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A LEAST-SQUARES METHOD
FOR SECOND ORDER NONCOERCIVE

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

JAEUN KU

Abstract. In this paper, we consider a least-squares method proposed by
Bramble, Lazarov and Pasciak (1998) which can be thought of as a stabilized
Galerkin method for noncoercive problems with unique solutions. We modify
their method by weakening the strength of the stabilization terms and present
various new error estimates. The modified method has all the desirable prop-
erties of the original method; indeed, we shall show some theoretical properties
that are not known for the original method. At the same time, our numerical
experiments show an improvement of the method due to the modification.

1. Introduction

The existence and the uniqueness of the standard Galerkin finite element method
for noncoercive problems with unique solutions were proved by Schatz [12] with the
restriction of small meshsize h. It is easy to construct an example which does not
admit a unique solution when the meshsize is not small enough. Thus, we can
deduce that the restriction is real, not a limitation of the analysis used.

One of the problems concerning the small meshsize is that it is not possible to
determine how small the meshsize should be to guarantee the existence and the
uniqueness of the approximate solution without actually knowing the true solution.

There are many methods which guarantee the existence and the uniqueness of
the approximate solution without the restriction on the meshsize. Most of them
introduce a new variable and transform the original problem into a first-order sys-
tem, which is then solved via a least-squares method. The known error estimates
require relatively smooth solutions. We refer to [1, 2, 3, 4, 7, 8, 11] and further
references therein. In [5], least-squares methods were considered directly on the
second order problem.

Recently, Bramble, Lazarov and Pasciak [4] introduced and studied a new least-
squares method without a new variable involving a discrete computable H−1-norm.
This method could be thought of as a stabilized Galerkin method in the sense
that stabilization terms are added to the Galerkin bilinear form to guarantee the
existence and the uniqueness of the approximate solution without any restriction
on the meshsize. The resulting linear algebraic system is symmetric and positive
definite.
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In this paper, we observe that we can weaken the strength of the stabilization
terms. As a result, we propose a new least-squares method. Since the stabilization
terms are artificially added to produce a coercive bilinear form, it might be con-
sidered desirable to weaken the strength of the stabilization terms. Our numerical
experiments show improvements due to the modification. Also, the new method
has all the desirable theoretical properties of the original method, and we obtain
various new error estimates including pointwise error estimates for our modified
method.

This paper is organized as follows: In Section 2, we define notation, place as-
sumptions on the problem which we are studying, and present some preliminary
results. In Section 3, we define a new least-squares method. In Section 4 and 5,
we state and prove global and local error estimates based on the L2-norm such as
the energy norm. In Section 6, a pointwise error estimate is established. Finally,
supporting numerical results are given in Section 7.

2. Problem formulation and preliminaries

Let Ω be a bounded convex polygonal or polyhedral domain in R
n where n = 2

or 3. We shall consider the following second-order elliptic boundary problem:

(2.1) Lu = f in Ω, u = 0 on ∂Ω.

The operator L is given by

(2.2) Lu = −�u + b · ∇u + cu = −�u + βu.

We assume that all the coefficients in the operator L are smooth.

Remark. The results in this paper are true for Lu = − div(A∇u) + βu, where the
matrix A is symmetric, uniformly positive definite, and bounded.

We take W =
◦

H1 (Ω), and H−1(Ω) will be the dual of W .
For any u, v ∈ W , we define the bilinear form

(2.3) A(u, v) = (∇u,∇v) + (βu, v),

where (·, ·) is the usual L2 inner product.
In this paper, we shall repeatedly use the fact that the bilinear form A is bounded

with respect to the norm in H1(Ω).
The weak formulation of (2.1) is: Given f ∈ H−1(Ω), find u ∈ W satisfying

(2.4) A(u, θ) = (f, θ) for all θ ∈ W.

The adjoint weak formulation of (2.1) is: Given g ∈ H−1(Ω), find w ∈ W satisfying

(2.5) A(θ, w) = (g, θ) for all θ ∈ W.

We assume that the solutions of (2.4) and (2.5) are unique. Also, we assume that
for u and w satisfying (2.4) and (2.5), respectively, there exists a positive constant
C independent of f and g satisfying

(2.6) ‖u‖2 ≤ C‖f‖0, ‖w‖2 ≤ C‖g‖0.

We give an alternative characterization of the norm in H−1(Ω). Let D(·, ·) denote
the inner product in W , i.e.,

D(u, v) = (∇u,∇v) + (u, v) for all u, v ∈ W.
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Let T : H−1 → W be defined by Tf = u, where u is the unique function satisfying
D(u, θ) = (f, θ) for all θ ∈ W , i.e., T is defined by

(2.7) D(Tf, θ) = (f, θ) for all θ ∈ W.

Then
(u, Tu) = ‖u‖2

−1 for all u ∈ H−1(Ω).
Note also that

(2.8) ‖u‖i+1 = ‖Tf‖i+1 ≤ C‖f‖i−1 for i = 0, 1.

Let the operator L : W → H−1(Ω) be defined by the identity

(Lu, φ) = A(u, φ) for all φ ∈ W.

To solve (2.1) approximately, we introduce the subspace Wh ⊂ W indexed by h
in the interval 0 < h < 1. We do this by partitioning the domain Ω into a set of
triangles or tetrahedra T = {τ}. Let hτ denote the diameter of the triangle τ . The
mesh parameter h is defined to be

h = max
τ∈T

hτ .

We assume that the boundaries of two triangles or tetrahedra will intersect at either
a vertex, an entire edge, or a face. We assume that the triangulations are globally
quasi-uniform as defined in [6, (4.4.15)]. For some integer 2 ≤ r, let Wh denote the
functions which are piecewise polynomials of degree less than r with respect to the
triangles, continuous on Ω, and vanish on ∂Ω. There is a nodal basis associated
with the spaces and a corresponding averaged nodal interpolation operator, [15].

