x ∈ X1 + X2 : ||x||θ,p,K :=
[∫ ∞

0

(
1
tθ

K(t, x)
)p

dt

t

] 1
p

< ∞}

is an intermediate space of X1 and X2. If θ ∈ [0, 1], then

(X1, X2)θ,∞,K := {x ∈ X1 + X2 : ||x||θ,∞,K := ess supt>0|
1
tθ

K(t, x)| < ∞}



APPROXIMATIONS OF SEMIGROUPS ON INTERMEDIATE SPACES 281

is also an intermediate space of X1 and X2 (see [5, Prop. 3.2.5]). We remark that the
order of X1 and X2 is important, as we have (X1, X2)θ,p,K = (X2, X1)1−θ,p,K , θ ∈
(0, 1).

Let Xα,q+1,p be defined as in (4.1) and (4.2). It follows from [5, Thm. 3.4.2]
that for 0 < α < q + 1 and 1 ≤ p ≤ ∞ we have

(4.4) Xα,q+1,p = (X,D(Aq+1)) α
q+1 ,p,K .

Let [α], {α} denote the integer part and the fractional part of α ∈ R, respectively.
If α /∈ N and 0 ≤ [α] ≤ k ≤ q for some k ∈ N, then

(4.5) Xα,q+1,p = (D(A[α]),D(A[α]+1)){α},p,K = (X,D(Ak+1)) α
k+1 ,p,K = Xα,k+1,p.

The equalities in (4.5) and (4.4) denote set equalities as well as isomorphisms of
Banach spaces with equivalent norms (see the proof of [5, Thm. 3.4.6]). It is also
shown there that the norm || · ||α,m,p on Xα,m,p (where m is either k + 1 or q + 1)
is equivalent to the norm
(4.6)

|||x|||α,p :=

⎧⎨
⎩||x||D(A[α]) +

[∫ ∞
0

(
1

t{α} ||[T (t) − I]A[α]x||
)p dt

t

] 1
p

, p ∈ [1,∞),

||x||D(A[α]) + supt∈(0,∞)

(
1

t{α} ||[T (t) − I]A[α]x||
)
, p = ∞.

Observe that ||| · |||α,p does not depend on q or k. If α = 1, 2, . . . , q, then (4.5) is
no longer valid. Instead,

Xα,q+1,p = (D(Aα−1),D(Aα+1)) 1
2 ,p,K .(4.7)

As before, the equality of the above spaces is understood as sets and as Banach
spaces with equivalent norms. In this case we can also define a norm on Xα,q+1,p,
which is equivalent to || · ||α,q+1,p and is independent of q, by

|||x|||α,p := ||x||D(Aα−1) +
[∫ ∞

0

(
1
t
||[T (t) − I]2Aα−1x||

)p
dt

t

] 1
p

, p ∈ [1,∞),

with obvious modification for p = ∞ (see [5, Thm. 3.4.6]). The main point of the
reduction equality (4.5) is that the spaces Xα,q+1,p can be viewed as intermediate
spaces not only of X and D(Aq+1) but also of X and D(Ak+1) for [α] ≤ k or,
most importantly, of D(A[α]) and D(A[α]+1). Since for each of these interpolation
pairs one of the spaces is contained in the other, the spaces Xα,q+1,p are really
intermediate spaces “between” the two. We also mention that for the noninteger
order Favard spaces Fα, defined in (3.1), it follows from (4.5) and (4.6) that the set
equality

(4.8) Fα = Xα,[α]+m,∞ = (X,D(Aq+1)) α
q+1 ,∞,K

holds for 0 < α < q+1, α /∈ N, m ∈ N. The integer order Favard spaces Fα cannot
be regarded as intermediate spaces of X and D(Aq+1), except for α = q + 1. They
can be identified with intermediate spaces of X and D(Aα). More precisely,

(4.9) Fα = Xα,α,∞ = (X,D(Aα))1,∞,K , α ∈ N,

as [5, Thms. 3.4.3, 3.4.10] show.
Next we discuss the Riesz–Thorin interpolation theorem. Let (X1, X2) and

(Y1, Y2) be two interpolation pairs (in X and Y , respectively). Let

T ∈ B(X1 + X2, Y1 + Y2)



282 MIHÁLY KOVÁCS

such that the restriction of T to Xi (i = 1, 2) belongs to B(Xi, Yi), i.e,

||Txi||i ≤ Mi||xi||i, i = 1, 2.

Then the restriction of T to (X1, X2)θ,p,K (θ ∈ (0, 1) if p ∈ [1,∞) and θ ∈ [0, 1] if
p = ∞) belongs to B

(
(X1, X2)θ,p,K , (Y1, Y2)θ,p,K

)
and

(4.10) ||Tx||θ,p,K ≤ M1−θ
1 Mθ

2 ||x||θ,p,K , x ∈ (X1, X2)θ,p,K .