The following low order approximation and boundedness result can be proved.
Given φ ∈ W , there exists φI ∈ Wh and a constant C2 not dependent on h and φ
such that ∑

τi∈T
{h−2

τi
‖φ − φI‖2

0,τi
+ ‖φ − φI‖2

1,τi
} ≤ C2‖φ‖2

1.

The argument which can be used to prove this result is given in [15].
The approximation space Wh satisfies the following higher order approximation

property:
(2.9)∑

τi∈T

(
‖φ − φI‖2

o,τi
+ h2

τi
‖φ − φI‖2

1,τi
+ · · · + h2r‖φ − φI‖2

4,τi

)1/2 ≤ Chr‖φ‖2
r,Ω.

Also, Wh has the following approximation property based on the L∞-norm:

(2.10) ‖φ − φI‖∞ ≤ Ch‖φ‖W 1
∞

.

We want to point out that the approximation space Wh has the inverse property
[6], i.e., for 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and 0 ≤ m ≤ l,

(2.11) ‖ψ‖W l
p(τ) ≤ Chm−l+ n

p −n
q ‖ψ‖W m

q (τ) for all ψ ∈ Wh, for n = 2, 3.

To describe the least-squares method, we shall need additional discrete norms and
inner products. For ψ ∈ Wh, the discrete negative norm is given by

(2.12) ‖ψ‖−1,h = sup
φ∈Wh

(ψ, φ)
‖φ‖1

.

This norm extends to a semi-norm on H−1(Ω) which is bounded by the norm ‖·‖−1.
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Also, we define a new discrete norm as follows:

(2.13) ‖v‖h
2 =

(∑
τ

‖v‖2
2,τ

)1/2

.

Let the operator Lh : W → Wh be defined by

(2.14) (Lhv, φ) = A(v, φ) for all φ ∈ Wh.

Before describing the least-squares method, we provide an equivalent discrete nega-
tive norm. As in the continuous case, the discrete negative norm can be alternatively
characterized in terms of a certain operator. Specifically, let Th : H−1(Ω) → Wh

be defined by

(2.15) D(Thf, θ) = (f, θ) for all θ ∈ Wh.

We state various properties which will be used later:

‖Thf‖1 ≤ C‖f‖−1,(2.16)

‖(T − Th)f‖i ≤ Ch2−i‖f‖0 for i = 0, 1.(2.17)

Let Th be the finite element analogue of the operator T . Then

‖v‖2
−1,h = (v, Thv) for all v ∈ H−1(Ω),(2.18)

(v, Thw) = (Thv, w) for all v, w ∈ L2(Ω).(2.19)

For β defined as in (2.2), we have

(2.20) ‖βv‖−1 ≤ C‖v‖0 for all v ∈ W.

By combining (2.16) and (2.20), we have

(2.21) ‖Thβv‖1 ≤ C‖v‖0 for all v ∈ W.

The following lemmas play a fundamental role in the least-squares methods, and
Lemmas 2.1 and 2.2 were proved in Bramble et al. [4].

Lemma 2.1 ([4]). There exists a constant C independent of v ∈ W such that

‖v‖1 ≤ C sup
φ∈W

A(v, φ)
‖φ‖1

= C‖Lv‖−1 and ‖v‖1 ≤ C sup
φ∈W

A(φ, v)
‖φ‖1

.

Lemma 2.2. There exists a positive constant c not depending on h such that for
any ψ ∈ Wh

c‖ψ‖2
1 ≤ ‖Lhψ‖2

−1,h +
∑

τ

h2
τ (Lψ, Lψ)τ +

∑
e

hτ(e)

∫
e

[ψν ]2ds,

where
∑

e is the summation over all interior edges (or faces) and [ψν ] denote the
jump in the normal derivative ψν across an interior edge.

We now improve the above inequality by weakening the strength of the last two
terms.

Lemma 2.3. There exists a positive constant c not depending on h such that for
any ψ ∈ Wh

c‖ψ‖2
1 ≤ ‖Lhψ‖2

−1,h + h2
∑

τ

h2
τ (Lψ, Lψ)τ + h2

∑
e

hτ(e)

∫
e

[ψν ]2ds.
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Proof. By Lemma 2.1,

(2.22) c‖ψ‖1 ≤ sup
v∈W

A(ψ, v)
‖v‖1

.

We write A(ψ, v) = A(ψ, v − vh) + A(ψ, vh), where vh is the Ritz projection with
respect to (∇,∇), i.e.,

(∇(v − vh),∇ψ) = 0 for all ψ ∈ Wh.

Then using (2.14),

A(ψ, v) = A(ψ, v − vh) + A(ψ, vh) = (∇ψ,∇(v − vh)) + (βψ, v − vh) + (Lhψ, vh)
= (βψ, v − vh) + (Lhψ, vh).

Using the above equality with ‖vh‖1 ≤ ‖v‖1 and approximation property of vh in
(2.22),

c‖ψ‖1 ≤ h‖ψ‖1 + ‖Lhψ‖−1,h,

i.e.,

c‖ψ‖2
1 ≤ ‖Lhψ‖2

−1,h + h2‖ψ‖2
1.

By using Lemma 2.2 in the above inequality, we obtain

c‖ψ‖2
1 ≤ ‖Lhψ‖2

−1,h + h2
∑

τ

h2
τ (Lψ, Lψ)τ + h2

∑
e

hτ(e)

∫
e

[ψν ]2ds. �

We now show a simple algebraic identity that will be of use in our development. It
does not change the original method. This equality is used to prove error estimates.

Lemma 2.4. For any v ∈ W, ψ ∈ Wh,

A(v, ψ) + A(v, Th(β − 1)ψ) = (Lhv, ThLhψ).

In particular, for ψ ∈ Wh,

A(ψ, ψ) + A(ψ, Th(β − 1)ψ) = (Lhψ, ThLhψ) = ‖Lhψ‖2
−1,h.

Proof. By using that Th is symmetric (2.19), the definition of Lh in (2.14) and the
property of Th in (2.15),

(Lhv, ThLhψ) = (Lhψ, ThLhv) = A(ψ, ThLhv) = (∇ψ,∇ThLhv) + (βψ, ThLhv)

= (ψ,Lhv) − (ψ, ThLhv) + (βψ, ThLhv) = (Lhv, ψ) − (Lhv, Thψ) + (Lhv, Thβψ)

= (Lhv, ψ) + (Lhv, Thβψ − Thψ) = A(v, ψ) + A(v, Th(β − 1)ψ). �

By combining Lemmas 2.3 and 2.4, we obtain the following lemma.

Lemma 2.5. There exists a constant c > 0 not depending on h such that for any
ψ ∈ Wh,

c‖ψ‖2
1 ≤ A(ψ, ψ) + A(ψ, Th(β − 1)ψ) + h2

∑
τ

h2
τ (Lψ, Lψ)τ + h2

∑
e

hτ(e)

∫
e

[ψν ]2ds.
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3. A least-squares FEM

We define a new least-squares bilinear form on Wh × Wh by

B(φ, ψ) = A(φ, ψ) + A(φ, Th(β − 1)ψ)

+h2
∑

τ

h2
τ (Lφ, Lψ)τ + h2

∑
e

hτ(e)

∫
e

[φν ][ψν ]ds.(3.1)

Note that for u ∈ W satisfying (2.1) with f ∈ L2,

B(u, ψ) = (f, ψ) + (f, Th(β − 1)ψ) + h2
∑

τ

h2
τ (f, Lψ)τ for all ψ ∈ Wh.

Define the approximate solution uh ∈ Wh by

(3.2) B(uh, ψ) = (f, ψ) + (f, Th(β − 1)ψ) + h2
∑

τ

h2
τ (f, Lψ)τ for all ψ ∈ Wh.

By Lemma 2.5, B(·, ·) is coercive on Wh ×Wh. Hence the approximate solution
is uniquely determined.

We have the orthogonal property as follows:

(3.3) B(u − uh, ψ) = 0 for all ψ ∈ Wh.

Before we move on to our error analysis, we want to remark on the inequality
given in Lemma 2.5. We use the following well-known trace inequality:

(3.4)
∫

∂τ

|θ|2ds ≤ C

(
1
hτ

‖θ‖2
τ + hτ‖θ‖2

1,τ

)
.

By using Lemma 2.5 twice, the above trace inequality, and the inverse inequality
in (2.11),

c‖ψ‖2
1 ≤ A(ψ, ψ) + A(ψ, Th(β − 1)ψ)

+ h2
∑

τ

h2
τ (Lψ, Lψ)τ + h2

∑
e

hτ(e)

∫
e

[ψν ]2ds

≤ A(ψ, ψ) + A(ψ, Th(β − 1)ψ) + Ch2‖ψ‖2
1

≤ A(ψ, ψ) + A(ψ, Th(β − 1)ψ)

+
C

c
h2

(
A(ψ, ψ) + A(ψ, Th(β − 1)ψ)

+ h2
∑

τ

h2
τ (Lψ, Lψ)τ + h2

∑
e

hτ(e)

∫
e

[ψν ]2ds

)

≤
(

1 + h2 C

c

)(
A(ψ, ψ) + A(ψ, Th(β − 1)ψ)

+ h4
∑

τ

h2
τ (Lψ, Lψ)τ + h4

∑
e

hτ(e)

∫
e

[ψν ]2ds

)
,

i.e.,(
c

1 + h2 C
c

)
‖ψ‖2

1 ≤ A(ψ, ψ) + A(ψ, Th(β − 1)ψ)

+ h4
∑

τ

h2
τ (Lψ, Lψ)τ + h4

∑
e

hτ(e)

∫
e

[ψν ]2ds.
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We can iterate the above argument as many times as we want. For each iteration,
while we have a higher power of h on the right-hand side, we have a smaller constant
on the left-hand side. This suggests that we will have bigger numbers in the error
as powers of h are getting bigger. We present numerics supporting this in Section
7.

Our analysis is based on Lemma 2.5 for simplicity.

4. Global error estimate

The following theorem is essentially proved in [4].

Theorem 4.1. Let u ∈ Hγ(Ω) for 2 ≤ γ ≤ r and let uh be the solution of the least-
squares method defined by (3.2). Assume that the triangulation is quasi-uniform
and h = maxi hτi

. Then there exists a positive constant C not depending on u or
h such that

‖u − uh‖1 ≤ C(‖u − uI‖1 + h‖u − uI‖h
2 ) ≤ Chγ−1‖u‖γ .

The following lemma is an immediate consequence of the triangle inequality, the
inverse inequality (2.11), and Theorem 4.1.

Lemma 4.2. Under the same assumption as Theorem 4.1,

h2‖u − uh‖h
2 ≤ Ch(‖u − uI‖1 + h‖u − uI‖h

2 ) ≤ Chγ‖u‖γ .

We now state and prove L2(Ω) and H−1(Ω) error estimates for the least-squares
method in the case of a quasi-uniform mesh and sufficiently regular solutions. We
want to point out that this is a new error estimate for this type of method.

Theorem 4.3. Under the same assumptions as Theorem 4.1,

‖u − uh‖0 ≤ Chγ‖u‖γ .

Proof. We have

(4.1) ‖u − uh‖0 = sup
φ∈L2,‖φ‖0=1

(u − uh, φ).

For each such φ, let v be the solution of the adjoint problem:

A(z, v) = (z, φ) for all z ∈ W.

By taking z = u − uh,
(u − uh, φ) = A(u − uh, v).

Let w be such that

(4.2) −�w + βw = −�v + v in Ω,
w = 0 on ∂Ω.

By (2.6),

(4.3) ‖w‖2 ≤ C‖ −�v + v‖0 ≤ C‖v‖2 ≤ C‖φ‖0 ≤ C.

By applying T to both sides of (4.2), we get

w + T (β − 1)w = v.