For the proof see [5, Thm. 3.2.23].
Next we take the function ηq(k) defined for integers 0 ≤ k ≤ q + 1 and extend

it to the interval [0, q + 1] using linear interpolation between the points (k, ηq(k))
and (k + 1, ηq(k + 1)).

If q is odd, then we get

ηq(α) :=

{
α − 1

2 if 0 ≤ α < q+1
2 ,

α q
q+1 if q+1

2 ≤ α ≤ q + 1.

If q is even, then the number q+1
2 is not an integer, and therefore

ηq(α) :=

⎧⎪⎨
⎪⎩

α − 1
2 if 0 ≤ α ≤ q

2 ,
q
2 − 1

2 + (α − q
2 )

(
q+2
2

q
q+1 − ( q

2 − 1
2 )

)
if q

2 < α < q+2
2 ,

α q
q+1 if q+2

2 ≤ α ≤ q + 1.

Now we have everything in place to extend Theorem 1.1 to the intermediate spaces
Xα,q+1,p for 0 < α < q + 1.

Theorem 4.1. If r is a rational approximation method of order q ≥ 1, then there
is a constant K̃ > 0 such that for 0 < α < q + 1 and x ∈ Xα,q+1,p we have

||rn( t
nA)x − T (t)x|| ≤ K̃Mtαn−ηq(α)|||x|||α,p, t ≥ 0, n ∈ N, 1 ≤ p ≤ ∞,

if q is even and α �= q
2 , q+2

2 or if q is odd but α /∈ [ q−1
2 , q+3

2 ]. If q is odd and
α ∈ ( q−1

2 , q+3
2 ) \ { q+1

2 }, then

||rn( t
nA)x − T (t)x|| ≤ K̃Mtαn−ηq(α)[ln(n + 1)]1−| q+1

2 −α||||x|||α,p, t ≥ 0, n ∈ N.

Proof. If α �= 1, 2, . . . , q, then Xα,q+1,p = (D(A[α]),D(A[α]+1)){α},p,K by (4.5).
Using Theorem 3.2 on D(A[α]) and on D(A[α]+1) together with the observation
that Mk

x = ||Akx|| ≤ ||x||D(Ak) if x ∈ D(Ak), we apply the Riesz–Thorin inequality
(4.10) to the intermediate spaces (X1, X2){α},p,K := (D(A[α]),D(A[α]+1)){α},p,K

and (Y1, Y2){α},p,K := (X, X){α},p,K = X with equivalence of the respective norms
following from [5, Prop. 3.2.5]. This gives, for [α] �= q±1

2 , and x ∈ Xα,q+1,p,

||rn( t
nA)x − T (t)x|| ≤ C||rn( t

nA)x − T (t)x||{α},p,K

≤ C
(
KMt[α]−ηq([α])

(
t
n

)ηq([α]))1−{α}(
KMt[α]+1−ηq([α]+1)

(
t
n

)ηq([α]+1)){α}|||x|||α,p

= K̃Mtαn−ηq([α])+{α}(ηq([α])−ηq([α]+1))|||x|||α,p.

The evaluation of the exponent −ηq([α]) + {α}(ηq([α]) − ηq([α] + 1)) yields the
desired estimate. If [α] = q±1

2 , then either on D(A[α]) or on D(A[α]+1), we have to
include a factor of ln(n + 1) in the estimate according to Theorem 3.2. This shows
the result for α ∈ ( q−1

2 , q+3
2 ).

If α = 1, 2, . . . , q, then we use (4.7) to identify the spaces Xα,q+1,p. We take
(X1, X2) 1

2 ,p,K := (D(Aα−1),D(Aα+1)) 1
2 ,p,K and (Y1, Y2) 1

2 ,p,K := (X, X) 1
2 ,p,K = X



APPROXIMATIONS OF SEMIGROUPS ON INTERMEDIATE SPACES 283

in the Riesz–Thorin inequality (4.10) with equivalence of the respective norms. This
yields, for x ∈ Xα,q+1,p,

||rn( t
nA)x − T (t)x|| ≤ C||rn( t

nA)x − T (t)x|| 1
2 ,p.K

≤ C
(
KMtα−1−ηq(α−1)

(
t
n

)ηq(α−1)) 1
2
(
KMtα+1−ηq(α+1)

(
t
n

)ηq(α+1)) 1
2 |||x|||α,p

= K̃Mtαn− 1
2 (ηq(α−1)+ηq(α+1))|||x|||α,p.

The evaluation of 1
2 (ηq(α−1)+ηq(α+1)) at α = 1, 2, . . . , q, α �= q

2 , q+2
2 if α is even

and α �= q±1
2 , q+3

2 if α is odd, gives the desired result. �

Let us consider the Favard spaces Fα defined in (3.1) with the norm

||x||α :=

{
|||x|||α,∞ if α /∈ N,

||x||Fα
if α ∈ N,

where ||| · |||α,∞ and || · ||Fα
are defined as in (4.6) and (3.3). We set F0 := X and

||x||0 := ||x||. For the convenience of the reader we reformulate Theorems 3.2 and
4.1 if x ∈ Fα.

Corollary 4.2. Let r be a rational approximation method of order q ≥ 1. If
0 ≤ α ≤ q + 1, then there is a constant K > 0 such that for x ∈ Fα we have

||rn( t
nA)x − T (t)x|| ≤ KMtαn−ηq(α)||x||α, t ≥ 0, n ∈ N,

if q is even or if q is odd but α /∈ ( q−1
2 , q+3

2 ). If q is odd and α ∈ ( q−1
2 , q+3

2 ), then

||rn( t
nA)x − T (t)x|| ≤ KMtαn−ηq(α)[ln(n + 1)]1−| q+1

2 −α|||x||α, t ≥ 0, n ∈ N.

Proof. For α /∈ N the statement follows from Theorem 4.1 using (4.8). If α =
0, 1, . . . , q + 1, then Theorem 3.2 implies the desired inequality, noting that Mα

x ≤
||x||α, α = 1, . . . , q + 1. �

Note that if A has a bounded inverse, then the norm || · ||α is equivalent to the
norm |||x|||α := supt∈(0,∞) ||t−β(T (t) − I)Akx||, k = 0, . . . , q, α = k + β, β ∈
(0, 1]. As a corollary we obtain the following stability result for the discrete orbits
rn( t

nA)x.

Corollary 4.3. If r is a rational approximation method of order q ≥ 1, then
||rn( t

nA)x|| ≤ KM(1 + t
1
2 )|||x||| 1

2 ,p, x ∈ X 1
2 ,q+1,p, 1 ≤ p ≤ ∞, t ≥ 0, n ∈ N. �

For stable methods, such as the Backward Euler method, solely from the error
estimate on D(Aq+1) we obtain optimal error estimates on Xα,q+1,∞ for all 0 <

α ≤ q + 1 and also on D(Ak) (k = 1, 2, . . . , q) including the case α = q+1
2 .

Corollary 4.4. Assume that r is a rational approximation method of order q ≥ 1
and that ||rn( t

nA)|| ≤ C for some C ≥ 1 and all n ∈ N. Then there is a constant
K ≥ 1 such that, for all 0 < α ≤ q + 1,

||rn( t
nA)x − T (t)x|| ≤ KMt

α
q+1

(
t
n

)α q
q+1 ||x||α,q+1,∞, t ≥ 0, n ∈ N, x ∈ Xα,q+1,∞.

In particular, if x ∈ D(Ak) (k = 1, . . . , q + 1), then

(4.11) ||rn( t
nA)x − T (t)x|| ≤ KMt

k
q+1

(
t
n

)k q
q+1 ||x||D(Ak), t ≥ 0, n ∈ N.
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Proof. If α = q + 1, then the statement follows from Theorem 3.2 and (4.9). Since
||rn( t

nA)|| ≤ C for all n ∈ N, there is constant K ≥ 1 such that ||rn( t
nA)x −

T (t)x|| ≤ KM ||x|| for all x ∈ X. By Theorem 3.2,

||rn( t
nA)x − T (t)x|| ≤ KMt

(
t
n

)q||x||D(Aq+1), t ≥ 0, n ∈ N, x ∈ D(Aq+1).

Now, for 0 < α < q + 1 consider the intermediate spaces

(X1, X2) α
q+1 ,∞,K := (X,D(Aq+1)) α

q+1 ,∞,K = Xα,q+1,∞

and (Y1, Y2) α
q+1 ,∞,K := (X, X) α

q+1 ,∞,K = X (with equivalence of the respective
norms). By the Riesz–Thorin inequality (4.10), for 0 < α < q + 1, we have

||rn( t
nA)x − T (t)x|| ≤ (KM)1−

α
q+1

(
KMt

(
t
n

)q) α
q+1 ||x||α,q+1,∞

= KMt
α

q+1
(

t
n

)α q
q+1 ||x||α,q+1,∞, t ≥ 0, n ∈ N, x ∈ Xα,q+1,∞.

From (4.3) it follows that if x ∈ D(Ak) and k = 1, . . . , q, then

||rn( t
nA)x − T (t)x|| ≤ KMt

k
q+1

(
t
n

)k q
q+1 ||x||D(Ak). �

The estimate in (4.11) is an improvement of the inequality in [3, Thm. 4] for
the stable case for k = q+1

2 , as it does no longer contain a factor of ln(n + 1). It
also proves and generalizes [9, Thm. 1.7], where the same result is shown for the
Backward Euler method on D(A).