Hence,

(u − uh, φ) = A(u − uh, v) = A(u − uh, w) + A(u − uh, T (β − 1)w)
= A(u − uh, w) + A(u − uh, Th(β − 1)w)(4.4)

+ A(u − uh, (T − Th)(β − 1)w).
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For the first two terms on the right, by using the orthogonal property (3.3),

A(u − uh, w) + A(u − uh, Th(β − 1)w)
= A(u − uh, w − wI) + A(u − uh, Th(β − 1)w − wI)

−h2
∑

τ

h2
τ (L(u − uh), L(wI))τ + h2

∑
e

hτ(e)

∫
e

[(u − uh)ν ][(−wI)ν ]ds

= I1 + I2 + I3 + I4,

where wI is the interpolant [15] of w in Wh. We then have

|I1| = |A(u − uh, w − wI)| ≤ C‖u − uh‖1‖w − wI‖1

≤ Ch‖u − uh‖1‖w‖2 ≤ Ch‖u − uh‖1 ≤ Chγ‖u‖γ .

By using (2.21),

|I2| = |A(u − uh, Th(β − 1)(w − wI))| ≤ C‖u − uh‖1‖Th(β − 1)(w − wI)‖1

≤ C‖u − uh‖1‖w − wI‖0 ≤ Chγ+1‖u‖γ .

By ‖wI‖h
2 ≤ C‖w‖2 ≤ C and Lemma 4.2,

|I3| = |h2
∑

τ

h2
τ (L(u − uh), LwI)τ | ≤ Ch4

∑
τ

‖u − uh‖2,τ‖wI‖2,τ

≤ Ch4‖u − uh‖h
2‖w‖2 ≤ Chγ+2‖u‖γ‖w‖2 ≤ Chγ+2‖u‖γ .

By using [wν ] = 0, the trace inequality (3.4), (2.9), Lemma 4.2, and Theorem 4.1,

|I4| = |h2
∑

e

hτ(e)

∫
e

[(u − uh)ν ][(w − wI)ν ]ds|

≤ Ch3
∑

e

(∫
e

[(u − uh)ν ]2ds

)1/2 (∫
e

[(w − wI)ν ]2ds

)1/2

≤ Ch3
∑

τ

(
1√
h
‖u − uh‖1,τ +

√
h‖u − uh‖2,τ

)
·
(

1√
h
‖w − wI‖1,τ +

√
h‖w − wI‖2,τ

)
≤ Ch3

∑
τ

(
1√
h
‖u − uh‖1,τ +

√
h‖u − uh‖2,τ

) (√
h‖w‖2,τ

)
≤ Ch3

∑
τ

(‖u − uh‖1,τ + h‖u − uh‖2,τ ) ‖w‖2,τ

≤ Ch3
(
‖u − uh‖1 + h‖u − uh‖h

2

)
‖w‖2

≤ Chγ+2‖u‖γ .

Thus,

(4.5) |A(u − uh, w) + A(u − uh, Th(β − 1)w)| ≤ Chγ‖u‖γ .

Using (2.17) and (2.21) for the third term on the right in (4.4),

|A(u − uh, (T − Th)(β − 1)w)| ≤ C‖u − uh‖1‖(T − Th)(β − 1)w‖1

≤ Ch‖u − uh‖1‖w‖1 ≤ Chγ‖u‖γ .(4.6)

By putting (4.5) and (4.6) into (4.4), we get

(u − uh, φ) ≤ Chγ‖u‖γ .
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Hence, we conclude that
‖u − uh‖0 ≤ Chγ‖u‖γ . �

As for a negative norm estimate, we have the following.

Theorem 4.4. With the same assumptions as above and r ≥ 3 and Ω bounded in
R

2,
‖u − uh‖−1 ≤ Chγ−1+α‖u‖γ ,

where α = min{2, π
θ − ε} with θ the largest angle in Ω and ε > 0.

Note that the solution to (2.1) belongs to H1+α where α is defined as above; cf.
[9].

Proof.

(4.7) ‖u − uh‖−1 = sup
φ∈W,‖φ‖1=1

(u − uh, φ).

The remaining proof is similar to that of Theorem 4.3. �

5. Local error estimates

This section is motivated by the work of Nitche and Schatz [10]. Rather than
following the proof given in [10], we use the slightly varied argument given by
Wahlbin [17]. The importance of the local H1 error estimate is that it is essential
for our pointwise error estimates in Section 6.

Theorem 5.1. Let D ⊂ Ω, D̃d = {x ∈ R
n : dist(x, D) ≤ d}, and Dd = Ω

⋂
D̃d

with d ≥ C0h for C0 sufficiently large. With the same assumptions as in Theorem
4.1,

‖u − uh‖1,D ≤ C

(
‖u − χ‖1,Dd

+
‖u − χ‖0,Dd

d
+

‖u − uh‖0,Dd

d

)
+C

(
h3‖u − χ‖h

2,Dd
+ h‖u − χ‖1,Ω + ‖u − uh‖0,Ω + ‖u − χ‖0,Ω

)
,

for any χ ∈ Wh.

The first three terms on the right in the above inequality are exactly the same as
the terms in [10]. The last four terms result from the stabilization terms, and some
of them involve the global norm. We want to point out that they are “weaker”
terms compared to the first three terms.

Proof. We first note that the desired estimate follows if we can show that

‖∇(u − uh)‖0,D ≤ C

(
‖u‖1,Dd

+
‖u‖0,Dd

d
+

‖u − uh‖0,Dd

d

)
+C

(
h3‖u‖h

2,Dd
+ h‖u‖1,Ω + ‖u − uh‖0,Ω + ‖u‖0,Ω

)
;

then just write u − uh = (u − χ) + (χ − uh) for any χ ∈ Wh. By the triangle
inequality, the above inequality in turn follows if we can show that

(5.1)
‖∇uh‖0,D ≤ C

(
‖u‖1,Dd

+
‖uh‖0,Dd

d

)
+C

(
h3‖u‖h

2,Dd
+ h‖u‖1,Ω + ‖uh‖0,Ω + ‖u‖0,Ω

)
.
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Now let ω be a cut-off function which equals 1 on D, is supported in D̃ d
2
, and

satisfies |ω|W l
∞

≤ Cd−l, where l = 0, 1, 2. Then, by definition of A(·, ·),

‖∇uh‖2
0,D ≤ ‖ω∇uh‖2

0,Dd
= (ω∇uh, ω∇uh)

= A(uh, ω2uh) −
∫

(b · ∇uh)ω2uh + c(x)ω2u2
hdx

−2
∫

(ω∇uh) · (uh∇ω)dx

= A(uh − u, ω2uh) −
∫

(b · ∇uh)ω2uh + c(x)ω2u2
hdx

−2
∫

(ω∇uh) · (uh∇ω)dx + A(u, ω2uh)

= I1 + I2 + I3 + I4 + I5.(5.2)

For I1, by the orthogonal property (3.3),

I1 = A(uh − u, ω2uh)
= A(uh − u, ω2uh − ψ) − A(uh − u, Th(β − 1)ψ)

−h2
∑

τ

h2
τ (L(uh − u), Lψ)τ − h2

∑
e

hτ(e)

∫
e

[(uh − u)γ ][ψγ ]ds

= J1 + J2 + J3 + J4,

where ψ = (ω2uh)I , i.e., the interpolant defined in [15].
We state some of the inequalities needed. Note that the second inequality is

the superapproximation property; cf. [10]. The proof can be obtained by using
Poincaré inequality and differentiating ψ:

‖ψ‖1 ≤ C

d
‖uh‖0,Dd

+ C‖ω∇uh‖0,Dd
,(5.3)

‖ω2uh − ψ‖1 ≤ C

(
h

d
‖uh‖1,Dd

+
h

d2
‖uh‖0,Dd

)
.(5.4)

For J1, using (5.4) and (2.11),

|J1| = |A(uh − u, ω2uh − ψ)| ≤ C‖u − uh‖1,Dd
‖ω2uh − ψ‖1

≤ C(‖u‖1,Dd
+ ‖uh‖1,Dd

)
(

h

d
‖uh‖1,Dd

+
h

d2
‖uh‖2

0,Dd

)
≤ C‖u‖2

1,Dd
+

‖uh‖2
0,Dd

d2
+

h

d
‖uh‖2

1,Dd
.

By the definition of T (2.7),

J2 = A(u − uh, Th(β − 1)ψ)
= (∇(u − uh),∇(Th − T )(β − 1)ψ) + (β(u − uh), Th(β − 1)ψ)

+(∇(u − uh),∇T (β − 1)ψ)
= (∇(u − uh),∇(Th − T )(β − 1)ψ) + (β(u − uh), Th(β − 1)ψ)

+(u − uh, (β − 1)ψ) − (u − uh, T (β − 1)ψ).
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Thus, using (2.17), (5.3), and (2.11),

|J2| ≤ ‖u − uh‖1,Ω‖(T − Th)(β − 1)ψ‖1,Ω + ‖u − uh‖1,Ω‖Th(β − 1)ψ‖0,Ω

+‖u − uh‖0,Ω‖(β − 1)ψ‖0,Ω + ‖u − uh‖0,Ω‖T (β − 1)ψ‖0,Ω

≤ Ch‖u − uh‖1,Ω‖ψ‖1 + C‖u − uh‖0,Ω‖ψ‖1

≤ C (h‖u‖1,Ω + ‖uh‖0,Ω)
(
‖uh‖0,Dd

d
+ ‖ω∇uh‖0,Dd

)
+C (‖u‖0,Ω + ‖uh‖0,Ω)

(
‖uh‖0,Dd

d
+ ‖ω∇uh‖0,Dd

)
≤ C

(
h2‖u‖2

1,Ω + ‖uh‖2
0,Ω +

‖uh‖2
0,Dd

d2
+ ‖u‖2

0,Ω

)
+

1
C
‖ω∇uh‖2

0,Dd
.

Using that supp(ψ) ⊂ Dd and by (2.11),

|J3| = |h2
∑

τ

h2
τ (L(u − uh), Lψ)τ | ≤ Ch4

∑
τ⊂Dd

‖u − uh‖2,τ‖ψ‖2,τ

≤ Ch3
∑

τ⊂Dd

‖u − uh‖2,τ‖ψ‖1,τ ≤ Ch3‖u − uh‖h
2,Dd

‖ψ‖1

≤ Ch3
(
‖u‖h

2,Dd
+ ‖uh‖h

2,Dd

) (
‖uh‖0,Dd

d
+ ‖ω∇uh‖0,Dd

)
≤ C

(
(h3‖u‖h

2,Dd
)2 + ‖uh‖2

0,Dd

)
+

1
C
‖ω∇uh‖2

0,Dd
.

By the trace inequality (3.4), the inverse inequality (2.11), the superapproximation
property (5.3), and the arithmetic-geometric mean inequality,

|J4| = |h2
∑

e

hτ(e)

∫
e

[(u − uh)ν ][ψν ]ds |

≤ Ch3
∑

e⊂Dd

(∫
e

[(u − uh)γ ]2ds

)1/2 (∫
e

[ψν ]2ds

)1/2

≤ Ch3
∑

τ⊂Dd

((
1√
h
‖u − uh‖1,τ +

√
h‖u − uh‖2,τ

)(
1√
h
‖ψ‖1,τ +

√
h‖ψ‖2,τ

))
≤ Ch2

∑
τ⊂Dd

(‖u − uh‖1,τ + h‖u − uh‖2,τ ) (‖ψ‖1,τ )

≤ Ch2
(
‖u − uh‖1,Dd

+ h‖u − uh‖h
2,Dd

)
‖ψ‖1

≤ C
(
h2‖u‖1,Dd

+ h3‖u‖h
2,Dd

+ h2‖uh‖1,Dd

) (
‖uh‖0,Dd

d
+ ‖ω∇uh‖0,Dd

)
≤ C

(
h4‖u‖2

1,Dd
+ (h3‖u‖h

2,Dd
)2 +

‖uh‖2
0,Dd

d2

)
+

1
C
‖ω∇uh‖2

0,Dd
.
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Thus

|I1| ≤ C

(
‖u‖2

1,Dd
+

‖uh‖2
0,Dd

d2

)
+C

(
h2‖u‖2

1,Ω + ‖u‖2
0,Ω + ‖uh‖2

0,Ω + (h3‖u‖h
2,Dd

)2
)

+C
h

d
‖uh‖2

1,Dd
+

1
C
‖ω∇uh‖2

0,Dd
.