Finally, we briefly discuss the sharpness of Theorem 3.2, Theorem 4.1 and Corol-
lary 4.2. For f ∈ Lp(R) let

∆N
h f :=

N∑
i=0

(−1)N−l

(
N

l

)
f(· + lh), h ∈ R,

be the Nth right difference of f , and let

ωN (t, f, p) := sup
h∈(0,t]

(||∆N
h f ||p), t ∈ (0,∞),

denote its Nth modulus of continuity. For p ∈ [1,∞), N ∈ N, α ∈ (0, N), and
s ∈ [1,∞), the homogeneous Besov spaces B(α, N, s, p) are defined as

B(α, N, s, p) := {f ∈ Lp(R) :
∫ ∞

−∞
(|h|−α||∆N

h f ||p)s dh

|h| < ∞}

and

B(α, N,∞, p) := {f ∈ Lp(R) : sup
h∈R

(|h|−α||∆N
h f ||p) < ∞}, α ∈ [0, N ].

The Besov spaces B(α, N, s, p) are Banach spaces under the equivalent norms

||f || := ||f ||p +
( ∫ ∞

−∞
(|h|−α||∆N

h f ||p)s dh

|h|
) 1

s ,

||f ||B(α,N,s,p) := ||f ||p +
( ∫ ∞

0

(t−αωN (t, f, p))s dt

t

) 1
s ,

with the usual modification for s = ∞ (see [5, Prop. 4.3.5]). Let WN,p(R) be the
Sobolev space of order N with the norm ||f ||WN,p(R) := ||f ||p+||DNf ||p, where DNf
denotes the Nth generalized derivative of f . The Besov spaces are intermediate
spaces of Lp(R) and WN,p(R), more precisely, we have that

B(α, N, s, p) = (Lp(R), WN,p(R)) α
N ,s,K
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with equivalent norms (see [5, Thm. 4.3.6]). This means that if we take X := Lp(R)
and Af := f ′ with maximal domain, then by the above and (4.5),

B(α, q + 1, s, p) = (Lp(R), Wq+1,p(R)) α
q+1 ,s,K = (X,D(Aq+1)) α

q+1 ,s,K = Xα,q+1,s.

For q ∈ N fixed, define

ηq,p(α) :=

{
α − |12 − 1

p | if 0 ≤ α < (q + 1)|12 − 1
p |,

α q
q+1 if (q + 1)|12 − 1

p | ≤ α ≤ q + 1.
(4.12)

Note that ηq,1(α) = ηq(α) if q is odd and also if q is even and α /∈ ( q
2 , q+2

2 ). If
X := Lp(R) and Af := f ′ with maximal domain, then for a rational approximation
method r of order q ≥ 1 with |r(is)| = 1 (s ∈ R) we have

(4.13) ctn
−ηq,p(α) ≤ sup{||rn( t

nA)f − T (t)f ||Lp(R); ||f ||B(α,q+1,∞,p) ≤ 1}
if 0 < α ≤ q + 1 and

(4.14) ctn
−ηq,p(k) ≤ sup{||rn( t

nA)f − T (t)f ||Lp(R); ||Dkf || ≤ 1}
if k = 0, 1, 2, . . . , q + 1 as [2, (5.6)] together with [2, Lemmas 2.9, 2.11] show. The
choice p = 1 in (4.13) yields that the general convergence estimate on Xα,q+1,∞
that holds for all Banach spaces X and generators of bounded semigroups cannot
be better than

(4.15) ||rn( t
nA)x − T (t)x|| ≤ Ctn

−ηq,1(α)|||x|||α,∞, x ∈ Xα,q+1,∞.

Therefore, our estimates on Xα,q+1,∞ in Theorem 4.1 and, correspondingly, on Fα

if α /∈ N in Corollary 4.2, are sharp for 0 < α < q + 1, provided that α /∈ [ q
2 , q+2

2 ]
if q is even and α /∈ [ q−1

2 , q+3
2 ] if q is odd. We remark that if q is odd and α ∈

( q−1
2 , q+1

2 ) ∪ ( q+1
2 , q+3

2 ), then Theorem 4.1 and Corollary 4.2 are almost sharp in
the sense that the estimates contain an extra factor of (ln(n + 1))β only. Similarly,
(4.14) shows the sharpness of Theorem 3.2 on D(Ak) for k = 0, 1, . . . , q+1, k �= q+1

2 ,
and also the sharpness of Theorem 3.2 and Corrollary 4.2 on integer order Favard
classes since D(Ak) ⊂ Fk and Mk

x = ||Akx|| if x ∈ D(Ak). Finally, we remark
that if |r(is)| < 1, s �= 0, and some more detailed information is known about the
behavior of s 
→ r(is), our results can be improved by an order up to 1

2 for α < q+1
2 ;

for details see [3].
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