Using the arithmetic-geometric mean inequality, we can easily obtain the following
inequality:

|I2| + |I3| + |I4| + |I5| ≤ C

(
‖u‖2

1,Dd
+

‖uh‖2
0,Dd

d2

)
+

1
C
‖ω∇uh‖2

0,Dd
.

By putting the estimates for I1, I2, I3, I4, and I5 into (5.2) and using a kick-back
argument with sufficiently large C, we can conclude that

‖∇uh‖2
0,D ≤ C

(
‖u‖2

1,Dd
+

‖uh‖2
0,Dd

d2

)
+C

(
h2‖u‖2

1,Ω + ‖u‖2
0,Ω + ‖uh‖2

0,Ω + (h3‖u‖h
2,Dd

)2
)

+C
h

d
‖uh‖2

1,Dd
.

Iterating the above argument for ‖∇uh‖2
0,Dd

with D2d and using the inverse in-
equality (2.11), we get

‖∇uh‖2
0,D ≤ C

(
‖u‖2

1,D2d
+

‖uh‖2
0,D2d

(2d)2

)
+C

(
h2‖u‖2

1,Ω + ‖u‖2
0,Ω + ‖uh‖2

0,Ω + (h3‖u‖h
2,D2d

)2
)

+C
1

(2d)2
‖uh‖2

0,D2d
.

Now changing the notation back from 2d to d, we obtain the inequality (5.1). Hence
the theorem is proved. �

6. Pointwise error estimates

From now on, our space will be in R
2, i.e., n = 2. We will closely follow the

work of Schatz and Wahlbin [14] for the standard Galerkin method. However, the
use of the nonlocal operator Th in our present method complicates the analysis.

Without loss of generality we assume that diam(Ω) ≤ 1. Let

dj = 2−j for j = 0, 1, 2, . . . ,

and for fixed x set
Ωj = {y ∈ Ω : dj+1 < |y − x| < dj},
Ω

′

j = {y ∈ Ω : dj+2 < |y − x| < dj−1},
Ω

′′

j = {y ∈ Ω : dj+3 < |y − x| < dj−2}.
We shall now define two functions gx(y) and gx

h(y). Here gx(y) may be thought of
as a smoothed Green’s function with a singularity at x, and gx

h(y) ∈ Wh its finite
element approximation. We now give some facts that will be needed for the proof
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of pointwise estimates. For d > 0 and any fixed x ∈ Ω, Bd(x) will denote the
intersection of Ω with a ball of radius d centered at x, i.e.,

Bd(x) = {y ∈ Ω : ‖y − x‖ < d}.
Define

(6.1) η =

⎧⎨⎩ h−1 (u − uh)(y)
‖u − uh‖L2(B2h(x))

if y ∈ B2h(x),

0 otherwise .

For fixed x ∈ Ω, gx(y) is defined to satisfy

(6.2) A(v, gx) = (η, v) for all v ∈ W.

By the a priori estimates (2.6),

(6.3) ‖gx‖W 2
2 (Ω) ≤ C‖η‖L2(Ω) ≤

C

h
.

The finite element approximation gx
h(y) ∈ Wh is taken to be the unique solution of

(6.4) B(φ, gx − gx
h) = 0 for all φ ∈ Wh.

We state and prove two inequalities concerning gx and gx
h, which will be used later.

Lemma 6.1. Let gx satisfy (6.2). Then

‖gx‖1 ≤ C ln
1
h

.

Proof. By the a priori estimate (2.6), ‖gx‖1 ≤ C‖η‖−1. By definition,

‖η‖−1 = sup
φ∈W,‖φ‖1=1

(η, φ).

By Hölder’s inequality,

(η, φ) ≤ ‖η‖Lq
‖φ‖Lp

, where
1
p

+
1
q

= 1.

By Sobolev’s inequality,
‖φ‖Lp

≤ Cp‖φ‖1 = Cp,

so that
(η, φ) ≤ Cp‖η‖Lq

.

Choose p = ln 1
h . Again, by using Hölder’s inequality, the fact that supp(η) ⊂

B2h(x), and choosing q′ = 2
q , with 1

p′ + 1
q′ = 1, and by (6.3),

‖η‖Lq
=

(∫
B2h(x)

|η|qdx

) 1
q

≤ C

(∫
B2h(x)

1dx

) 1
p′q

(∫
B2h(x)

|η|qq′
dx

) 1
qq′

≤ Ch
2

p′q ‖η‖L2 ≤ Ch
2

p′q
−1.

Note that 2/p′q = 1 − 2/ ln(1/h). Thus, h(2/p′q)−1 = h−2/ ln(1/h) ≤ C. Hence, we
can conclude that ‖η‖−1 ≤ C ln(1/h). We thus have the desired inequality. �

Lemma 6.2. Let gx and gx
h satisfy (6.2) and (6.4). Then

‖gx − gx
h‖W 1

1 (Ω) ≤ Ch

(
ln

1
h

)3/2

.
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Proof. Let M >> 1 be a constant which will be chosen later on to be sufficiently
large. For convenience we shall choose M to begin with so that for some integer J

Mh = 2−J .

Note that since M > 1

J = ln2
1
M

+ ln2
1
h
≤ ln2

1
h

.

Then, using Cauchy-Schwartz inequality, Theorem 4.1, and (6.3),

‖gx − gx
h‖W 1

1 (Ω) = ‖gx − gx
h‖W 1

1 (BMh(x)) +
J∑

j=0

‖gx − gx
h‖W 1

1 (Ωj)

≤ CMh · h|gx‖W 2
2 (Ω) +

J∑
j=0

dj‖gx − gx
h‖W 1

2 (Ωj)

≤ CMh +
J∑

j=0

dj‖gx − gx
h‖W 1

2 (Ωj).

By Theorem 5.1 with χ = (gx)I and the approximation property (2.9), we have

‖gx − gx
h‖W 1

2 (Ωj)

≤ C

(
‖gx − χ‖W 1

2 (Ω
′
j)

+
‖gx − χ‖L2(Ω

′
j)

dj
+

‖gx − gx
h‖L2(Ω

′
j)

dj

)
+C

(
h3‖gx − χ‖h

W 2
2 (Ω

′
j)

+ h‖gx − χ‖W 1
2 (Ω)

+‖gx − χ‖L2(Ω) + ‖gx − gx
h‖L2(Ω)

)
≤ C

(
h‖gx‖W 2

2 (Ω
′′
j ) +

1
dj

‖gx − gx
h‖L2(Ω

′
j)

)
+ Ch2‖gx‖W 2

2 (Ω).

By definition of gx, it is an A-harmonic function on Ω
′′

j , i.e., A(gx, ψ) = 0 for
supp(ψ) ⊂ Ω

′′

j , for j = 0, . . . , J . Thus, by local regularity estimates,

(6.5) ‖gx‖W 2
2 (Ω

′′
j ) ≤

C

dj
‖gx‖W 1

2 (Ω
′′′
j ).

Here,

‖gx − gx
h‖W 1

1 (Ω) ≤ CMh +
J∑

j=0

dj‖gx − gx
h‖W 1

2 (Ωj)

≤ CMh + C

⎛⎝ J∑
j=0

djh‖gx‖W 2
2 (Ω

′′
j )

⎞⎠ + C
J∑

j=0

‖gx − gx
h‖L2(Ω

′
j)

≤ CMh + C

J∑
j=0

h‖gx‖W 1
2 (Ω

′′′
j ) + C(ln

1
h

)1/2‖gx − gx
h‖L2(Ω)

≤ Ch ln
1
h

+ Ch(ln
1
h

)1/2‖gx‖W 1
2 (Ω)

≤ Ch(ln
1
h

)3/2. �
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We shall use the above to prove our main result of this section.

Theorem 6.3. For any fixed x ∈ Ω,

|(u − uh)(x)| ≤ Ch(ln
1
h

)3/2
(
‖u − uI‖W 1

∞
+ h‖u − uI‖h

2

)
.

Proof. For any ψ ∈ Wh, the triangle inequality, inverse inequality (2.11), and (2.10)
yield

|(u − uh)(x)| ≤ |(u − ψ)(x)| + Ch−1‖ψ − uh‖L2(B2h(x))

≤ |(u − ψ)(x)|
+Ch−1

(
‖ψ − u‖L2(B2h(x)) + ‖u − uh‖L2(B2h(x))

)
≤ C‖u − ψ‖L∞(B2h(x)) + Ch−1‖u − uh‖L2(B2h(x))

≤ Ch‖u‖W 1
∞

+ Ch−1‖u − uh‖L2(B2h(x)).

By writing (u − uh) = (u − uI) + (uI − uh), we obtain

|(u − uh)(x)| ≤ Ch‖u − uI‖W 1
∞

+ Ch−1‖u − uh‖L2(B2h(x)).

By definition of η, gx and B(·, ·) with the fact [gx
ν ] = 0, we have

h−1‖u − uh‖L2(B2h)

= (u − uh, η) = A(u − uh, gx)

= A(u − uh, gx) + A(u − uh, Th(β − 1)gx) − A(u − uh, Th(β − 1)gx)

= B(u − uh, gx) − h2
∑

τ

h2
τ (L(u − uh), Lgx)τ − A(u − uh, Th(β − 1)gx)

= I1 + I2 + I3.

(6.6)

By the orthogonal property (3.3),

I1 = B(u − uh, gx)

= B(u − uh, gx − gx
h) = B(u − χ, gx − gx

h)

= A(u − χ, gx − gx
h) + A(u − χ, Th(β − 1)(gx − gx

h))

+ h2
∑

τ

h2
τ (L(u − χ), L(gx − gx

h))τ + h2
∑

e

hτ(e)

∫
e

[(u − χ)ν ][(gx − gx
h)ν ]ds

= J1 + J2 + J3 + J4,

for any χ ∈ Wh. For the simple presentation of our result, we choose χ = uI .
By Lemma 6.2,

|J1| = |A(u − uI , g
x − gx

h)| ≤ C‖u − uI‖W 1
∞
‖gx − gx

h‖W 1
1

≤ Ch(ln
1
h

)3/2‖u − uI‖W 1
∞

.

By (2.21), Theorem 4.3, (6.3), and approximation property (2.9),

|J2| = |A(u − uI , Th(β − 1)(gx − gx
h))| ≤ C‖u − uI‖1‖Th(β − 1)(gx − gx

h)‖1

≤ C‖u − uI‖1‖gx − gx
h‖0 ≤ Ch2‖u − uI‖1‖gx‖2 ≤ Ch‖u − uI‖1.

By Lemma 4.2 and (6.3),

|J3| = |h2
∑

τ

h2
τ (L(u − uI), L(gx − gx

h))τ | ≤ Ch2‖u − uI‖h
2‖gx − gx

h‖h
2

≤ Ch2‖u − uI‖h
2h2‖gx‖2 ≤ Ch3‖u − uI‖h

2 .
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By the trace inequality (3.4), Lemma 4.2, approximation property (2.9), and (6.3),

|J4| = |h2
∑

e

hτ(e)

∫
e

[(u − uI)ν ][(gx − gx
h)ν ]ds|

≤ Ch3
∑

τ

((
1√
h
‖u − uI‖1,τ +

√
h‖u − uI‖2,τ

)
·
(

1√
h
‖gx − gx

h‖1,τ +
√

h‖gx − gx
h‖2,τ

))
≤ Ch2

∑
τ

(‖u − uI‖1,τ + h‖u − uI‖2,τ ) (‖gx − gx
h‖1,τ + h‖gx − gx

h‖2,τ )

≤ Ch2
(
‖u − uI‖1(‖gx − gx

h‖1 + h‖gx − gx
h‖h

2 )
)

+Ch2
(
h‖u − uI‖h

2 (‖gx − gx
h‖1 + h‖gx − gx

h‖h
2 )

)
≤ Ch2‖u − uI‖1 · h‖g‖2 + Ch3‖u − uI‖h

2 · h‖g‖2

≤ Ch2‖u − uI‖1 + Ch3‖u − uI‖h
2 .

For I2, using (6.3) and Lemma 4.2,

|I2| = |h2
∑

τ

h2
τ (L(u − uh), Lgx)τ | ≤ Ch4‖u − uh‖h

2‖gx‖2

≤ Ch3‖u − uh‖h
2 ≤ Ch2(‖u − uI‖1 + h‖u − uI‖h

2 ).

For I3,

I3 = −A(u − uh, Th(β − 1)gx)
= −A(u − uh, (Th − T )(β − 1)gx) − A(u − uh, T (β − 1)gx).

Using the definition of T (2.7) and Th (2.15),

A(u − uh, T (β − 1)gx)
= (∇(u − uh),∇T (β − 1)gx) + (β(u − uh), T (β − 1)gx)
= (u − uh, (β − 1)gx) − (u − uh, T (β − 1)gx)

+(β(u − uh), T (β − 1)gx)
= (u − uh, (β − 1)gx) + ((β − 1)(u − uh), T (β − 1)gx).

Thus, using (2.17), (2.16), Theorem 4.1, and Lemma 6.1,

|I3| ≤ ‖u − uh‖1‖(T − Th)(β − 1)gx‖1

+‖u − uh‖0‖gx‖1 + ‖u − uh‖0‖T (β − 1)gx‖1

≤ Ch‖u − uh‖1‖gx‖1

≤ Ch(ln
1
h

)(‖u − uI‖1 + h‖u − uI‖h
2 ).

By combining I1, I2, and I3 in (6.6), we can conclude that

|(u − uh)(x)| ≤ Ch(ln
1
h

)3/2
(
‖u − uI‖W 1

∞
+ ‖u − uI‖1 + h‖u − uI‖h

2

)
.

Since ‖u − uI‖1 ≤ ‖u − uI‖W 1
∞

, we obtain the statement of the theorem. �

For the error estimates for ∇(u − uh) we can follow the argument given in [13].
We state our theorem without proof.
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Theorem 6.4. For any fixed x ∈ Ω,

|∇(u − uh)(x)| ≤ C(ln
1
h

)3/2
(
‖u − uI‖W 1

∞
+ h‖u − uI‖h

2

)
.

7. Numerical results

We include here numerical results for a test problem. Let Ω ⊂ R
2 be a square do-

main with corners (0, 0), (1, 0), (1, 1), (0, 1). Consider the following model problem:

(7.1)
−�u − 30u = f in Ω,

u = 0 on ∂Ω,

with the exact solution

u = (x − x2) sin(πy).

Note that we choose our model problem so that the problem is indefinite.
For approximation, we use a regular grid of triangles and a subspace Wh of

continuous piecewise linear functions defined with respect to this triangulation.
Specifically, we portion the square into N × N smaller squares and then into two
triangles by connecting the lower left and upper right corner vertices. Functions in
Wh vanish on ∂Ω. We present the convergence behavior based on (3.2) in Table
7.1. A seven-point quadrature rule [16] which integrates exactly polynomials of up
to degree five was used for the computation.

At the end of Section 3, we discussed using different powers of h in our bilinear
form, i.e., we can take our bilinear form as follows:

B(u, v) = A(u, v) + A(u, Th(β − 1)v)

+hn
∑

τ

h2
τ (Lu, Lv)τ + hn

∑
e

hτ(e)

∫
e

[uν ][vν ]ds,

where n ≥ 1. We include numerics for n = 0, 2, 4, 6, 8,∞ in Table 7.2 for H1-norm
with our model problem. Note that n = 0 corresponds to the method proposed by
Bramble et al. [4] and n = 2 corresponds to the method based on (3.2). We denote
n = ∞ when we remove the last two terms, and the least-squares method coincides
with the Galerkin method as explained in [4, Remark 3.2].

The numerics confirms Theorems 4.1 and 6.3 in this paper and shows the im-
provement due to our modification. We note that the least-squares method behaves
better than the Galerkin method for h = 1

4 , 1
8 .

Table 7.1. Convergence behavior.

h Discrete L2 error rate Maximum norm error rate
1/4 0.0595 - 0.1111 -
1/8 0.0037 4.01 0.0113 3.30
1/16 0.0021 0.82 0.0058 0.96
1/32 6.1190e − 4 1.78 0.0016 1.86
1/64 1.6255e − 4 1.91 4.2759e − 4 1.90
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Table 7.2. Convergence behavior for varying power of h for the
H1-norm.

h n = 0 n = 2 n = 4 n = 6 n = 8 n = ∞
1/4 0.4542 0.3022 0.3355 0.4176 0.4239 0.4244
1/8 0.3916 0.1182 0.1338 0.1341 0.1341 0.1341
1/16 0.2560 0.0593 0.0599 0.0599 0.0599 0.0599
1/32 0.1103 0.0291 0.0291 0.0291 0.0291 0.0291
1/64 0.0358 0.0144 0.0144 0.0144 0.0144 0.0144
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